1
|
Merritt J, Kreth J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular microbiology studies. FEMS Microbiol Rev 2023; 47:fuac050. [PMID: 36549660 PMCID: PMC10719069 DOI: 10.1093/femsre/fuac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Advancements in DNA sequencing technologies within the last decade have stimulated an unprecedented interest in the human microbiome, largely due the broad diversity of human diseases found to correlate with microbiome dysbiosis. As a direct consequence of these studies, a vast number of understudied and uncharacterized microbes have been identified as potential drivers of mucosal health and disease. The looming challenge in the field is to transition these observations into defined molecular mechanistic studies of symbiosis and dysbiosis. In order to meet this challenge, many of these newly identified microbes will need to be adapted for use in experimental models. Consequently, this review presents a comprehensive overview of the molecular microbiology tools and techniques that have played crucial roles in genetic studies of the bacteria found within the human oral microbiota. Here, we will use specific examples from the oral microbiome literature to illustrate the biology supporting these techniques, why they are needed in the field, and how such technologies have been implemented. It is hoped that this information can serve as a useful reference guide to help catalyze molecular microbiology studies of the many new understudied and uncharacterized species identified at different mucosal sites in the body.
Collapse
Affiliation(s)
- Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| |
Collapse
|
2
|
Reardon-Robinson ME, Nguyen MT, Sanchez BC, Osipiuk J, Rückert C, Chang C, Chen B, Nagvekar R, Joachimiak A, Tauch A, Das A, Ton-That H. A cryptic oxidoreductase safeguards oxidative protein folding in Corynebacterium diphtheriae. Proc Natl Acad Sci U S A 2023; 120:e2208675120. [PMID: 36787356 PMCID: PMC9974433 DOI: 10.1073/pnas.2208675120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
In many gram-positive Actinobacteria, including Actinomyces oris and Corynebacterium matruchotii, the conserved thiol-disulfide oxidoreductase MdbA that catalyzes oxidative folding of exported proteins is essential for bacterial viability by an unidentified mechanism. Intriguingly, in Corynebacterium diphtheriae, the deletion of mdbA blocks cell growth only at 37 °C but not at 30 °C, suggesting the presence of alternative oxidoreductase enzyme(s). By isolating spontaneous thermotolerant revertants of the mdbA mutant at 37 °C, we obtained genetic suppressors, all mapped to a single T-to-G mutation within the promoter region of tsdA, causing its elevated expression. Strikingly, increased expression of tsdA-via suppressor mutations or a constitutive promoter-rescues the pilus assembly and toxin production defects of this mutant, hence compensating for the loss of mdbA. Structural, genetic, and biochemical analyses demonstrated TsdA is a membrane-tethered thiol-disulfide oxidoreductase with a conserved CxxC motif that can substitute for MdbA in mediating oxidative folding of pilin and toxin substrates. Together with our observation that tsdA expression is upregulated at nonpermissive temperature (40 °C) in wild-type cells, we posit that TsdA has evolved as a compensatory thiol-disulfide oxidoreductase that safeguards oxidative protein folding in C. diphtheriae against thermal stress.
Collapse
Affiliation(s)
- Melissa E. Reardon-Robinson
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX77030
| | - Minh Tan Nguyen
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA90095
| | - Belkys C. Sanchez
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
| | - Jerzy Osipiuk
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL60637
- Structural Biology Center, Argonne National Laboratory, Lemont, IL60439
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, D-33615Bielefeld, Germany
| | - Chungyu Chang
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA90095
| | - Bo Chen
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX77030
| | - Rahul Nagvekar
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX77030
- Stanford University, Stanford, CA94305
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL60637
- Structural Biology Center, Argonne National Laboratory, Lemont, IL60439
| | - Andreas Tauch
- Center for Biotechnology, Bielefeld University, D-33615Bielefeld, Germany
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT06030
| | - Hung Ton-That
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
| |
Collapse
|
3
|
Chang C, Nguyen MT, Ton-That H. Genetic Manipulation of Corynebacterium diphtheriae and Other Corynebacterium Species. ACTA ACUST UNITED AC 2021; 58:e111. [PMID: 32865881 DOI: 10.1002/cpmc.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article describes several established approaches for genetic manipulation of Corynebacterium diphtheriae, the causative agent of diphtheria that is known to have provided key evidence for Koch's postulates on the germ theory. First, it includes a detailed gene deletion method that generates nonpolar, in-frame, markerless deletion mutants, utilizing the levansucrase SacB as a counter-selectable marker. Second, it provides a thorough protocol for rescuing deletion mutants using Escherichia coli-Corynebacterium shuttle vectors. Finally, a Tn5 transposon mutagenesis procedure is described. In principle, these protocols can be used for other Corynebacterium species, including Corynebacterium glutamicum and Corynebacterium matruchotii. © 2020 Wiley Periodicals LLC Basic Protocol 1: Gene deletion in Corynebacterium diphtheriae Basic Protocol 2: Complementation of a mutant strain Basic Protocol 3: Tn5 transposon mutagenesis of Corynebacterium diphtheriae.
Collapse
Affiliation(s)
- Chungyu Chang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California
| | - Minh Tan Nguyen
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hung Ton-That
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California.,Molecular Biology Institute, University of California, Los Angeles, California
| |
Collapse
|
4
|
Drift of the Subgingival Periodontal Microbiome during Chronic Periodontitis in Type 2 Diabetes Mellitus Patients. Pathogens 2021; 10:pathogens10050504. [PMID: 33922308 PMCID: PMC8145315 DOI: 10.3390/pathogens10050504] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Since periodontitis and type 2 diabetes mellitus are complex diseases, a thorough understanding of their pathogenesis requires knowing the relationship of these pathologies with other disorders and environmental factors. In this study, the representability of the subgingival periodontal microbiome of 46 subjects was studied by 16S rRNA gene sequencing and shotgun sequencing of pooled samples. We examined 15 patients with chronic periodontitis (CP), 15 patients with chronic periodontitis associated with type 2 diabetes mellitus (CPT2DM), and 16 healthy subjects (Control). The severity of generalized chronic periodontitis in both periodontitis groups of patients (CP and CPT2DM) was moderate (stage II). The male to female ratios were approximately equal in each group (22 males and 24 females); the average age of the subjects was 53.9 ± 7.3 and 54.3 ± 7.2 years, respectively. The presence of overweight patients (Body Mass Index (BMI) 30–34.9 kg/m2) and patients with class 1–2 obesity (BMI 35–45.9 kg/m2) was significantly higher in the CPT2DM group than in patients having only chronic periodontitis or in the Control group. However, there was no statistically significant difference in all clinical indices between the CP and CPT2DM groups. An analysis of the metagenomic data revealed that the alpha diversity in the CPT2DM group was increased compared to that in the CP and Control groups. The microbiome biomarkers associated with experimental groups were evaluated. In both groups of patients with periodontitis, the relative abundance of Porphyromonadaceae was increased compared to that in the Control group. The CPT2DM group was characterized by a lower relative abundance of Streptococcaceae/Pasteurellaceae and a higher abundance of Leptotrichiaceae compared to those in the CP and Control groups. Furthermore, the CP and CPT2DM groups differed in terms of the relative abundance of Veillonellaceae (which was decreased in the CPT2DM group compared to CP) and Neisseriaceae (which was increased in the CPT2DM group compared to CP). In addition, differences in bacterial content were identified by a combination of shotgun sequencing of pooled samples and genome-resolved metagenomics. The results indicate that there are subgingival microbiome-specific features in patients with chronic periodontitis associated with type 2 diabetes mellitus.
Collapse
|
5
|
Corynebacterium matruchotii Demography and Adhesion Determinants in the Oral Cavity of Healthy Individuals. Microorganisms 2020; 8:microorganisms8111780. [PMID: 33202844 PMCID: PMC7697164 DOI: 10.3390/microorganisms8111780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Corynebacterium matruchotii may be key in tooth biofilm formation, but information about demographics, bacterial partners, and binding ligands is limited. The aims of this study were to explore C. matruchotii’s demography by age and colonization site (plaque and saliva), in vitro bacterial–bacterial interactions in coaggregation and coadhesion assays, and glycolipids as potential binding ligands in thin-layer chromatogram binding assays. C. matruchotii prevalence increased from 3 months to 18 years old, with 90% and 100% prevalence in saliva and tooth biofilm, respectively. C. matruchotii aggregated in saliva in a dose-dependent manner but lacked the ability to bind to saliva-coated hydroxyapatite. In vivo, C. matruchotii abundance paralleled that of Actinomyces naeslundii, Capnocytophaga sp. HMT 326, Fusobacterium nucleatum subsp. polymorphum, and Tannerella sp. HMT 286. In vitro, C. matruchotii bound both planktonic and surface-bound A. naeslundii, Actinomyces odontolyticus, and F. nucleatum. In addition, C. matruchotii exhibited the ability to bind glycolipids isolated from human erythrocytes (blood group O), human granulocytes, rabbit intestine, human meconium, and rat intestine. Binding assays identified candidate carbohydrate ligands as isoglobotriaosylceramide, Galα3-isoglobotriaosylceramide, lactotriaosylceramide, lactotetraosylceramide, neolactotetraosylceramide, and neolactohexaosylceramide. Thus, C. matruchotii likely uses specific plaque bacteria to adhere to the biofilm and may interact with human tissues through carbohydrate interactions.
Collapse
|
6
|
Karaaslan F, Demir T, Barış O. Effect of Periodontal Disease-associated Bacteria on the Formation of Dental Calculus: An In Vitro Study. JOURNAL OF ADVANCED ORAL RESEARCH 2020. [DOI: 10.1177/2320206820919591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aim: To investigate whether bacteria that play a major role in periodontal disease pathology and in the formation of dental plaque also affect the formation of dental calculus, which is a predisposing factor for the initiation and progression of periodontal diseases. Materials and Methods: This was an in vitro study, and cultures of bacteria were obtained from the American Type Culture Collection and Department of Biology, Faculty of Science, Atatürk University. Young cultures of bacteria of Streptococcus mutans ( S. mutans), Streptococcus sanguinis ( S. sanguinis), Streptococcus gordonii ( S. gordonii), Aggregatibacter actinomycetemcomitans ( A. actinomycetemcomitans), Porphyromonas gingivalis ( P. gingivalis), Fusobacterium nucleatum ( F. nucleatum), and Corynebacterium matruchotii ( C. matruchotii) were prepared in media containing their specific enriching factors. B2 solid, B4 solid, and B2 liquid media were used to determine active calcification, whereas the mineral salt basal (MSB) medium was used to observe passive calcification. Calcification in the media was measured under light microscopy and in MSB using a spectrophotometer and was recorded as the percent transmittance. Results: S. mutans, S. sanguinis, and S. gordonii showed calcification in the B2 medium. S. mutans, S. sanguinis, S. gordonii, and C. matruchotii demonstrated calcification in MSB. A. actinomycetemcomitans, P. gingivalis, and F. nucleatum did not show any calcification. Conclusions: It was concluded that streptococci present in dental plaque take part in the formation of dental calculus, whereas periodontopathogens have no role in the formation of dental calculus.
