1
|
Fukada Y, Inomata S, Kataoka M. Relationship between oriT length and efficiency of RP4-mediated conjugation from Escherichia coli to Gram-positive bacteria. Biosci Biotechnol Biochem 2024; 89:133-140. [PMID: 39500544 DOI: 10.1093/bbb/zbae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/27/2024] [Indexed: 12/24/2024]
Abstract
In RP4 conjugation, approximately 350 bp of the origin of transfer (oriT) is required for transfer. Within this oriT, there are binding regions for the transfer-related proteins TraI, TraK, and TraJ. We investigated the influence of deleting each protein-binding region within oriT on transfer efficiency in Escherichia coli, Streptomyces lividans, and Bacillus subtilis. The deletion of the TraI-binding region completely abolished transfer in all species. The partial deletion of the TraK-binding region had a minimal impact when targeting but affected efficiency when targeting B. subtilis. The deletion of the TraJ-binding region completely abolished transfer in E. coli and B. subtilis but only reduced efficiency in S. lividans. This is the first report to investigate the influence of each region within oriT on transfer efficiency in S. lividans and B. subtilis, suggesting that the length of oriT required for effective RP4 conjugation varies when targeting Gram-positive bacteria.
Collapse
Affiliation(s)
- Yuta Fukada
- Department of Biomedical Engineering, Graduate School of Shinshu University, Nagano, Japan
| | - Shunsuke Inomata
- Department of Biomedical Engineering, Graduate School of Shinshu University, Nagano, Japan
| | - Masakazu Kataoka
- Department of Biomedical Engineering, Graduate School of Shinshu University, Nagano, Japan
| |
Collapse
|
2
|
Abeywickrama TD, Perera IC. In Silico Characterization and Virtual Screening of GntR/HutC Family Transcriptional Regulator MoyR: A Potential Monooxygenase Regulator in Mycobacterium tuberculosis. BIOLOGY 2021; 10:biology10121241. [PMID: 34943156 PMCID: PMC8698889 DOI: 10.3390/biology10121241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary In an era where the world faces new diseases and pathogens, another emerging challenge is neglected pathogens becoming more notorious. Transcriptional regulators play a vital role in the pathogenesis and survival of these pathogens. Hence, characterizing transcriptional regulators, either in vitro or in silico, is of great importance. Here, we present the first structural characterization of a GntR/HutC regulator in Mycobacterium tuberculosis via in silico methods. We have suggested its possible role and potential as a drug target as well as identified possible drug leads that can be used for further improvements. Abstract Mycobacterium tuberculosis is a well-known pathogen due to the emergence of drug resistance associated with it, where transcriptional regulators play a key role in infection, colonization and persistence. The genome of M. tuberculosis encodes many transcriptional regulators, and here we report an in-depth in silico characterization of a GntR regulator: MoyR, a possible monooxygenase regulator. Homology modelling provided a reliable structure for MoyR, showing homology with a HutC regulator DasR from Streptomyces coelicolor. In silico physicochemical analysis revealed that MoyR is a cytoplasmic protein with higher thermal stability and higher pI. Four highly probable binding pockets were determined in MoyR and the druggability was higher in the orthosteric binding site consisting of three conserved critical residues: TYR179, ARG223 and GLU234. Two highly conserved leucine residues were identified in the effector-binding region of MoyR and other HutC homologues, suggesting that these two residues can be crucial for structure stability and oligomerization. Virtual screening of drug leads resulted in four drug-like compounds with greater affinity to MoyR with potential inhibitory effects for MoyR. Our findings support that this regulator protein can be valuable as a therapeutic target that can be used for developing drug leads.
Collapse
|
3
|
Horne CR, Venugopal H, Panjikar S, Wood DM, Henrickson A, Brookes E, North RA, Murphy JM, Friemann R, Griffin MDW, Ramm G, Demeler B, Dobson RCJ. Mechanism of NanR gene repression and allosteric induction of bacterial sialic acid metabolism. Nat Commun 2021; 12:1988. [PMID: 33790291 PMCID: PMC8012715 DOI: 10.1038/s41467-021-22253-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 03/03/2021] [Indexed: 12/20/2022] Open
Abstract
Bacteria respond to environmental changes by inducing transcription of some genes and repressing others. Sialic acids, which coat human cell surfaces, are a nutrient source for pathogenic and commensal bacteria. The Escherichia coli GntR-type transcriptional repressor, NanR, regulates sialic acid metabolism, but the mechanism is unclear. Here, we demonstrate that three NanR dimers bind a (GGTATA)3-repeat operator cooperatively and with high affinity. Single-particle cryo-electron microscopy structures reveal the DNA-binding domain is reorganized to engage DNA, while three dimers assemble in close proximity across the (GGTATA)3-repeat operator. Such an interaction allows cooperative protein-protein interactions between NanR dimers via their N-terminal extensions. The effector, N-acetylneuraminate, binds NanR and attenuates the NanR-DNA interaction. The crystal structure of NanR in complex with N-acetylneuraminate reveals a domain rearrangement upon N-acetylneuraminate binding to lock NanR in a conformation that weakens DNA binding. Our data provide a molecular basis for the regulation of bacterial sialic acid metabolism. The GntR superfamily is one of the largest families of transcription factors in prokaryotes. Here the authors combine biophysical analysis and structural biology to dissect the mechanism by which NanR — a GntR-family regulator — binds to its promoter to repress the transcription of genes necessary for sialic acid metabolism.
