1
|
Meng S, Peng T, Liu Y, Zhang S, Qian Z, Huang T, Xie Q, Gu JD, Hu Z. Novel insights into the synergetic degradation of pyrene by microbial communities from mangroves in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133907. [PMID: 38471380 DOI: 10.1016/j.jhazmat.2024.133907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
Pyrene is a high molecular weight polycyclic aromatic hydrocarbon (HMW-PAHs). It is a ubiquitous, persistent, and carcinogenic environmental contaminant that has raised concern worldwide. This research explored synergistic bacterial communities for efficient pyrene degradation in seven typical Southern China mangroves. The bacterial communities of seven typical mangroves were enriched by pyrene, and enriched bacterial communities showed an excellent pyrene degradation capacity of > 95% (except for HK mangrove and ZJ mangrove). Devosia, Hyphomicrobium, Flavobacterium, Marinobacter, Algoriphahus, and Youhaiella all have significant positive correlations with pyrene (R>0, p < 0.05) by 16SrRNA gene sequencing and metagenomics analysis, indicated that these genera play a vital role in pyrene metabolism. Meanwhile, the functional genes were involved in pyrene degradation that was enriched in the bacterial communities, including the genes of nagAa, ndoR, pcaG, etc. Furthermore, the analyses of functional genes and binning genomes demonstrated that some bacterial communities as a unique teamwork to cooperatively participate in pyrene degradation. Interestingly, the genes related to biogeochemical cycles were enriched, such as narG , soxA, and cyxJ, suggested that bacterial communities were also helpful in maintaining the stability of the ecological environment. In addition, some novel species with pyrene-degradation potential were identified in the pyrene-degrading bacterial communities, which can enrich the resource pool of pyrene-degrading strains. Overall, this study will help develop further research strategies for pollutant removal.
Collapse
Affiliation(s)
- Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yongjin Liu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Shan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Zhihui Qian
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Qingyi Xie
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, PR China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China; Offshore Environmental Pollution Control Engineering Research, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
2
|
Zhou T, Wang J, Todd JD, Zhang XH, Zhang Y. Quorum Sensing Regulates the Production of Methanethiol in Vibrio harveyi. Microorganisms 2023; 12:35. [PMID: 38257862 PMCID: PMC10819757 DOI: 10.3390/microorganisms12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Methanethiol (MeSH) and dimethyl sulfide (DMS) are important volatile organic sulfur compounds involved in atmospheric chemistry and climate regulation. However, little is known about the metabolism of these compounds in the ubiquitous marine vibrios. Here, we investigated MeSH/DMS production and whether these processes were regulated by quorum-sensing (QS) systems in Vibrio harveyi BB120. V. harveyi BB120 exhibited strong MeSH production from methionine (Met) (465 nmol mg total protein-1) and weak DMS production from dimethylsulfoniopropionate (DMSP) cleavage. The homologs of MegL responsible for MeSH production from L-Met widely existed in vibrio genomes. Using BB120 and its nine QS mutants, we found that the MeSH production was regulated by HAI-1, AI-2 and CAI-1 QS pathways, as well as the luxO gene located in the center of this QS cascade. The regulation role of HAI-1 and AI-2 QS systems in MeSH production was further confirmed by applying quorum-quenching enzyme MomL and exogenous autoinducer AI-2. By contrast, the DMS production from DMSP cleavage showed no significant difference between BB120 and its QS mutants. Such QS-regulated MeSH production may help to remove excess Met that can be harmful for vibrio growth. These results emphasize the importance of QS systems and the MeSH production process in vibrios.
Collapse
Affiliation(s)
- Tiantian Zhou
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (T.Z.); (J.W.); (X.-H.Z.)
| | - Jinyan Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (T.Z.); (J.W.); (X.-H.Z.)
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (T.Z.); (J.W.); (X.-H.Z.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Yunhui Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
3
|
Tanabe TS, Dahl C. HMSS2: An advanced tool for the analysis of sulphur metabolism, including organosulphur compound transformation, in genome and metagenome assemblies. Mol Ecol Resour 2023; 23:1930-1945. [PMID: 37515475 DOI: 10.1111/1755-0998.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
The global sulphur cycle has implications for human health, climate change, biogeochemistry and bioremediation. The organosulphur compounds that participate in this cycle not only represent a vast reservoir of sulphur but are also used by prokaryotes as sources of energy and/or carbon. Closely linked to the inorganic sulphur cycle, it involves the interaction of prokaryotes, eukaryotes and chemical processes. However, ecological and evolutionary studies of the conversion of organic sulphur compounds are hampered by the poor conservation of the relevant pathways and their variation even within strains of the same species. In addition, several proteins involved in the conversion of sulphonated compounds are related to proteins involved in sulphur dissimilation or turnover of other compounds. Therefore, the enzymes involved in the metabolism of organic sulphur compounds are usually not correctly annotated in public databases. To address this challenge, we have developed HMSS2, a profiled Hidden Markov Model-based tool for rapid annotation and synteny analysis of organic and inorganic sulphur cycle proteins in prokaryotic genomes. Compared to its previous version (HMS-S-S), HMSS2 includes several new features. HMM-based annotation is now supported by nonhomology criteria and covers the metabolic pathways of important organosulphur compounds, including dimethylsulphoniopropionate, taurine, isethionate, and sulphoquinovose. In addition, the calculation speed has been increased by a factor of four and the available output formats have been extended to include iTol compatible data sets, and customized sequence FASTA files.
Collapse
Affiliation(s)
- Tomohisa Sebastian Tanabe
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
4
|
Zhou S, Zhu R, Niu X, Zhao Y, Deng Y. Metabolic engineering of Paracoccus denitrificans for dual degradation of sulfamethoxazole and ammonia nitrogen. Microbiol Spectr 2023; 11:e0014623. [PMID: 37732744 PMCID: PMC10581052 DOI: 10.1128/spectrum.00146-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/21/2023] [Indexed: 09/22/2023] Open
Abstract
Sulfamethoxazole (SMX), as one of the most widely used sulfonamide antibiotics, has been frequently detected in the aqueous environment, posing potential risks to the environment and human health. Although microbial degradation methods have been widely applied, some issues remain, including low degradation efficiency and poor environmental adaptability. In this regard, constructing efficient degrading bacteria by metabolic engineering is an ideal solution to these challenges. In this study, we used Paracoccus denitrificans DYTN-1, a superior nitrogen removal environment strain, as chassis to construct an SMX degradation pathway, obtaining a new bacteria for simultaneous degradation of SMX and removal of ammonia nitrogen. In doing this, we first identified and characterized four native promoters of P. denitrificans DYTN-1 with gradient strength to control the expression of the SMX degradation pathway. After degradation pathway expression level optimization and FMN reductase optimization, SMX degradation efficiency was significantly improved. The constructed P. d-pIAB4-PCS-sutR strain exhibited superior co-degradation of SMX and ammonia nitrogen contaminants with degradation rates of 44% and 71%, respectively. This study could pave the way for SMX degradation engineered strain design and evolution of environmental bioremediation. IMPORTANCE The abuse of sulfamethoxazole (SMX) had led to an increased accumulation in the environment, resulting in the disruption of the structure of microbial communities, further disrupting the bio-degradation process of other pollutants, such as ammonia nitrogen. To solve this challenge, we first identified and characterized four native promoters of Paracoccus denitrificans DYTN-1 with gradient strength to control the expression of the SMX degradation pathway. Then SMX degradation efficiency was significantly improved with degradation pathway expression level optimization and FMN reductase optimization. Finally, the superior nitrogen removal environment strain, P. denitrificans DYTN-1, obtained an SMX degradation function. This pioneering study of metabolic engineering to enhance the SMX degradation in microorganisms could pave the way for designing the engineered strains of SMX and nitrogen co-degradation and the environmental bioremediation.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Rongrong Zhu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaoqian Niu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yunying Zhao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yu Deng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Hazra S, Begley TP. Alkylcysteine Sulfoxide C-S Monooxygenase Uses a Flavin-Dependent Pummerer Rearrangement. J Am Chem Soc 2023; 145:11933-11938. [PMID: 37229602 PMCID: PMC10863075 DOI: 10.1021/jacs.3c03545] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Flavoenzymes are highly versatile and participate in the catalysis of a wide range of reactions, including key reactions in the metabolism of sulfur-containing compounds. S-Alkyl cysteine is formed primarily by the degradation of S-alkyl glutathione generated during electrophile detoxification. A recently discovered S-alkyl cysteine salvage pathway uses two flavoenzymes (CmoO and CmoJ) to dealkylate this metabolite in soil bacteria. CmoO catalyzes a stereospecific sulfoxidation, and CmoJ catalyzes the cleavage of one of the sulfoxide C-S bonds in a new reaction of unknown mechanism. In this paper, we investigate the mechanism of CmoJ. We provide experimental evidence that eliminates carbanion and radical intermediates and conclude that the reaction proceeds via an unprecedented enzyme-mediated modified Pummerer rearrangement. The elucidation of the mechanism of CmoJ adds a new motif to the flavoenzymology of sulfur-containing natural products and demonstrates a new strategy for the enzyme-catalyzed cleavage of C-S bonds.
Collapse
Affiliation(s)
- Sohan Hazra
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Tadhg P. Begley
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
6
|
Bueno de Mesquita CP, Wu D, Tringe SG. Methyl-Based Methanogenesis: an Ecological and Genomic Review. Microbiol Mol Biol Rev 2023; 87:e0002422. [PMID: 36692297 PMCID: PMC10029344 DOI: 10.1128/mmbr.00024-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Methyl-based methanogenesis is one of three broad categories of archaeal anaerobic methanogenesis, including both the methyl dismutation (methylotrophic) pathway and the methyl-reducing (also known as hydrogen-dependent methylotrophic) pathway. Methyl-based methanogenesis is increasingly recognized as an important source of methane in a variety of environments. Here, we provide an overview of methyl-based methanogenesis research, including the conditions under which methyl-based methanogenesis can be a dominant source of methane emissions, experimental methods for distinguishing different pathways of methane production, molecular details of the biochemical pathways involved, and the genes and organisms involved in these processes. We also identify the current gaps in knowledge and present a genomic and metagenomic survey of methyl-based methanogenesis genes, highlighting the diversity of methyl-based methanogens at multiple taxonomic levels and the widespread distribution of known methyl-based methanogenesis genes and families across different environments.
Collapse
Affiliation(s)
| | - Dongying Wu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Susannah G. Tringe
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
7
|
Interplay between Sulfur Assimilation and Biodesulfurization Activity in Rhodococcus qingshengii IGTS8: Insights into a Regulatory Role of the Reverse Transsulfuration Pathway. mBio 2022; 13:e0075422. [PMID: 35856606 PMCID: PMC9426449 DOI: 10.1128/mbio.00754-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biodesulfurization is a process that selectively removes sulfur from dibenzothiophene and its derivatives. Several natural biocatalysts harboring the highly conserved desulfurization operon dszABC, which is significantly repressed by methionine, cysteine, and inorganic sulfate, have been isolated. However, the available information on the metabolic regulation of gene expression is still limited. In this study, scarless knockouts of the reverse transsulfuration pathway enzyme genes cbs and metB were constructed in the desulfurizing strain Rhodococcus sp. strain IGTS8. We provide sequence analyses and report the enzymes' involvement in the sulfate- and methionine-dependent repression of biodesulfurization activity. Sulfate addition in the bacterial culture did not repress the desulfurization activity of the Δcbs strain, whereas deletion of metB promoted a significant biodesulfurization activity for sulfate-based growth and an even higher desulfurization activity for methionine-grown cells. In contrast, growth on cysteine completely repressed the desulfurization activity of all strains. Transcript level comparison uncovered a positive effect of cbs and metB gene deletions on dsz gene expression in the presence of sulfate and methionine, but not cysteine, offering insights into a critical role of cystathionine β-synthase (CβS) and MetB in desulfurization activity regulation. IMPORTANCE Precise genome editing of the model biocatalyst Rhodococcus qingshengii IGTS8 was performed for the first time, more than 3 decades after its initial discovery. We thus gained insight into the regulation of dsz gene expression and biocatalyst activity, depending on the presence of two reverse transsulfuration enzymes, CβS and MetB. Moreover, we observed an enhancement of biodesulfurization capability in the presence of otherwise repressive sulfur sources, such as sulfate and l-methionine. The interconnection of cellular sulfur assimilation strategies was revealed and validated.
Collapse
|
8
|
Karaiyan P, Chang CCH, Chan ES, Tey BT, Ramanan RN, Ooi CW. In silico screening and heterologous expression of soluble dimethyl sulfide monooxygenases of microbial origin in Escherichia coli. Appl Microbiol Biotechnol 2022; 106:4523-4537. [PMID: 35713659 PMCID: PMC9259527 DOI: 10.1007/s00253-022-12008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
Abstract Sequence-based screening has been widely applied in the discovery of novel microbial enzymes. However, majority of the sequences in the genomic databases were annotated using computational approaches and lacks experimental characterization. Hence, the success in obtaining the functional biocatalysts with improved characteristics requires an efficient screening method that considers a wide array of factors. Recombinant expression of microbial enzymes is often hampered by the undesirable formation of inclusion body. Here, we present a systematic in silico screening method to identify the proteins expressible in soluble form and with the desired biological properties. The screening approach was adopted in the recombinant expression of dimethyl sulfide (DMS) monooxygenase in Escherichia coli. DMS monooxygenase, a two-component enzyme consisting of DmoA and DmoB subunits, was used as a model protein. The success rate of producing soluble and active DmoA is 71% (5 out of 7 genes). Interestingly, the soluble recombinant DmoA enzymes exhibited the NADH:FMN oxidoreductase activity in the absence of DmoB (second subunit), and the cofactor FMN, suggesting that DmoA is also an oxidoreductase. DmoA originated from Janthinobacterium sp. AD80 showed the maximum NADH oxidation activity (maximum reaction rate: 6.6 µM/min; specific activity: 133 µM/min/mg). This novel finding may allow DmoA to be used as an oxidoreductase biocatalyst for various industrial applications. The in silico gene screening methodology established from this study can increase the success rate of producing soluble and functional enzymes while avoiding the laborious trial and error involved in the screening of a large pool of genes available. Key points • A systematic gene screening method was demonstrated. • DmoA is also an oxidoreductase capable of oxidizing NADH and reducing FMN. • DmoA oxidizes NADH in the absence of external FMN. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12008-8.
Collapse
Affiliation(s)
- Prasanth Karaiyan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Catherine Ching Han Chang
- Arkema Thiochemicals Sdn. Bhd., Jalan PJU 1A/7A OASIS Ara Damansara, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Eng-Seng Chan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Beng Ti Tey
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.,Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Ramakrishnan Nagasundara Ramanan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia. .,Arkema Thiochemicals Sdn. Bhd., Jalan PJU 1A/7A OASIS Ara Damansara, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia. .,Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
9
|
Shaw DK, Sekar J, Ramalingam PV. Recent insights into oceanic dimethylsulfoniopropionate biosynthesis and catabolism. Environ Microbiol 2022; 24:2669-2700. [PMID: 35611751 DOI: 10.1111/1462-2920.16045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Dimethylsulfoniopropionate (DMSP), a globally important organosulfur compound is produced in prodigious amounts (2.0 Pg sulfur) annually in the marine environment by phytoplankton, macroalgae, heterotrophic bacteria, some corals and certain higher plants. It is an important marine osmolyte and a major precursor molecule for the production of climate-active volatile gas dimethyl sulfide (DMS). DMSP synthesis take place via three pathways: a transamination 'pathway-' in some marine bacteria and algae, a Met-methylation 'pathway-' in angiosperms and bacteria and a decarboxylation 'pathway-' in the dinoflagellate, Crypthecodinium. The enzymes DSYB and TpMMT are involved in the DMSP biosynthesis in eukaryotes while marine heterotrophic bacteria engage key enzymes such as DsyB and MmtN. Several marine bacterial communities import DMSP and degrade it via cleavage or demethylation pathways or oxidation pathway, thereby generating DMS, methanethiol, and dimethylsulfoxonium propionate, respectively. DMSP is cleaved through diverse DMSP lyase enzymes in bacteria and via Alma1 enzyme in phytoplankton. The demethylation pathway involves four different enzymes, namely DmdA, DmdB, DmdC and DmdD/AcuH. However, enzymes involved in the oxidation pathway have not been yet identified. We reviewed the recent advances on the synthesis and catabolism of DMSP and enzymes that are involved in these processes.
Collapse
Affiliation(s)
- Deepak Kumar Shaw
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Jegan Sekar
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Prabavathy Vaiyapuri Ramalingam
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| |
Collapse
|
10
|
Hazra S, Bhandari DM, Krishnamoorthy K, Sekowska A, Danchin A, Begley TP. Cysteine Dealkylation in Bacillus subtilis by a Novel Flavin-Dependent Monooxygenase. Biochemistry 2022; 61:952-955. [PMID: 35584544 DOI: 10.1021/acs.biochem.2c00020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper, we describe the biochemical reconstitution of a cysteine salvage pathway and the biochemical characterization of each of the five enzymes involved. The salvage begins with amine acetylation of S-alkylcysteine, followed by thioether oxidation. The C-S bond of the resulting sulfoxide is cleaved using a new flavoenzyme catalytic motif to give N-acetylcysteine sulfenic acid. This is then reduced to the thiol and deacetylated to complete the salvage pathway. We propose that this pathway is important in the catabolism of alkylated cysteine generated by proteolysis of alkylated glutathione formed in the detoxification of a wide range of electrophiles.
Collapse
Affiliation(s)
- Sohan Hazra
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Dhananjay M Bhandari
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | | | | | - Tadhg P Begley
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Oshkin IY, Danilova OV, But SY, Miroshnikov KK, Suleimanov RZ, Belova SE, Tikhonova EN, Kuznetsov NN, Khmelenina VN, Pimenov NV, Dedysh SN. Expanding Characterized Diversity and the Pool of Complete Genome Sequences of Methylococcus Species, the Bacteria of High Environmental and Biotechnological Relevance. Front Microbiol 2021; 12:756830. [PMID: 34691008 PMCID: PMC8527097 DOI: 10.3389/fmicb.2021.756830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
The bacterial genus Methylococcus, which comprises aerobic thermotolerant methanotrophic cocci, was described half-a-century ago. Over the years, a member of this genus, Methylococcus capsulatus Bath, has become a major model organism to study genomic and metabolic basis of obligate methanotrophy. High biotechnological potential of fast-growing Methylococcus species, mainly as a promising source of feed protein, has also been recognized. Despite this big research attention, the currently cultured Methylococcus diversity is represented by members of the two species, M. capsulatus and M. geothermalis, while finished genome sequences are available only for two strains of these methanotrophs. This study extends the pool of phenotypically characterized Methylococcus strains with good-quality genome sequences by contributing four novel isolates of these bacteria from activated sludge, landfill cover soil, and freshwater sediments. The determined genome sizes of novel isolates varied between 3.2 and 4.0Mb. As revealed by the phylogenomic analysis, strains IO1, BH, and KN2 affiliate with M. capsulatus, while strain Mc7 may potentially represent a novel species. Highest temperature optima (45-50°C) and highest growth rates in bioreactor cultures (up to 0.3h-1) were recorded for strains obtained from activated sludge. The comparative analysis of all complete genomes of Methylococcus species revealed 4,485 gene clusters. Of these, pan-genome core comprised 2,331 genes (on average 51.9% of each genome), with the accessory genome containing 846 and 1,308 genes in the shell and the cloud, respectively. Independently of the isolation source, all strains of M. capsulatus displayed surprisingly high genome synteny and a striking similarity in gene content. Strain Mc7 from a landfill cover soil differed from other isolates by the high content of mobile genetic elements in the genome and a number of genome-encoded features missing in M. capsulatus, such as sucrose biosynthesis and the ability to scavenge phosphorus and sulfur from the environment.
Collapse
Affiliation(s)
- Igor Y. Oshkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Olga V. Danilova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Y. But
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Russia
| | - Kirill K. Miroshnikov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ruslan Z. Suleimanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana E. Belova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina N. Tikhonova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai N. Kuznetsov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Valentina N. Khmelenina
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Russia
| | - Nikolai V. Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Wang XJ, Zhang N, Teng ZJ, Wang P, Zhang WP, Chen XL, Zhang YZ, Chen Y, Fu HH, Li CY. Structural and Mechanistic Insights Into Dimethylsulfoxide Formation Through Dimethylsulfide Oxidation. Front Microbiol 2021; 12:735793. [PMID: 34630359 PMCID: PMC8498191 DOI: 10.3389/fmicb.2021.735793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Dimethylsulfide (DMS) and dimethylsulfoxide (DMSO) are widespread in marine environment, and are important participants in the global sulfur cycle. Microbiol oxidation of DMS to DMSO represents a major sink of DMS in marine surface waters. The SAR11 clade and the marine Roseobacter clade (MRC) are the most abundant heterotrophic bacteria in the ocean surface seawater. It has been reported that trimethylamine monooxygenase (Tmm, EC 1.14.13.148) from both MRC and SAR11 bacteria likely oxidizes DMS to generate DMSO. However, the structural basis of DMS oxidation has not been explained. Here, we characterized a Tmm homolog from the SAR11 bacterium Pelagibacter sp. HTCC7211 (Tmm7211). Tmm7211 exhibits DMS oxidation activity in vitro. We further solved the crystal structures of Tmm7211 and Tmm7211 soaked with DMS, and proposed the catalytic mechanism of Tmm7211, which comprises a reductive half-reaction and an oxidative half-reaction. FAD and NADPH molecules are essential for the catalysis of Tmm7211. In the reductive half-reaction, FAD is reduced by NADPH. In the oxidative half-reaction, the reduced FAD reacts with O2 to form the C4a-(hydro)peroxyflavin. The binding of DMS may repel the nicotinamide ring of NADP+, and make NADP+ generate a conformational change, shutting off the substrate entrance and exposing the active C4a-(hydro)peroxyflavin to DMS to complete the oxidation of DMS. The proposed catalytic mechanism of Tmm7211 may be widely adopted by MRC and SAR11 bacteria. This study provides important insight into the conversion of DMS into DMSO in marine bacteria, leading to a better understanding of the global sulfur cycle.
Collapse
Affiliation(s)
- Xiu-Juan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Nan Zhang
- School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Zhao-Jie Teng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Peng Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wei-Peng Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu-Zhong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yin Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Hui-Hui Fu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chun-Yang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
13
|
Xue CX, Lin H, Zhu XY, Liu J, Zhang Y, Rowley G, Todd JD, Li M, Zhang XH. DiTing: A Pipeline to Infer and Compare Biogeochemical Pathways From Metagenomic and Metatranscriptomic Data. Front Microbiol 2021; 12:698286. [PMID: 34408730 PMCID: PMC8367434 DOI: 10.3389/fmicb.2021.698286] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
Metagenomics and metatranscriptomics are powerful methods to uncover key micro-organisms and processes driving biogeochemical cycling in natural ecosystems. Databases dedicated to depicting biogeochemical pathways (for example, metabolism of dimethylsulfoniopropionate (DMSP), which is an abundant organosulfur compound) from metagenomic/metatranscriptomic data are rarely seen. Additionally, a recognized normalization model to estimate the relative abundance and environmental importance of pathways from metagenomic and metatranscriptomic data has not been organized to date. These limitations impact the ability to accurately relate key microbial-driven biogeochemical processes to differences in environmental conditions. Thus, an easy-to-use, specialized tool that infers and visually compares the potential for biogeochemical processes, including DMSP cycling, is urgently required. To solve these issues, we developed DiTing, a tool wrapper to infer and compare biogeochemical pathways among a set of given metagenomic or metatranscriptomic reads in one step, based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) and a manually created DMSP cycling gene database. Accurate and specific formulae for over 100 pathways were developed to calculate their relative abundance. Output reports detail the relative abundance of biogeochemical pathways in both text and graphical format. DiTing was applied to simulated metagenomic data and resulted in consistent genetic features of simulated benchmark genomic data. Subsequently, when applied to natural metagenomic and metatranscriptomic data from hydrothermal vents and the Tara Ocean project, the functional profiles predicted by DiTing were correlated with environmental condition changes. DiTing can now be confidently applied to wider metagenomic and metatranscriptomic datasets, and it is available at https://github.com/xuechunxu/DiTing.
Collapse
Affiliation(s)
- Chun-Xu Xue
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heyu Lin
- School of Earth Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Xiao-Yu Zhu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jiwen Liu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yunhui Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
14
|
Genome-Driven Discovery of Enzymes with Industrial Implications from the Genus Aneurinibacillus. Microorganisms 2021; 9:microorganisms9030499. [PMID: 33652876 PMCID: PMC7996765 DOI: 10.3390/microorganisms9030499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 01/27/2023] Open
Abstract
Bacteria belonging to the genus Aneurinibacillus within the family Paenibacillaceae are Gram-positive, endospore-forming, and rod-shaped bacteria inhabiting diverse environments. