1
|
Shim YE, Song YB, Yoo SH, Lee BH. Production of highly branched α-limit dextrins with enhanced slow digestibility by various glycogen-branching enzymes. Carbohydr Polym 2023; 310:120730. [PMID: 36925263 DOI: 10.1016/j.carbpol.2023.120730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/28/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
α-Limit dextrins (α-LDx) are slowly digestible carbohydrates that attenuate postprandial glycemic response and trigger the secretion of satiety-related hormones. In this study, more highly branched α-LDx were enzymatically synthesized to enhance the slowly digestible property by various origins of glycogen branching enzyme (GBE), which catalyzes the transglycosylation to form α-1,6 branching points after cleaving α-1,4 linkages. Results showed that the proportion of branched α-LDx in starch molecules increased around 2.2-8.1 % compared to α-LDx from starch without GBE treatment as the ratio of α-1,6 linkages increased after different types of GBE treatments. Furthermore, the enzymatic increment of branching points enhanced the slowly digestible properties of α-LDx at the mammalian α-glucosidase level by 17.3-28.5 %, although the rates of glucose generation were different depending on the source of GBE treatment. Thus, the highly branched α-LDx with a higher amount of α-1,6 linkages and a higher molecular weight can be applied as a functional ingredient to deliver glucose throughout the entire small intestine without a glycemic spike which has the potential to control metabolic diseases such as obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Ye-Eun Shim
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea; Core-Facility for Bionano Materials, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Bo Song
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
2
|
Pichaiyotinkul P, Ruankaew N, Incharoensakdi A, Monshupanee T. Enhanced polyglucan contents in divergent cyanobacteria under nutrient-deprived photoautotrophy: transcriptional and metabolic changes in response to increased glycogen accumulation in nitrogen-deprived Synechocystis sp. PCC 6803. World J Microbiol Biotechnol 2022; 39:27. [PMID: 36437374 DOI: 10.1007/s11274-022-03476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
Cyanobacteria accumulate polyglucan as main carbohydrate storage. Here, the cellular polyglucan content was determined in 27 cyanobacterial strains from 25 genera. The polyglucan contents were significantly enhanced in 20 and 23 strains under nitrogen (-N) and phosphate (-P) deprivation, respectively. High polyglucan accumulation was not associated with particular evolutionary groups but was strain specific. The highest polyglucan accumulations of 46.2% and 52.5% (w/w dry weight; DW) were obtained under -N in Synechocystis sp. PCC 6803 (hereafter Synechocystis) and Chroococcus limneticus, respectively. In Synechocystis, 80-97% (w/w) of the polyglucan was glycogen. Transcriptome and metabolome analyses during glycogen accumulation under -N were determined in Synechocystis. The genes responsible for the supply of the substrates for glycogen synthesis: glycerate-1,3-phosphate and fructose-1,6-phosphate, were significantly up-regulated. The genes encoding the enzymes converting succinate to malate in TCA cycle, were significantly down-regulated. The genes encoding the regulator proteins which inhibits metabolism at lower part of glycolysis pathway, were also significantly up-regulated. The transcript levels of PII protein and the level of 2-oxoglutarate, which form a complex that inhibits lower part of glycolysis pathway, were significantly increased. Thus, the increased Synechocystis glycogen accumulation under -N was likely to be mediated by the increased supply of glycogen synthesis substrates and metabolic inhibitions at lower part of glycolysis pathway and TCA cycle.
Collapse
Affiliation(s)
| | - Nathanich Ruankaew
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 10330, Bangkok, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 10330, Bangkok, Thailand.,Academy of Science, Royal Society of Thailand, 10300, Bangkok, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 10330, Bangkok, Thailand.
| |
Collapse
|
3
|
Bakir EM, El Semary NA. Spectrofluorometric method for detection glycogen using chemically gold nanoparticles: Cyanobacteria as biological model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121584. [PMID: 35944347 DOI: 10.1016/j.saa.2022.121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/10/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
There is a need for simple spectrofluorimetric method for detection of glycogen molecule based on binding to nanogold. Here we propose such a quantification method for glycogen using cyanobacteria as a biological model. Biologically, two strains of cyanobacteria were selected based on their previously tested nanogold biosynthetic abilities. Chemically, spherical gold nanoparticles were prepared and tested for binding to the glycogen molecule. Experimental analyses were conducted to determine the morphological and optical properties of the Au-glycogen hydrocolloids. Results: The plasmon band of biosynthesized AuNPs-glycogen was centered at 520-540 nm with size diameter was 41.7 ± 0.2 nm. The vibrational bands of glycogen were observed at 1,000 to 1,200 cm-1. The Au3+/Au0 redox coupling cycle was observed. The luminescence of AuNPs showed more stability by the addition of gradual concentrations of glycogen molecules. The detection (LOD) and quantitation limits (LOQ) were observed to be 0.89 and 2.95 µmol L-1 respectively (R2 = 0.99). The good chemical stability of this colloidal system and the glycogen molecule studied via density functional theory (DFT). The HOMO level of glycogen unit was closed near to LUMO level of Au3+. Conclusion: The associations formed between the gold nanoparticles and glycogen resulted in good chemical stability. This indicates that the quantification method proposed can be stably applied.
Collapse
Affiliation(s)
- Esam M Bakir
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia; Chemistry Department, Faculty of Science, Ain Shams University, Al-Abassia11566, Cairo, Egypt.
| | - Nermin A El Semary
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa31982, Kingdom of Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Helwan, Cairo 11795, Egypt.
| |
Collapse
|
4
|
Starch and Glycogen Analyses: Methods and Techniques. Biomolecules 2020; 10:biom10071020. [PMID: 32660096 PMCID: PMC7407607 DOI: 10.3390/biom10071020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/16/2023] Open
Abstract
For complex carbohydrates, such as glycogen and starch, various analytical methods and techniques exist allowing the detailed characterization of these storage carbohydrates. In this article, we give a brief overview of the most frequently used methods, techniques, and results. Furthermore, we give insights in the isolation, purification, and fragmentation of both starch and glycogen. An overview of the different structural levels of the glucans is given and the corresponding analytical techniques are discussed. Moreover, future perspectives of the analytical needs and the challenges of the currently developing scientific questions are included.
Collapse
|
5
|
Structural basis of glycogen metabolism in bacteria. Biochem J 2019; 476:2059-2092. [PMID: 31366571 DOI: 10.1042/bcj20170558] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023]
Abstract
The evolution of metabolic pathways is a major force behind natural selection. In the spotlight of such process lies the structural evolution of the enzymatic machinery responsible for the central energy metabolism. Specifically, glycogen metabolism has emerged to allow organisms to save available environmental surplus of carbon and energy, using dedicated glucose polymers as a storage compartment that can be mobilized at future demand. The origins of such adaptive advantage rely on the acquisition of an enzymatic system for the biosynthesis and degradation of glycogen, along with mechanisms to balance the assembly and disassembly rate of this polysaccharide, in order to store and recover glucose according to cell energy needs. The first step in the classical bacterial glycogen biosynthetic pathway is carried out by the adenosine 5'-diphosphate (ADP)-glucose pyrophosphorylase. This allosteric enzyme synthesizes ADP-glucose and acts as a point of regulation. The second step is carried out by the glycogen synthase, an enzyme that generates linear α-(1→4)-linked glucose chains, whereas the third step catalyzed by the branching enzyme produces α-(1→6)-linked glucan branches in the polymer. Two enzymes facilitate glycogen degradation: glycogen phosphorylase, which functions as an α-(1→4)-depolymerizing enzyme, and the debranching enzyme that catalyzes the removal of α-(1→6)-linked ramifications. In this work, we rationalize the structural basis of glycogen metabolism in bacteria to the light of the current knowledge. We describe and discuss the remarkable progress made in the understanding of the molecular mechanisms of substrate recognition and product release, allosteric regulation and catalysis of all those enzymes.
Collapse
|
6
|
Enhanced Nitrogen Fixation in a glgX-Deficient Strain of Cyanothece sp. Strain ATCC 51142, a Unicellular Nitrogen-Fixing Cyanobacterium. Appl Environ Microbiol 2019; 85:AEM.02887-18. [PMID: 30709817 DOI: 10.1128/aem.02887-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 01/15/2023] Open
Abstract
Cyanobacteria are oxygenic photosynthetic prokaryotes with important roles in the global carbon and nitrogen cycles. Unicellular nitrogen-fixing cyanobacteria are known to be ubiquitous, contributing to the nitrogen budget in diverse ecosystems. In the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142, carbon assimilation and carbohydrate storage are crucial processes that occur as part of a robust diurnal cycle of photosynthesis and nitrogen fixation. During the light period, cells accumulate fixed carbon in glycogen granules to use as stored energy to power nitrogen fixation in the dark. These processes have not been thoroughly investigated, due to the lack of a genetic modification system in this organism. In bacterial glycogen metabolism, the glgX gene encodes a debranching enzyme that functions in storage polysaccharide catabolism. To probe the consequences of modifying the cycle of glycogen accumulation and subsequent mobilization, we engineered a strain of Cyanothece 51142 in which the glgX gene was genetically disrupted. We found that the ΔglgX strain exhibited a higher growth rate than the wild-type strain and displayed a higher rate of nitrogen fixation. Glycogen accumulated to higher levels at the end of the light period in the ΔglgX strain, compared to the wild-type strain. These data suggest that the larger glycogen pool maintained by the ΔglgX mutant is able to fuel greater growth and nitrogen fixation ability.IMPORTANCE Cyanobacteria are oxygenic photosynthetic bacteria that are found in a wide variety of ecological environments, where they are important contributors to global carbon and nitrogen cycles. Genetic manipulation systems have been developed in a number of cyanobacterial strains, allowing both the interruption of endogenous genes and the introduction of new genes and entire pathways. However, unicellular diazotrophic cyanobacteria have been generally recalcitrant to genetic transformation. These cyanobacteria are becoming important model systems to study diurnally regulated processes. Strains of the Cyanothece genus have been characterized as displaying robust growth and high rates of nitrogen fixation. The significance of our study is in the establishment of a genetic modification system in a unicellular diazotrophic cyanobacterium, the demonstration of the interruption of the glgX gene in Cyanothece sp. strain ATCC 51142, and the characterization of the increased nitrogen-fixing ability of this strain.
Collapse
|
7
|
Gangoiti J, Corwin SF, Lamothe LM, Vafiadi C, Hamaker BR, Dijkhuizen L. Synthesis of novel α-glucans with potential health benefits through controlled glucose release in the human gastrointestinal tract. Crit Rev Food Sci Nutr 2018; 60:123-146. [PMID: 30525940 DOI: 10.1080/10408398.2018.1516621] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The glycemic carbohydrates we consume are currently viewed in an unfavorable light in both the consumer and medical research worlds. In significant part, these carbohydrates, mainly starch and sucrose, are looked upon negatively due to their rapid and abrupt glucose delivery to the body which causes a high glycemic response. However, dietary carbohydrates which are digested and release glucose in a slow manner are recognized as providing health benefits. Slow digestion of glycemic carbohydrates can be caused by several factors, including food matrix effect which impedes α-amylase access to substrate, or partial inhibition by plant secondary metabolites such as phenolic compounds. Differences in digestion rate of these carbohydrates may also be due to their specific structures (e.g. variations in degree of branching and/or glycosidic linkages present). In recent years, much has been learned about the synthesis and digestion kinetics of novel α-glucans (i.e. small oligosaccharides or larger polysaccharides based on glucose units linked in different positions by α-bonds). It is the synthesis and digestion of such structures that is the subject of this review.
Collapse
Affiliation(s)
- Joana Gangoiti
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Sarah F Corwin
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Lisa M Lamothe
- Nestlé Research Center, Vers-Chez-Les-Blanc, Lausanne, Switzerland
| | | | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Hayashi M, Suzuki R, Colleoni C, Ball SG, Fujita N, Suzuki E. Bound Substrate in the Structure of Cyanobacterial Branching Enzyme Supports a New Mechanistic Model. J Biol Chem 2017; 292:5465-5475. [PMID: 28193843 DOI: 10.1074/jbc.m116.755629] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/25/2017] [Indexed: 01/01/2023] Open
Abstract
Branching enzyme (BE) catalyzes the formation of α-1,6-glucosidic linkages in amylopectin and glycogen. The reaction products are variable, depending on the organism sources, and the mechanistic basis for these different outcomes is unclear. Although most cyanobacteria have only one BE isoform belonging to glycoside hydrolase family 13, Cyanothece sp. ATCC 51142 has three isoforms (BE1, BE2, and BE3) with distinct enzymatic properties, suggesting that investigations of these enzymes might provide unique insights into this system. Here, we report the crystal structure of ligand-free wild-type BE1 (residues 5-759 of 1-773) at 1.85 Å resolution. The enzyme consists of four domains, including domain N, carbohydrate-binding module family 48 (CBM48), domain A containing the catalytic site, and domain C. The central domain A displays a (β/α)8-barrel fold, whereas the other domains adopt β-sandwich folds. Domain N was found in a new location at the back of the protein, forming hydrogen bonds and hydrophobic interactions with CBM48 and domain A. Site-directed mutational analysis identified a mutant (W610N) that bound maltoheptaose with sufficient affinity to enable structure determination at 2.30 Å resolution. In this structure, maltoheptaose was bound in the active site cleft, allowing us to assign subsites -7 to -1. Moreover, seven oligosaccharide-binding sites were identified on the protein surface, and we postulated that two of these in domain A served as the entrance and exit of the donor/acceptor glucan chains, respectively. Based on these structures, we propose a substrate binding model explaining the mechanism of glycosylation/deglycosylation reactions catalyzed by BE.
Collapse
Affiliation(s)
- Mari Hayashi
- From the Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjyo-Nakano, Akita 010-0195, Japan and
| | - Ryuichiro Suzuki
- From the Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjyo-Nakano, Akita 010-0195, Japan and
| | - Christophe Colleoni
- the Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, CNRS-Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - Steven G Ball
- the Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, CNRS-Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - Naoko Fujita
- From the Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjyo-Nakano, Akita 010-0195, Japan and
| | - Eiji Suzuki
- From the Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjyo-Nakano, Akita 010-0195, Japan and
| |
Collapse
|