Collapse
Affiliation(s)
- Christopher R Horne
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Hariprasad Venugopal
- Clive and Vera Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Santosh Panjikar
- Australian Synchrotron, ANSTO, Clayton, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - David M Wood
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Emre Brookes
- Department of Chemistry, University of Montana, Missoula, MT, USA
| | - Rachel A North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rosmarie Friemann
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Michael D W Griffin
- Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Georg Ramm
- Clive and Vera Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.,Department of Chemistry, University of Montana, Missoula, MT, USA
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand. .,Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Labella JI, Obrebska A, Espinosa J, Salinas P, Forcada-Nadal A, Tremiño L, Rubio V, Contreras A. Expanding the Cyanobacterial Nitrogen Regulatory Network: The GntR-Like Regulator PlmA Interacts with the PII-PipX Complex. Front Microbiol 2016; 7:1677. [PMID: 27840625 PMCID: PMC5083789 DOI: 10.3389/fmicb.2016.01677] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/06/2016] [Indexed: 11/17/2022] Open
Abstract
Cyanobacteria, phototrophic organisms that perform oxygenic photosynthesis, perceive nitrogen status by sensing 2-oxoglutarate levels. PII, a widespread signaling protein, senses and transduces nitrogen and energy status to target proteins, regulating metabolism and gene expression. In cyanobacteria, under conditions of low 2-oxoglutarate, PII forms complexes with the enzyme N-acetyl glutamate kinase, increasing arginine biosynthesis, and with PII-interacting protein X (PipX), making PipX unavailable for binding and co-activation of the nitrogen regulator NtcA. Both the PII-PipX complex structure and in vivo functional data suggested that this complex, as such, could have regulatory functions in addition to PipX sequestration. To investigate this possibility we performed yeast three-hybrid screening of genomic libraries from Synechococcus elongatus PCC7942, searching for proteins interacting simultaneously with PII and PipX. The only prey clone found in the search expressed PlmA, a member of the GntR family of transcriptional regulators proven here by gel filtration to be homodimeric. Interactions analyses further confirmed the simultaneous requirement of PII and PipX, and showed that the PlmA contacts involve PipX elements exposed in the PII-PipX complex, specifically the C-terminal helices and one residue of the tudor-like body. In contrast, PII appears not to interact directly with PlmA, possibly being needed indirectly, to induce an extended conformation of the C-terminal helices of PipX and for modulating the surface polarity at the PII-PipX boundary, two elements that appear crucial for PlmA binding. Attempts to inactive plmA confirmed that this gene is essential in S. elongatus. Western blot assays revealed that S. elongatus PlmA, irrespective of the nitrogen regime, is a relatively abundant transcriptional regulator, suggesting the existence of a large PlmA regulon. In silico studies showed that PlmA is universally and exclusively found in cyanobacteria. Based on interaction data, on the relative amounts of the proteins involved in PII-PipX-PlmA complexes, determined in western assays, and on the restrictions imposed by the symmetries of trimeric PII and dimeric PlmA molecules, a structural and regulatory model for PlmA function is discussed in the context of the cyanobacterial nitrogen interaction network.
Collapse
Affiliation(s)
- Jose I Labella
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante Alicante, Spain
| | - Anna Obrebska
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante Alicante, Spain
| | - Javier Espinosa
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante Alicante, Spain
| | - Paloma Salinas
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante Alicante, Spain
| | | | - Lorena Tremiño
- Instituto de Biomedicina de Valencia of the CSIC Valencia, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia of the CSICValencia, Spain; Group 739, CIBER de Enfermedades Raras (CIBERER-ISCIII)Valencia, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante Alicante, Spain
| |
Collapse
|
5
|
Yu L, Gao W, Li S, Pan Y, Liu G. GntR family regulator SCO6256 is involved in antibiotic production and conditionally regulates the transcription of myo-inositol catabolic genes in Streptomyces coelicolor A3(2). MICROBIOLOGY-SGM 2016; 162:537-551. [PMID: 26744083 DOI: 10.1099/mic.0.000235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SCO6256 belongs to the GntR family and shows 74% identity with SCO6974, which is the repressor of myo-inositol catabolism in Streptomyces coelicolor A3(2). Disruption of SCO6256 significantly enhanced the transcription of myo-inositol catabolic genes in R2YE medium. The purified recombinant SCO6256 directly bound to the upstream regions of SCO2727, SCO6978 and SCO6985, as well as its encoding gene. Footprinting assays demonstrated that SCO6256 bound to the same sites in the myo-inositol catabolic gene cluster as SCO6974. The expression of SCO6256 was repressed by SCO6974 in minimal medium with myo-inositol as the carbon source, but not in R2YE medium. Glutathione-S-transferase pull-down assays demonstrated that SCO6974 and SCO6256 interacted with each other; and both of the proteins controlled the transcription of myo-inositol catabolic genes in R2YE medium. These results indicated SCO6256 regulates the transcription of myo-inositol catabolic genes in coordination with SCO6974 in R2YE medium. In addition, SCO6256 negatively regulated the production of actinorhodin and calcium-dependent antibiotic via control of the transcription of actII-ORF4 and cdaR. SCO6256 bound to the upstream region of cdaR and the binding sequence was proved to be TTTCGGCACGCAGACAT, which was further confirmed through base substitution. Four putative targets (SCO2652, SCO4034, SCO4237 and SCO6377) of SCO6256 were found by screening the genome sequence of Strep. coelicolor A3(2) based on the conserved binding motif, and confirmed by transcriptional analysis and electrophoretic mobility shift assays. These results revealed that SCO6256 is involved in the regulation of myo-inositol catabolic gene transcription and antibiotic production in Strep. coelicolor A3(2).
Collapse
Affiliation(s)
- Lingjun Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wenyan Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Shuxian Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
6
|
Romero-Rodríguez A, Robledo-Casados I, Sánchez S. An overview on transcriptional regulators in Streptomyces. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1017-39. [PMID: 26093238 DOI: 10.1016/j.bbagrm.2015.06.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
Streptomyces are Gram-positive microorganisms able to adapt and respond to different environmental conditions. It is the largest genus of Actinobacteria comprising over 900 species. During their lifetime, these microorganisms are able to differentiate, produce aerial mycelia and secondary metabolites. All of these processes are controlled by subtle and precise regulatory systems. Regulation at the transcriptional initiation level is probably the most common for metabolic adaptation in bacteria. In this mechanism, the major players are proteins named transcription factors (TFs), capable of binding DNA in order to repress or activate the transcription of specific genes. Some of the TFs exert their action just like activators or repressors, whereas others can function in both manners, depending on the target promoter. Generally, TFs achieve their effects by using one- or two-component systems, linking a specific type of environmental stimulus to a transcriptional response. After DNA sequencing, many streptomycetes have been found to have chromosomes ranging between 6 and 12Mb in size, with high GC content (around 70%). They encode for approximately 7000 to 10,000 genes, 50 to 100 pseudogenes and a large set (around 12% of the total chromosome) of regulatory genes, organized in networks, controlling gene expression in these bacteria. Among the sequenced streptomycetes reported up to now, the number of transcription factors ranges from 471 to 1101. Among these, 315 to 691 correspond to transcriptional regulators and 31 to 76 are sigma factors. The aim of this work is to give a state of the art overview on transcription factors in the genus Streptomyces.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Ivonne Robledo-Casados
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico.
| |
Collapse
|
7
|
Okuda K, Ito T, Goto M, Takenaka T, Hemmi H, Yoshimura T. Domain characterization of Bacillus subtilis GabR, a pyridoxal 5'-phosphate-dependent transcriptional regulator. J Biochem 2015; 158:225-34. [PMID: 25911692 DOI: 10.1093/jb/mvv040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/15/2015] [Indexed: 11/13/2022] Open
Abstract
Bacillus subtilis GabR is a transcriptional regulator consisting of a helix-turn-helix N-terminal DNA-binding domain, a pyridoxal 5'-phosphate (PLP)-binding C-terminal domain that has a structure homologous to aminotransferases, and a linker of 29 amino acid residues. In the presence of γ-aminobutyrate (GABA), GabR activates the transcription of gabT and gabD, which encode GABA aminotransferase and succinate semialdehyde dehydrogenase, respectively. We expressed N-terminal and C-terminal domain fragments (named N'-GabR and C'-GabR) in Escherichia coli cells, and obtained N'-GabR as a soluble monomer and C'-GabR as a soluble dimer. Spectroscopic studies suggested that C'-GabR contains PLP and binds to d-Ala, β-Ala, d-Asn and d-Gln, as well as GABA, although the intact GabR binds only to GABA. N'-GabR does not bind to the DNA fragment containing the GabR-binding sequence regardless of the presence or absence of C'-GabR. A fusion protein consisting of N'-GabR and 2-aminoadipate aminotransferase of Thermus thermophilus bound to the DNA fragment. These results suggested that each domain of GabR could be an independent folding unit. The C-terminal domain provides the N-terminal domain with DNA-binding ability via dimerization. The N-terminal domain controls the ligand specificity of the C-terminal domain. Connection by the linker is indispensable for the mutual interaction of the domains.
Collapse
Affiliation(s)
- Keita Okuda
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-Chou, Chikusa, Nagoya, Aichi 464-8601, Japan and
| | - Tomokazu Ito
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-Chou, Chikusa, Nagoya, Aichi 464-8601, Japan and
| | - Masaru Goto
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Takashi Takenaka
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-Chou, Chikusa, Nagoya, Aichi 464-8601, Japan and
| | - Hisashi Hemmi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-Chou, Chikusa, Nagoya, Aichi 464-8601, Japan and
| | - Tohru Yoshimura
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-Chou, Chikusa, Nagoya, Aichi 464-8601, Japan and
| |
Collapse
|