Collapse
Affiliation(s)
- Fatih Karaaslan
- Department of Periodontology, Faculty of Dentistry, Usak University, Usak, Turkey
| | - Turgut Demir
- Department of Periodontology, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| | - Ozlem Barış
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
7
|
Naradasu D, Miran W, Okamoto A. Metabolic Current Production by an Oral Biofilm Pathogen Corynebacterium matruchotii. Molecules 2020; 25:molecules25143141. [PMID: 32660074 PMCID: PMC7397247 DOI: 10.3390/molecules25143141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
The development of a simple and direct assay for quantifying microbial metabolic activity is important for identifying antibiotic drugs. Current production capabilities of environmental bacteria via the process called extracellular electron transport (EET) from the cell interior to the exterior is well investigated in mineral-reducing bacteria and have been used for various energy and environmental applications. Recently, the capability of human pathogens for producing current has been identified in different human niches, which was suggested to be applicable for drug assessment, because the current production of a few strains correlated with metabolic activity. Herein, we report another strain, a highly abundant pathogen in human oral polymicrobial biofilm, Corynebacterium matruchotii, to have the current production capability associated with its metabolic activity. It showed the current production of 50 nA/cm2 at OD600 of 0.1 with the working electrode poised at +0.4 V vs. a standard hydrogen electrode in a three-electrode system. The addition of antibiotics that suppress the microbial metabolic activity showed a significant current decrease (>90%), establishing that current production reflected the cellular activity in this pathogen. Further, the metabolic fixation of atomically labeled 13C (31.68% ± 2.26%) and 15N (19.69% ± 1.41%) confirmed by high-resolution mass spectrometry indicated that C. matruchotii cells were metabolically active on the electrode surface. The identified electrochemical activity of C. matruchotii shows that this can be a simple and effective test for evaluating the impact of antibacterial compounds, and such a method might be applicable to the polymicrobial oral biofilm on electrode surfaces, given four other oral pathogens have already been shown the current production capability.
Collapse
Affiliation(s)
- Divya Naradasu
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (D.N.); (W.M.)
| | - Waheed Miran
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (D.N.); (W.M.)
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (D.N.); (W.M.)
- Center for Sensor and Actuator Material, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Correspondence:
| |
Collapse
|
8
|
Chang C, Wu C, Osipiuk J, Siegel SD, Zhu S, Liu X, Joachimiak A, Clubb RT, Das A, Ton-That H. Cell-to-cell interaction requires optimal positioning of a pilus tip adhesin modulated by gram-positive transpeptidase enzymes. Proc Natl Acad Sci U S A 2019; 116:18041-18049. [PMID: 31427528 PMCID: PMC6731673 DOI: 10.1073/pnas.1907733116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Assembly of pili on the gram-positive bacterial cell wall involves 2 conserved transpeptidase enzymes named sortases: One for polymerization of pilin subunits and another for anchoring pili to peptidoglycan. How this machine controls pilus length and whether pilus length is critical for cell-to-cell interactions remain unknown. We report here in Actinomyces oris, a key colonizer in the development of oral biofilms, that genetic disruption of its housekeeping sortase SrtA generates exceedingly long pili, catalyzed by its pilus-specific sortase SrtC2 that possesses both pilus polymerization and cell wall anchoring functions. Remarkably, the srtA-deficient mutant fails to mediate interspecies interactions, or coaggregation, even though the coaggregation factor CafA is present at the pilus tip. Increasing ectopic expression of srtA in the mutant progressively shortens pilus length and restores coaggregation accordingly, while elevated levels of shaft pilins and SrtC2 produce long pili and block coaggregation by SrtA+ bacteria. With structural studies, we uncovered 2 key structural elements in SrtA that partake in recognition of pilin substrates and regulate pilus length by inducing the capture and transfer of pilus polymers to the cell wall. Evidently, coaggregation requires proper positioning of the tip adhesin CafA via modulation of pilus length by the housekeeping sortase SrtA.
Collapse
Affiliation(s)
- Chungyu Chang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA 90095;
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030
| | - Jerzy Osipiuk
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637
- Structural Biology Center, Argonne National Laboratory, Lemont, IL 60439
| | - Sara D Siegel
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030
| | - Shiwei Zhu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510
| | - Xiangan Liu
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637
- Structural Biology Center, Argonne National Laboratory, Lemont, IL 60439
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles-Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT 06030
| | - Hung Ton-That
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA 90095;
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|