1
|
Schwarzkopf JMF, Mehner-Breitfeld D, Brüser T. A dimeric holin/antiholin complex controls lysis by phage T4. Front Microbiol 2024; 15:1419106. [PMID: 39309529 PMCID: PMC11413866 DOI: 10.3389/fmicb.2024.1419106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Lytic phages control the timepoint of host cell lysis by timing the holin-mediated release of cell wall-degrading endolysins. In phage T4, the antiholin RI inhibits the holin T, thereby preventing the early release of the T4 endolysin and lysis. The antiholin achieves lysis inhibition (LIN) in response to phage superinfections, thereby increasing the chance for lysis in an environment with a lower phage concentration. The holin T consists of a small N-terminal cytoplasmic domain, a transmembrane helix, and a periplasmic C-terminal domain. The antiholin is targeted to the periplasm by a cleavable signal peptide. Recently, the periplasmic soluble domains of the holin and the antiholin were found to form T2/RI2 tetramers in crystals. To investigate the functional relevance of this complex, we reconstituted LIN in a phage-free system, using only RI, T, and endolysin, and combined targeted mutagenesis with functional analyses. Inactivation of the RI signal peptide cleavage site did not abolish LIN, indicating that RI can function in a membrane-bound state, which argued against the tetramer. This led to analyses showing that only one of the two T/RI interfaces in the tetramer is physiologically relevant, which is also the only interaction site predicted by AlphaFold2. Some holin mutations at this interaction site prevented lysis, suggesting that the RI interaction likely acts by blocking the holin oligomerization required for hole formation. We conclude that LIN is mediated by a dimeric T/RI complex that, unlike the tetramer, can be easily formed when both partners are membrane-anchored.
Collapse
Affiliation(s)
| | | | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
2
|
Tang Z, Tang N, Wang X, Ren H, Zhang C, Zou L, Han L, Guo L, Liu W. Characterization of a lytic Escherichia coli phage CE1 and its potential use in therapy against avian pathogenic Escherichia coli infections. Front Microbiol 2023; 14:1091442. [PMID: 36876110 PMCID: PMC9978775 DOI: 10.3389/fmicb.2023.1091442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
The high incidence of Avian pathogenic Escherichia coli (APEC) in poultry has resulted in significant economic losses. It has become necessary to find alternatives to antibiotics due to the alarming rise in antibiotic resistance. Phage therapy has shown promising results in numerous studies. In the current study, a lytic phage vB_EcoM_CE1 (short for CE1) against Escherichia coli (E. coli) was isolated from broiler feces, showing a relatively wide host range and lysing 56.9% (33/58) of high pathogenic strains of APEC. According to morphological observations and phylogenetic analysis, phage CE1 belongs to the Tequatrovirus genus, Straboviridae family, containing an icosahedral capsid (80 ~ 100 nm in diameter) and a retractable tail (120 nm in length). This phage was stable below 60°C for 1 h over the pH range of 4 to 10. Whole-genome sequencing revealed that phage CE1 contained a linear double-stranded DNA genome spanning 167,955 bp with a GC content of 35.4%. A total of 271 ORFs and 8 tRNAs were identified. There was no evidence of virulence genes, drug-resistance genes, or lysogeny genes in the genome. The in vitro test showed high bactericidal activity of phage CE1 against E. coli at a wide range of MOIs, and good air and water disinfectant properties. Phage CE1 showed perfect protection against broilers challenged with APEC strain in vivo. This study provides some basic information for further research into treating colibacillosis, or killing E. coli in breeding environments.
Collapse
Affiliation(s)
- Zhaohui Tang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ning Tang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xinwei Wang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Huiying Ren
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Can Zhang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ling Zou
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Longzong Guo
- Shandong Yisheng Livestock & Poultry Breeding Co., Ltd., Yantai, Shandong, China
| | - Wenhua Liu
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Gontijo MTP, Teles MP, Vidigal PMP, Brocchi M. Expanding the Database of Signal-Anchor-Release Domain Endolysins Through Metagenomics. Probiotics Antimicrob Proteins 2022; 14:603-612. [PMID: 35525881 DOI: 10.1007/s12602-022-09948-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Endolysins are bacteriophage-derived lytic enzymes with antimicrobial activity. The action of endolysins against Gram-negative bacteria remains a challenge due to the physical protection of the outer membrane. However, recent research has demonstrated that signal-anchor-release (SAR) endolysins permeate the outer membrane of Gram-negative bacteria. This study investigates 2628 putative endolysin genes identified in 183,298 bacteriophage genomes. Previously, bioinformatic approaches resulted in a database of 66 SAR endolysins. This manuscript almost doubles the list with 53 additional SAR endolysin candidates. Forty-eight of the putative SAR endolysins described in this study contained one muramidase catalytic domain, and five included additional cell wall-binding domains at the C-terminus. For the moment, SAR domains are found in four protein families: glycoside hydrolase family 19 (GH19), glycoside hydrolase family 24 (GH24), glycoside hydrolase family 25 (GH25), and glycoside hydrolase family 108 (GH108). These SAR lysis are clustered in eight groups based on biochemical properties and domain presence/absence. Therefore, in this study, we expand the arsenal of endolysin candidates that might act against Gram-negative bacteria and develop a consult database for antimicrobial proteins derived from bacteriophages.
Collapse
Affiliation(s)
- Marco Túlio Pardini Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Monteiro Lobato 255, Campinas, São Paulo, 13083-862, Brazil.
| | - Mateus Pereira Teles
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Monteiro Lobato 255, Campinas, São Paulo, 13083-862, Brazil.,Faculdade de Farmácia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Cândido Portinari 200, Campinas, São Paulo, 13083-862, Brazil
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa (UFV), Vila Gianetti, Casa 21, Campus da UFV, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Monteiro Lobato 255, Campinas, São Paulo, 13083-862, Brazil
| |
Collapse
|
4
|
Maganha de Almeida Kumlien AC, Pérez-Vega C, González-Villalobos E, Borrego CM, Balcázar JL. Genome analysis of a new Escherichia phage vB_EcoM_C2-3 with lytic activity against multidrug-resistant Escherichia coli. Virus Res 2022; 307:198623. [PMID: 34762992 DOI: 10.1016/j.virusres.2021.198623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/20/2022]
Abstract
In this study, we present the complete, annotated genome of a new member of the Tequatrovirus (T4-like) genus, Escherichia phage vB_EcoM_C2-3. This phage has an isometric head (92 nm in diameter) and a contractile tail (114 nm in length). Its genome consists of a linear, double-stranded DNA of 167,069bp with an average G+C content of 35.3%. There are 267 predicted genes, of which 125 encode functional proteins, including those for DNA replication, transcription and packaging, phage morphogenesis and cell lysis. Neither genes involved in the regulation of lysogeny nor antibiotic resistance genes were identified. Based on our results, its genomic features provide valuable insights into the use of a potential biocontrol agent, as Escherichia phage vB_EcoM_C2-3 exhibited lytic activity against E. coli, including multidrug-resistant strains.
Collapse
Affiliation(s)
| | - Clara Pérez-Vega
- Catalan Institute for Water Research (ICRA), Girona, Spain; University of Girona, Girona, Spain
| | | | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Girona, Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), Girona, Spain; University of Girona, Girona, Spain.
| |
Collapse
|
5
|
Mehner-Breitfeld D, Schwarzkopf JMF, Young R, Kondabagil K, Brüser T. The Phage T4 Antiholin RI Has a Cleavable Signal Peptide, Not a SAR Domain. Front Microbiol 2021; 12:712460. [PMID: 34456892 PMCID: PMC8385771 DOI: 10.3389/fmicb.2021.712460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Holin/endolysin-mediated lysis of phage T4 of Escherichia coli is tightly regulated by the antiholins RI and RIII. While regulation by the cytoplasmic RIII plays a minor role, the periplasmic antiholin RI binds tightly to the holin T and is believed to directly sense periplasmic phage DNA from superinfections as a trigger for the inhibition of lysis. RI has been reported to contain a non-cleavable signal peptide that anchors the protein to the membrane. Lysis is believed to be induced at some stage by a membrane depolarization that causes a release of RI into the periplasm without cleavage of the signal anchor. For the current model of phage lysis induction, it is thus a fundamental assumption that the N-terminal trans-membrane domain (TMD) of RI is such a signal anchor release (SAR) domain. Here we show that, in contrast to previous reports, this domain of RI is a cleavable signal peptide. RI is processed and released into the periplasm as a mature protein, and inactivation of its signal peptidase cleavage site blocks processing and membrane release. The signal peptide of RI can also mediate the normal translocation of a well-characterized Sec substrate, PhoA, into the periplasm. This simplifies the current view of phage lysis regulation and suggests a fundamentally different interpretation of the recently published structure of the soluble domains of the RI–T complex.
Collapse
Affiliation(s)
| | | | - Ry Young
- Department of Biochemistry & Biophysics, Center of Phage Technology, Texas A&M University, College Station, TX, United States
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
6
|
Grabowski Ł, Łepek K, Stasiłojć M, Kosznik-Kwaśnicka K, Zdrojewska K, Maciąg-Dorszyńska M, Węgrzyn G, Węgrzyn A. Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol Res 2021; 248:126746. [PMID: 33773329 DOI: 10.1016/j.micres.2021.126746] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Appearance of pathogenic bacteria resistant to most, if not all, known antibiotics is currently one of the most significant medical problems. Therefore, development of novel antibacterial therapies is crucial for efficient treatment of bacterial infections in the near future. One possible option is to employ enzymes, encoded by bacteriophages, which cause destruction of bacterial cell membranes and walls. Bacteriophages use such enzymes to destroy bacterial host cells at the final stage of their lytic development, in order to ensure effective liberation of progeny virions. Nevertheless, to use such bacteriophage-encoded proteins in medicine and/or biotechnology, it is crucial to understand details of their biological functions and biochemical properties. Therefore, in this review article, we will present and discuss our current knowledge on the processes of bacteriophage-mediated bacterial cell lysis, with special emphasis on enzymes involved in them. Regulation of timing of the lysis is also discussed. Finally, possibilities of the practical use of these enzymes as antibacterial agents will be underlined and perspectives of this aspect will be presented.
Collapse
Affiliation(s)
- Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Krzysztof Łepek
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Małgorzata Stasiłojć
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Katarzyna Kosznik-Kwaśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Karolina Zdrojewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Monika Maciąg-Dorszyńska
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| |
Collapse
|
7
|
Krieger IV, Kuznetsov V, Chang JY, Zhang J, Moussa SH, Young RF, Sacchettini JC. The Structural Basis of T4 Phage Lysis Control: DNA as the Signal for Lysis Inhibition. J Mol Biol 2020; 432:4623-4636. [PMID: 32562709 DOI: 10.1016/j.jmb.2020.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/05/2023]
Abstract
Optimal phage propagation depends on the regulation of the lysis of the infected host cell. In T4 phage infection, lysis occurs when the holin protein (T) forms lesions in the host membrane. However, the lethal function of T can be blocked by an antiholin (RI) during lysis inhibition (LIN). LIN sets if the infected cell undergoes superinfection, then the lysis is delayed until host/phage ratio becomes more favorable for the release of progeny. It has been thought that a signal derived from the superinfection is required to activate RI. Here we report structures that suggest a radically different model in which RI binds to T irrespective of superinfection, causing it to accumulate in a membrane as heterotetrameric 2RI-2T complex. Moreover, we show the complex binds non-specifically to DNA, suggesting that the gDNA from the superinfecting phage serves as the LIN signal and that stabilization of the complex by DNA binding is what defines LIN. Finally, we show that soluble domain of free RI crystallizes in a domain-swapped homotetramer, which likely works as a sink for RI molecules released from the RI-T complex to ensure efficient lysis. These results constitute the first structural basis and a new model not only for the historic LIN phenomenon but also for the temporal regulation of phage lysis in general.
Collapse
Affiliation(s)
- Inna V Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vladimir Kuznetsov
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Jeng-Yih Chang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Department of Biochemistry and Biophysics
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Department of Biochemistry and Biophysics
| | - Samir H Moussa
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Department of Biochemistry and Biophysics
| | - Ryland F Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Department of Biochemistry and Biophysics
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
8
|
Hays SG, Seed KD. Dominant Vibrio cholerae phage exhibits lysis inhibition sensitive to disruption by a defensive phage satellite. eLife 2020; 9:e53200. [PMID: 32329714 PMCID: PMC7182436 DOI: 10.7554/elife.53200] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/01/2020] [Indexed: 12/28/2022] Open
Abstract
Bacteria, bacteriophages that prey upon them, and mobile genetic elements (MGEs) compete in dynamic environments, evolving strategies to sense the milieu. The first discovered environmental sensing by phages, lysis inhibition, has only been characterized and studied in the limited context of T-even coliphages. Here, we discover lysis inhibition in the etiological agent of the diarrheal disease cholera, Vibrio cholerae, infected by ICP1, a phage ubiquitous in clinical samples. This work identifies the ICP1-encoded holin, teaA, and antiholin, arrA, that mediate lysis inhibition. Further, we show that an MGE, the defensive phage satellite PLE, collapses lysis inhibition. Through lysis inhibition disruption a conserved PLE protein, LidI, is sufficient to limit the phage produced from infection, bottlenecking ICP1. These studies link a novel incarnation of the classic lysis inhibition phenomenon with conserved defensive function of a phage satellite in a disease context, highlighting the importance of lysis timing during infection and parasitization.
Collapse
Affiliation(s)
- Stephanie G Hays
- Department of Plant and Microbial Biology, University of CaliforniaBerkeleyUnited States
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of CaliforniaBerkeleyUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
9
|
Abedon ST. Look Who's Talking: T-Even Phage Lysis Inhibition, the Granddaddy of Virus-Virus Intercellular Communication Research. Viruses 2019; 11:v11100951. [PMID: 31623057 PMCID: PMC6832632 DOI: 10.3390/v11100951] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
That communication can occur between virus-infected cells has been appreciated for nearly as long as has virus molecular biology. The original virus communication process specifically was that seen with T-even bacteriophages-phages T2, T4, and T6-resulting in what was labeled as a lysis inhibition. Another proposed virus communication phenomenon, also seen with T-even phages, can be described as a phage-adsorption-induced synchronized lysis-inhibition collapse. Both are mediated by virions that were released from earlier-lysing, phage-infected bacteria. Each may represent ecological responses, in terms of phage lysis timing, to high local densities of phage-infected bacteria, but for lysis inhibition also to locally reduced densities of phage-uninfected bacteria. With lysis inhibition, the outcome is a temporary avoidance of lysis, i.e., a lysis delay, resulting in increased numbers of virions (greater burst size). Synchronized lysis-inhibition collapse, by contrast, is an accelerated lysis which is imposed upon phage-infected bacteria by virions that have been lytically released from other phage-infected bacteria. Here I consider some history of lysis inhibition, its laboratory manifestation, its molecular basis, how it may benefit expressing phages, and its potential ecological role. I discuss as well other, more recently recognized examples of virus-virus intercellular communication.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA.
| |
Collapse
|
10
|
Igler C, Abedon ST. Commentary: A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision. Front Microbiol 2019; 10:1171. [PMID: 31214137 PMCID: PMC6557168 DOI: 10.3389/fmicb.2019.01171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/07/2019] [Indexed: 01/21/2023] Open
Affiliation(s)
- Claudia Igler
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH, United States
| |
Collapse
|
11
|
Abstract
The first steps in phage lysis involve a temporally controlled permeabilization of the cytoplasmic membrane followed by enzymatic degradation of the peptidoglycan. For Caudovirales of Gram-negative hosts, there are two different systems: the holin-endolysin and pinholin-SAR endolysin pathways. In the former, lysis is initiated when the holin forms micron-scale holes in the inner membrane, releasing active endolysin into the periplasm to degrade the peptidoglycan. In the latter, lysis begins when the pinholin causes depolarization of the membrane, which activates the secreted SAR endolysin. Historically, the disruption of the first two barriers of the cell envelope was thought to be necessary and sufficient for lysis of Gram-negative hosts. However, recently a third functional class of lysis proteins, the spanins, has been shown to be required for outer membrane disruption. Spanins are so named because they form a protein bridge that connects both membranes. Most phages produce a two-component spanin complex, composed of an outer membrane lipoprotein (o-spanin) and an inner membrane protein (i-spanin) with a predominantly coiled-coil periplasmic domain. Some phages have a different type of spanin which spans the periplasm as a single molecule, by virtue of an N-terminal lipoprotein signal and a C-terminal transmembrane domain. Evidence is reviewed supporting a model in which the spanins function by fusing the inner membrane and outer membrane. Moreover, it is proposed that spanin function is inhibited by the meshwork of the peptidoglycan, thus coupling the spanin step to the first two steps mediated by the holin and endolysin.
Collapse
Affiliation(s)
- Jesse Cahill
- Department of Biochemistry & Biophysics, Center of Phage Technology, Texas A&M University, College Station, TX, United States.
| | - Ry Young
- Department of Biochemistry & Biophysics, Center of Phage Technology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Enzymes and Mechanisms Employed by Tailed Bacteriophages to Breach the Bacterial Cell Barriers. Viruses 2018; 10:v10080396. [PMID: 30060520 PMCID: PMC6116005 DOI: 10.3390/v10080396] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 01/07/2023] Open
Abstract
Monoderm bacteria possess a cell envelope made of a cytoplasmic membrane and a cell wall, whereas diderm bacteria have and extra lipid layer, the outer membrane, covering the cell wall. Both cell types can also produce extracellular protective coats composed of polymeric substances like, for example, polysaccharidic capsules. Many of these structures form a tight physical barrier impenetrable by phage virus particles. Tailed phages evolved strategies/functions to overcome the different layers of the bacterial cell envelope, first to deliver the genetic material to the host cell cytoplasm for virus multiplication, and then to release the virion offspring at the end of the reproductive cycle. There is however a major difference between these two crucial steps of the phage infection cycle: virus entry cannot compromise cell viability, whereas effective virion progeny release requires host cell lysis. Here we present an overview of the viral structures, key protein players and mechanisms underlying phage DNA entry to bacteria, and then escape of the newly-formed virus particles from infected hosts. Understanding the biological context and mode of action of the phage-derived enzymes that compromise the bacterial cell envelope may provide valuable information for their application as antimicrobials.
Collapse
|
13
|
A Cytoplasmic Antiholin Is Embedded In Frame with the Holin in a Lactobacillus fermentum Bacteriophage. Appl Environ Microbiol 2018; 84:AEM.02518-17. [PMID: 29305511 DOI: 10.1128/aem.02518-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/23/2017] [Indexed: 02/02/2023] Open
Abstract
In double-stranded DNA bacteriophages, infection cycles are ended by host cell lysis through the action of phage-encoded endolysins and holins. The precise timing of lysis is regulated by the holin inhibitors, named antiholins. Sequence analysis has revealed that holins with a single transmembrane domain (TMD) are prevalent in Lactobacillus bacteriophages. A temperate bacteriophage of Lactobacillus fermentum, ϕPYB5, has a two-component lysis cassette containing endolysin Lyb5 and holin Hyb5. The hyb5 gene is 465 bp long, encoding 154 amino acid residues with an N-terminal TMD and a large cytoplasmic C-terminal domain. However, the N terminus contains no dual-start motif, suggesting that Hyb5 oligomerization could be inhibited by a specific antiholin. Two internal open reading frames in hyb5, hyb5157-465 and hyb5209-328, were identified as genes encoding putative antiholins for Hyb5 and were coexpressed in trans with lyb5-hyb5 in Escherichia coli Surprisingly, host cell lysis was delayed by Hyb5157-465 but accelerated by abolishment of the translation initiation site of this protein, indicating that Hyb5157-465 acts as an antiholin to holin Hyb5. Moreover, deletion of 45 amino acid residues at the C terminus of Hyb5 resulted in early cell lysis, even in the presence of Hyb5157-465, implying that the interaction between Hyb5157-465 and Hyb5 occurs at the C terminus of the holin. In vivo and in vitro, Hyb5157-465 and Hyb5 were detected in the cytoplasmic and membrane fractions, respectively, and pulldown assays confirmed direct interaction between Hyb5157-465 and Hyb5. All the results suggest that Hyb5157-465 is an antiholin of Hyb5 that is involved in lysis timing.IMPORTANCE Phage-encoded holins are considered to be the "molecular clock" of phage infection cycles. The interaction between a holin and its inhibitor antiholin precisely regulates the timing of lysis of the host cells. As a prominent biological group in dairy processes, phages of lactic acid bacteria (LAB) have been extensively genome sequenced. However, little is known about the antiholins of LAB phage holins and the holin-antiholin interactions. In this work, we identified an in-frame antiholin against the class III holin of Lactobacillus fermentum phage ϕPYB5, Hyb5, and demonstrated its interaction with the cognate holin, which occurred in the bacterial cytoplasm.
Collapse
|
14
|
Gomaa M, Al-Haj L, Abed R. Metabolic engineering of Cyanobacteria and microalgae for enhanced production of biofuels and high-value products. J Appl Microbiol 2016; 121:919-31. [DOI: 10.1111/jam.13232] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/25/2016] [Accepted: 07/07/2016] [Indexed: 01/26/2023]
Affiliation(s)
- M.A. Gomaa
- Biology Department; College of Science; Sultan Qaboos University; Al Khoud Sultanate of Oman
| | - L. Al-Haj
- Biology Department; College of Science; Sultan Qaboos University; Al Khoud Sultanate of Oman
| | - R.M.M. Abed
- Biology Department; College of Science; Sultan Qaboos University; Al Khoud Sultanate of Oman
| |
Collapse
|
15
|
The Last r Locus Unveiled: T4 RIII Is a Cytoplasmic Antiholin. J Bacteriol 2016; 198:2448-57. [PMID: 27381920 DOI: 10.1128/jb.00294-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/27/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The latent period of phage T4, normally ∼25 min, can be extended indefinitely if the infected cell is superinfected after 5 min. This phenomenon, designated lysis inhibition (LIN), was first described in the 1940s and is genetically defined by mutations in diverse T4 r genes. RI, the main effector of LIN, has been shown to be secreted to the periplasm, where, upon activation by superinfection with a T-even virion, it binds to the C-terminal periplasmic domain of the T4 holin T and blocks its lethal permeabilization of the cytoplasmic membrane. Another r locus, rIII, has been the subject of conflicting reports. In this study, we show that RIII, an 82-amino-acid protein, is also required for LIN in both Escherichia coli B strains and E. coli K-12 strains. In T4ΔrIII infections, LIN was briefly established but was unstable. The overexpression of a cloned rIII gene alone impeded T-mediated lysis temporarily. However, coexpression of rIII and rI resulted in a stable LIN state. Bacterial two-hybrid assays and pulldown assays showed that RIII interacts with the cytoplasmic N terminus of T, which is a critical domain for holin function. We conclude that RIII is a T4 antiholin that blocks membrane hole formation by interacting directly with the holin. Accordingly, we propose an augmented model for T4 LIN that involves the stabilization of a complex of three proteins in two compartments of the cell: RI interacting with the C terminus of T in the periplasm and RIII interacting with the N terminus of T in the cytoplasm. IMPORTANCE Lysis inhibition is a unique feature of phage T4 in response to environmental conditions, effected by the antiholin RI, which binds to the periplasmic domain of the T holin and blocks its hole-forming function. Here we report that the T4 gene rIII encodes a cytoplasmic antiholin that, together with the main antiholin, RI, inhibits holin T by forming a complex of three proteins spanning two cell compartments.
Collapse
|
16
|
Li M, Li M, Lin H, Wang J, Jin Y, Han F. Characterization of the novel T4-like Salmonella enterica bacteriophage STP4-a and its endolysin. Arch Virol 2015; 161:377-84. [PMID: 26563319 DOI: 10.1007/s00705-015-2647-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022]
Abstract
While screening for new antimicrobial agents for multidrug-resistant Salmonella enterica, the novel lytic bacteriophage STP4-a was isolated and characterized. Phage morphology revealed that STP4-a belongs to the family Myoviridae. Bacterial challenge assays showed that different serovars of Salmonella enterica were susceptible to STP4-a infection. The genomic characteristics of STP4-a, containing 159,914 bp of dsDNA with an average GC content of 36.86 %, were determined. Furthermore, the endolysin of STP4-a was expressed and characterized. The novel endolysin, LysSTP4, has hydrolytic activity towards outer-membrane-permeabilized S. enterica and Escherichia coli. These results provide essential information for the development of novel phage-based biocontrol agents against S. enterica.
Collapse
Affiliation(s)
- Meng Li
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Mengzhe Li
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Hong Lin
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jingxue Wang
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003, People's Republic of China.
| | - Yanqiu Jin
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Feng Han
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003, People's Republic of China
| |
Collapse
|
17
|
Abstract
Phages are credited with having been first described in what we now, officially, are commemorating as the 100(th) anniversary of their discovery. Those one-hundred years of phage history have not been lacking in excitement, controversy, and occasional convolution. One such complication is the concept of secondary infection, which can take on multiple forms with myriad consequences. The terms secondary infection and secondary adsorption, for example, can be used almost synonymously to describe virion interaction with already phage-infected bacteria, and which can result in what are described as superinfection exclusion or superinfection immunity. The phrase secondary infection also may be used equivalently to superinfection or coinfection, with each of these terms borrowed from medical microbiology, and can result in genetic exchange between phages, phage-on-phage parasitism, and various partial reductions in phage productivity that have been termed mutual exclusion, partial exclusion, or the depressor effect. Alternatively, and drawing from epidemiology, secondary infection has been used to describe phage population growth as that can occur during active phage therapy as well as upon phage contamination of industrial ferments. Here primary infections represent initial bacterial population exposure to phages while consequent phage replication can lead to additional, that is, secondary infections of what otherwise are not yet phage-infected bacteria. Here I explore the varying meanings and resultant ambiguity that has been associated with the term secondary infection. I suggest in particular that secondary infection, as distinctly different phenomena, can in multiple ways influence the success of phage-mediated biocontrol of bacteria, also known as, phage therapy.
Collapse
|
18
|
Abstract
For most phages, holins control the timing of host lysis. During the morphogenesis period of the infection cycle, canonical holins accumulate harmlessly in the cytoplasmic membrane until they suddenly trigger to form lethal lesions called holes. The holes can be visualized by cryo-electron microscopy and tomography as micrometer-scale interruptions in the membrane. To explore the fine structure of the holes formed by the lambda holin, S105, a cysteine-scanning accessibility study was performed. A collection of S105 alleles encoding holins with a single Cys residue in different positions was developed and characterized for lytic function. Based on the ability of 4-acetamido-4'-((iodoacetyl) amino) stilbene-2,2'-disulfonic acid, disodium salt (IASD), to modify these Cys residues, one face of transmembrane domain 1 (TMD1) and TMD3 was judged to face the lumen of the S105 hole. In both cases, the lumen-accessible face was found to correspond to the more hydrophilic face of the two TMDs. Judging by the efficiency of IASD modification, it was concluded that the bulk of the S105 protein molecules were involved in facing the lumen. These results are consistent with a model in which the perimeters of the S105 holes are lined by the holin molecules present at the time of lysis. Moreover, the findings that TMD1 and TMD3 face the lumen, coupled with previous results showing TMD2-TMD2 contacts in the S105 dimer, support a model in which membrane depolarization drives the transition of S105 from homotypic to heterotypic oligomeric interactions.
Collapse
|
19
|
Miyake K, Abe K, Ferri S, Nakajima M, Nakamura M, Yoshida W, Kojima K, Ikebukuro K, Sode K. A green-light inducible lytic system for cyanobacterial cells. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:56. [PMID: 24713090 PMCID: PMC4021604 DOI: 10.1186/1754-6834-7-56] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/25/2014] [Indexed: 05/29/2023]
Abstract
BACKGROUND Cyanobacteria are an attractive candidate for the production of biofuel because of their ability to capture carbon dioxide by photosynthesis and grow on non-arable land. However, because huge quantities of water are required for cultivation, strict water management is one of the greatest issues in algae- and cyanobacteria-based biofuel production. In this study, we aim to construct a lytic cyanobacterium that can be regulated by a physical signal (green-light illumination) for future use in the recovery of biofuel related compounds. RESULTS We introduced T4 bacteriophage-derived lysis genes encoding holin and endolysin under the control of the green-light regulated cpcG2 promoter in Synechocystis sp. PCC 6803. When cells harboring the lysis genes were illuminated with both red and green light, we observed a considerable decrease in growth rate, a significant increase in cellular phycocyanin released in the medium, and a considerable fraction of dead cells. These effects were not observed when these cells were illuminated with only red light, or when cells not containing the lysis genes were grown under either red light or red and green light. These results indicate that our constructed green-light inducible lytic system was clearly induced by green-light illumination, resulting in lytic cells that released intracellular phycocyanin into the culture supernatant. This property suggests a future possibility to construct photosynthetic genetically modified organisms that are unable to survive under sunlight exposure. Expression of the self-lysis system with green-light illumination was also found to greatly increase the fragility of the cell membrane, as determined by subjecting the induced cells to detergent, osmotic-shock, and freeze-thaw treatments. CONCLUSIONS A green-light inducible lytic system was constructed in Synechocystis sp. PCC 6803. The engineered lytic cyanobacterial cells should be beneficial for the recovery of biofuels and related compounds from cells with minimal effort and energy, due to the fragile nature of the induced cells. Furthermore, the use of light-sensing two-component systems to regulate the expression of exogenous genes in cyanobacteria promises to replace conventional chemical inducers in many bioprocess applications, impacting the limiting water management issues.
Collapse
Affiliation(s)
- Kotone Miyake
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- JST, CREST, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koichi Abe
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- JST, CREST, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Stefano Ferri
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- JST, CREST, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Mitsuharu Nakajima
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- JST, CREST, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Mayumi Nakamura
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- JST, CREST, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Wataru Yoshida
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- JST, CREST, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Katsuhiro Kojima
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- JST, CREST, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- JST, CREST, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koji Sode
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- JST, CREST, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
20
|
Young R. Phage lysis: three steps, three choices, one outcome. J Microbiol 2014; 52:243-58. [PMID: 24585055 DOI: 10.1007/s12275-014-4087-z] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/15/2014] [Indexed: 11/26/2022]
Abstract
The lysis of bacterial hosts by double-strand DNA bacteriophages, once thought to reflect merely the accumulation of sufficient lysozyme activity during the infection cycle, has been revealed to recently been revealed to be a carefully regulated and temporally scheduled process. For phages of Gramnegative hosts, there are three steps, corresponding to subversion of each of the three layers of the cell envelope: inner membrane, peptidoglycan, and outer membrane. The pathway is controlled at the level of the cytoplasmic membrane. In canonical lysis, a phage encoded protein, the holin, accumulates harmlessly in the cytoplasmic membrane until triggering at an allele-specific time to form micron-scale holes. This allows the soluble endolysin to escape from the cytoplasm to degrade the peptidoglycan. Recently a parallel pathway has been elucidated in which a different type of holin, the pinholin, which, instead of triggering to form large holes, triggers to form small, heptameric channels that serve to depolarize the membrane. Pinholins are associated with SAR endolysins, which accumulate in the periplasm as inactive, membrane-tethered enzymes. Pinholin triggering collapses the proton motive force, allowing the SAR endolysins to refold to an active form and attack the peptidoglycan. Surprisingly, a third step, the disruption of the outer membrane is also required. This is usually achieved by a spanin complex, consisting of a small outer membrane lipoprotein and an integral cytoplasmic membrane protein, designated as o-spanin and i-spanin, respectively. Without spanin function, lysis is blocked and progeny virions are trapped in dead spherical cells, suggesting that the outer membrane has considerable tensile strength. In addition to two-component spanins, there are some single-component spanins, or u-spanins, that have an N-terminal outer-membrane lipoprotein signal and a C-terminal transmembrane domain. A possible mechanism for spanin function to disrupt the outer membrane is to catalyze fusion of the inner and outer membranes.
Collapse
Affiliation(s)
- Ryland Young
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843-2128, USA,
| |
Collapse
|
21
|
Phage lysis: do we have the hole story yet? Curr Opin Microbiol 2013; 16:790-7. [PMID: 24113139 DOI: 10.1016/j.mib.2013.08.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/08/2013] [Accepted: 08/17/2013] [Indexed: 11/23/2022]
Abstract
In infections of Gram-negative bacteria, lysis is a three step process, with a choice of two effectors for each step. At a precise, allele-specific time, the inner membrane (IM) is fatally permeabilized by either a holin or a pinholin. This allows a muralytic enzyme, either a canonical endolysin, escaping from the cytoplasm, or a SAR endolysin, activated in the periplasm, to degrade the peptidoglycan. Surprisingly, a third class of lysis protein, the spanin, is required for disruption of the outer membrane (OM). Key steps are regulated by membrane protein dynamics, both in terms of bilayer topology and subcellular distribution, by the energization of the membrane, and by holin-specific inhibitors called antiholins.
Collapse
|
22
|
Roces C, Wegmann U, Campelo AB, García P, Rodríguez A, Martínez B. Lack of the host membrane protease FtsH hinders release of the Lactococcus lactis bacteriophage TP712. J Gen Virol 2013; 94:2814-2818. [PMID: 24018314 DOI: 10.1099/vir.0.057182-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The temperate bacteriophage TP712 was unable to plaque on Lactococcus lactis ΔftsH lacking the membrane protease FtsH and complementation in trans restored the WT phenotype. Absence of ftsH did not hinder phage adsorption, phage DNA delivery or activation of the lytic cycle. Thin sections revealed that TP712 virions appeared to be correctly assembled inside the ΔftsH host, but were not released. These virions were infective, demonstrating that a functional host FtsH is required by TP712 to proceed effectively with lysis of the host.
Collapse
Affiliation(s)
- Clara Roces
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Udo Wegmann
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - Ana B Campelo
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Pilar García
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Beatriz Martínez
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| |
Collapse
|
23
|
Jin M, Ye T, Zhang X. Roles of bacteriophage GVE2 endolysin in host lysis at high temperatures. Microbiology (Reading) 2013; 159:1597-1605. [DOI: 10.1099/mic.0.067611-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Min Jin
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ting Ye
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaobo Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
24
|
Abstract
Lambdoid phage 21 uses a pinholin-signal anchor release endolysin strategy to effect temporally regulated host lysis. In this strategy, the pinholin S(21)68 accumulates harmlessly in the bilayer until suddenly triggering to form lethal membrane lesions, consisting of S(21)68 heptamers with central pores <2 nm in diameter. The membrane depolarization caused by these pores activates the muralytic endolysin, R(21), leading immediately to peptidoglycan degradation. The lethal S(21)68 complexes have been designated as pinholes to distinguish from the micrometer-scale holes formed by canonical holins. Here, we used GFP fusions of WT and mutant forms of S(21)68 to show that the holin accumulates uniformly throughout the membrane until the time of triggering, when it suddenly redistributes into numerous small foci (rafts). Raft formation correlates with the depletion of the proton motive force, which is indicated by the potential-sensitive dye bis-(1,3-dibutylbarbituric acid)pentamethine oxonol. By contrast, GFP fusions of either antiholin variant irsS(21)68, which only forms inactive dimers, or nonlethal mutant S(21)68(S44C), which is blocked at an activated dimer stage of the pinhole formation pathway, were both blocked in a state of uniform distribution. In addition, fluorescence recovery after photobleaching revealed that, although the antiholin irsS(21)68-GFP fusion was highly mobile in the membrane (even when the proton motive force was depleted), more than one-half of the S(21)68-GFP molecules were immobile, and the rest were in mobile states with a much lower diffusion rate than the rate of irsS(21)68-GFP. These results suggest a model in which, after transiting into an oligomeric state, S(21)68 migrates into rafts with heterogeneous sizes, within which the final pinholes form.
Collapse
|
25
|
Golec P, Karczewska-Golec J, Voigt B, Albrecht D, Schweder T, Hecker M, Węgrzyn G, Łoś M. Proteomic profiles and kinetics of development of bacteriophage T4 and its rI and rIII mutants in slowly growing Escherichia coli. J Gen Virol 2012; 94:896-905. [PMID: 23239571 DOI: 10.1099/vir.0.048686-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage T4 survival in its natural environment requires adjustment of phage development to the slow bacterial growth rate or the initiation of mechanisms of pseudolysogeny or lysis inhibition (LIN). While phage-encoded RI and probably RIII proteins seem to be crucial players in pseudolysogeny and LIN phenomena, the identity of proteins involved in the regulation of T4 development in slowly growing bacteria has remained unknown. In this work, using a chemostat system, we studied the development of wild-type T4 (T4wt) and its rI (T4rI) and rIII (T4rIII) mutants in slowly growing bacteria, where T4 did not initiate LIN or pseudolysogeny. We determined eclipse periods, phage propagation times, latent periods and burst sizes of T4wt, T4rI and T4rIII. We also compared intracellular proteomes of slowly growing Escherichia coli infected with either T4wt or the mutants. Using two-dimensional PAGE analyses we found 18 differentially expressed proteins from lysates of infected cells. Proteins whose amounts were different in cells harbouring T4wt and the mutants are involved in processes of replication, phage-host interactions or they constitute virion components. Our data indicate that functional RI and RIII proteins - apart from their already known roles in LIN and pseudolysogeny - are also necessary for the regulation of phage T4 development in slowly growing bacteria. This regulation may be more complicated than previously anticipated, with many factors influencing T4 development in its natural habitat.
Collapse
Affiliation(s)
- Piotr Golec
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Joanna Karczewska-Golec
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Birgit Voigt
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, F.-L.-Jahn-Str. 15, 17489 Greifswald, Germany
| | - Dirk Albrecht
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, F.-L.-Jahn-Str. 15, 17489 Greifswald, Germany
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, Ernst-Moritz-Arndt-University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, F.-L.-Jahn-Str. 15, 17489 Greifswald, Germany
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Marcin Łoś
- Phage Consultants, Partyzantów10/18, 80-254 Gdańsk, Poland.,Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
26
|
Moussa SH, Kuznetsov V, Tran TAT, Sacchettini JC, Young R. Protein determinants of phage T4 lysis inhibition. Protein Sci 2012; 21:571-82. [PMID: 22389108 DOI: 10.1002/pro.2042] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 11/10/2022]
Abstract
Genetic studies have established that lysis inhibition in bacteriophage T4 infections occurs when the RI antiholin inhibits the lethal hole-forming function of the T holin. The T-holin is composed of a single N-terminal transmembrane domain and a ~20 kDa periplasmic domain. It accumulates harmlessly throughout the bacteriophage infection cycle until suddenly causing permeabilization of the inner membrane, thereby initiating lysis. The RI antiholin has a SAR domain that directs its secretion to the periplasm, where it can either be inactivated and degraded or be activated as a specific inhibitor of T. Previously, it was shown that the interaction of the soluble domains of these two proteins within the periplasm was necessary for lysis inhibition. We have purified and characterized the periplasmic domains of both T and RI. Both proteins were purified in a modified host that allows disulfide bond formation in the cytoplasm, due to the functional requirement of conserved disulfide bonds. Analytical centrifugation and circular dichroism spectroscopy showed that RI was monomeric and exhibited ~80% alpha-helical content. In contrast, T exhibited a propensity to oligomerize and precipitate at high concentrations. Incubation of RI with T inhibits this aggregation and results in a complex of equimolar T and RI content. Although gel filtration analysis indicated a complex mass of 45 kDa, intermediate between the predicted 30 kDa heterodimer and 60 kDa heterotetramer, sedimentation velocity analysis indicated that the predominant species is the former. These results suggest that RI binding to T is necessary and sufficient for lysis inhibition.
Collapse
Affiliation(s)
- Samir H Moussa
- Center for Phage Technology, Texas A&M University, College Station, Texas 77843-2128, USA
| | | | | | | | | |
Collapse
|
27
|
Kutter EM, Skutt-Kakaria K, Blasdel B, El-Shibiny A, Castano A, Bryan D, Kropinski AM, Villegas A, Ackermann HW, Toribio AL, Pickard D, Anany H, Callaway T, Brabban AD. Characterization of a ViI-like phage specific to Escherichia coli O157:H7. Virol J 2011; 8:430. [PMID: 21899740 PMCID: PMC3184105 DOI: 10.1186/1743-422x-8-430] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/07/2011] [Indexed: 12/16/2022] Open
Abstract
Phage vB_EcoM_CBA120 (CBA120), isolated against Escherichia coli O157:H7 from a cattle feedlot, is morphologically very similar to the classic phage ViI of Salmonella enterica serovar Typhi. Until recently, little was known genetically or physiologically about the ViI-like phages, and none targeting E. coli have been described in the literature. The genome of CBA120 has been fully sequenced and is highly similar to those of both ViI and the Shigella phage AG3. The core set of structural and replication-related proteins of CBA120 are homologous to those from T-even phages, but generally are more closely related to those from T4-like phages of Vibrio, Aeromonas and cyanobacteria than those of the Enterobacteriaceae. The baseplate and method of adhesion to the host are, however, very different from those of either T4 or the cyanophages. None of the outer baseplate proteins are conserved. Instead of T4's long and short tail fibers, CBA120, like ViI, encodes tail spikes related to those normally seen on podoviruses. The 158 kb genome, like that of T4, is circularly permuted and terminally redundant, but unlike T4 CBA120 does not substitute hmdCyt for cytosine in its DNA. However, in contrast to other coliphages, CBA120 and related coliphages we have isolated cannot incorporate 3H-thymidine (3H-dThd) into their DNA. Protein sequence comparisons cluster the putative "thymidylate synthase" of CBA120, ViI and AG3 much more closely with those of Delftia phage φW-14, Bacillus subtilis phage SPO1, and Pseudomonas phage YuA, all known to produce and incorporate hydroxymethyluracil (hmdUra).
Collapse
Affiliation(s)
| | | | - Bob Blasdel
- The Evergreen State College, Olympia, WA, USA
- Department of Microbiology, The Ohio State University, Columbus, OH
| | - Ayman El-Shibiny
- The Evergreen State College, Olympia, WA, USA
- Faculty of Environmental Agricultural Sciences, Suez Canal University, Egypt
| | - Anna Castano
- The Evergreen State College, Olympia, WA, USA
- Department of Pediatric Neurology, University of Colorado Children's Hospital, Denver, CO
| | | | - Andrew M Kropinski
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, ON, Canada
- Department of Molecular & Cellular Biology, University of Guelph, ON, Canada
| | - Andre Villegas
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, ON, Canada
| | | | - Ana L Toribio
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, England, UK
| | - Derek Pickard
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, England, UK
| | - Hany Anany
- Canadian Research Institute for Food Safety, University of Guelph, ON, Canada
- Microbiology Department, Ain Shams University, Cairo, Egypt
| | | | | |
Collapse
|
28
|
Burch LH, Zhang L, Chao FG, Xu H, Drake JW. The bacteriophage T4 rapid-lysis genes and their mutational proclivities. J Bacteriol 2011; 193:3537-45. [PMID: 21571993 PMCID: PMC3133318 DOI: 10.1128/jb.00138-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022] Open
Abstract
Like most phages with double-stranded DNA, phage T4 exits the infected host cell by a lytic process requiring, at a minimum, an endolysin and a holin. Unlike most phages, T4 can sense superinfection (which signals the depletion of uninfected host cells) and responds by delaying lysis and achieving an order-of-magnitude increase in burst size using a mechanism called lysis inhibition (LIN). T4 r mutants, which are unable to conduct LIN, produce distinctly large, sharp-edged plaques. The discovery of r mutants was key to the foundations of molecular biology, in particular to discovering and characterizing genetic recombination in T4, to redefining the nature of the gene, and to exploring the mutation process at the nucleotide level of resolution. A number of r genes have been described in the past 7 decades with various degrees of clarity. Here we describe an extensive and perhaps saturating search for T4 r genes and relate the corresponding mutational spectra to the often imperfectly known physiologies of the proteins encoded by these genes. Focusing on r genes whose mutant phenotypes are largely independent of the host cell, the genes are rI (which seems to sense superinfection and signal the holin to delay lysis), rIII (of poorly defined function), rIV (same as sp and also of poorly defined function), and rV (same as t, the holin gene). We did not identify any mutations that might correspond to a putative rVI gene, and we did not focus on the famous rII genes because they appear to affect lysis only indirectly.
Collapse
Affiliation(s)
- Lauranell H. Burch
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Leilei Zhang
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Frank G. Chao
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Hong Xu
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - John W. Drake
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
29
|
Eshelman CM, Vouk R, Stewart JL, Halsne E, Lindsey HA, Schneider S, Gualu M, Dean AM, Kerr B. Unrestricted migration favours virulent pathogens in experimental metapopulations: evolutionary genetics of a rapacious life history. Philos Trans R Soc Lond B Biol Sci 2010; 365:2503-13. [PMID: 20643740 DOI: 10.1098/rstb.2010.0066] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding pathogen infectivity and virulence requires combining insights from epidemiology, ecology, evolution and genetics. Although theoretical work in these fields has identified population structure as important for pathogen life-history evolution, experimental tests are scarce. Here, we explore the impact of population structure on life-history evolution in phage T4, a viral pathogen of Escherichia coli. The host-pathogen system is propagated as a metapopulation in which migration between subpopulations is either spatially restricted or unrestricted. Restricted migration favours pathogens with low infectivity and low virulence. Unrestricted migration favours pathogens that enter and exit their hosts quickly, although they are less productive owing to rapid extirpation of the host population. The rise of such 'rapacious' phage produces a 'tragedy of the commons', in which better competitors lower productivity. We have now identified a genetic basis for a rapacious life history. Mutations at a single locus (rI) cause increased virulence and are sufficient to account for a negative relationship between phage competitive ability and productivity. A higher frequency of rI mutants under unrestricted migration signifies the evolution of rapaciousness in this treatment. Conversely, spatially restricted migration favours a more 'prudent' pathogen strategy, in which the tragedy of the commons is averted. As our results illustrate, profound epidemiological and ecological consequences of life-history evolution in a pathogen can have a simple genetic cause.
Collapse
Affiliation(s)
- Christal M Eshelman
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
A role for accessory genes rI.-1 and rI.1 in the regulation of lysis inhibition by bacteriophage T4. Virus Genes 2010; 41:459-68. [PMID: 20945083 PMCID: PMC2962797 DOI: 10.1007/s11262-010-0532-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 09/17/2010] [Indexed: 11/29/2022]
Abstract
Lysis inhibition (LIN) is a known feature of the T-even family of bacteriophages. Despite its historical role in the development of modern molecular genetics, many aspects of this phenomenon remain mostly unexplained. The key element of LIN is an interaction between two phage-encoded proteins, the T holin and the RI antiholin. This interaction is stabilized by RIII. In this report, we demonstrate the results of genetic experiments which suggest a synergistic action of two accessory proteins of bacteriophage T4, RI.-1, and RI.1 with RIII in the regulation of LIN.
Collapse
|
31
|
Summer EJ, Enderle CJ, Ahern SJ, Gill JJ, Torres CP, Appel DN, Black MC, Young R, Gonzalez CF. Genomic and biological analysis of phage Xfas53 and related prophages of Xylella fastidiosa. J Bacteriol 2010; 192:179-90. [PMID: 19897657 PMCID: PMC2798268 DOI: 10.1128/jb.01174-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 10/27/2009] [Indexed: 02/07/2023] Open
Abstract
We report the plaque propagation and genomic analysis of Xfas53, a temperate phage of Xylella fastidiosa. Xfas53 was isolated from supernatants of X. fastidiosa strain 53 and forms plaques on the sequenced strain Temecula. Xfas53 forms short-tailed virions, morphologically similar to podophage P22. The 36.7-kb genome is predicted to encode 45 proteins. The Xfas53 terminase and structural genes are related at a protein and gene order level to P22. The left arm of the Xfas53 genome has over 90% nucleotide identity to multiple prophage elements of the sequenced X. fastidiosa strains. This arm encodes proteins involved in DNA metabolism, integration, and lysogenic control. In contrast to Xfas53, each of these prophages encodes head and DNA packaging proteins related to the siphophage lambda and tail morphogenesis proteins related to those of myophage P2. Therefore, it appears that Xfas53 was formed by recombination between a widespread family of X. fastidiosa P2-related prophage elements and a podophage distantly related to phage P22. The lysis cassette of Xfas53 is predicted to encode a pinholin, a signal anchor and release (SAR) endolysin, and Rz and Rz1 equivalents. The holin gene encodes a pinholin and appears to be subject to an unprecedented degree of negative regulation at both the level of expression, with rho-independent transcriptional termination and RNA structure-dependent translational repression, and the level of holin function, with two upstream translational starts predicted to encode antiholin products. A notable feature of Xfas53 and related prophages is the presence of 220- to 390-nucleotide degenerate tandem direct repeats encoding putative DNA binding proteins. Additionally, each phage encodes at least two BroN domain-containing proteins possibly involved in lysogenic control. Xfas53 exhibits unusually slow adsorption kinetics, possibly an adaptation to the confined niche of its slow-growing host.
Collapse
Affiliation(s)
- Elizabeth J. Summer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Christopher J. Enderle
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Stephen J. Ahern
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Jason J. Gill
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Cruz P. Torres
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - David N. Appel
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Mark C. Black
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Carlos F. Gonzalez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| |
Collapse
|
32
|
The N-terminal transmembrane domain of lambda S is required for holin but not antiholin function. J Bacteriol 2009; 192:725-33. [PMID: 19897658 DOI: 10.1128/jb.01263-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lambda S gene encodes a holin, S105, and an antiholin, S107, which differs by its Met-Lys N-terminal extension. The model for the lysis-defective character of S107 stipulates that the additional N-terminal basic residue keeps S107 from assuming the topology of S105, which is N-out, C-in, with three transmembrane domains (TMDs). Here we show that the N terminus of S105 retains its fMet residue but that the N terminus of S107 is fully deformylated. This supports the model that in S105, TMD1 inserts into the membrane very rapidly but that in S107, it is retained in the cytoplasm. Further, it reveals that, compared to S105, S107 has two extra positively charged moieties, Lys2 and the free N-terminal amino group, to hinder its penetration into an energized membrane. Moreover, an allele, S105(DeltaTMD1), with TMD1 deleted, was found to be defective in lysis, insensitive to membrane depolarization, and dominant to the wild-type allele, indicating that the lysis-defective, antiholin character of S107 is due to the absence of TMD1 from the bilayer rather than to its ectopic localization at the inner face of the cytoplasmic membrane. Finally, the antiholin function of the deletion protein was compromised by the substitution of early-lysis missense mutations in either the deletion protein or parental S105 but restored when both S105(DeltaTMD1) and holin carried the substitution.
Collapse
|
33
|
Abstract
Perhaps the simplest of biological timing systems, bacteriophage holins accumulate during the phage morphogenesis period and then trigger to permeabilize the cytoplasmic membrane with lethal holes; thus, terminating the infection cycle. Canonical holins form very large holes that allow nonspecific release of fully-folded proteins, but a recently discovered class of holins, the pinholins, make much smaller holes, or pinholes, that serve only to depolarize the membrane. Here, we interrogate the structure of the prototype pinholin by negative-stain transmission electron-microscopy, cysteine-accessibility, and chemical cross-linking, as well as by computational approaches. Together, the results suggest that the pinholin forms symmetric heptameric structures with the hydrophilic surface of one transmembrane domain lining the surface of a central channel approximately 15 A in diameter. The structural model also suggests a rationale for the prehole state of the pinholin, the persistence of which defines the duration of the viral latent period, and for the sensitivity of the holin timing system to the energized state of the membrane.
Collapse
|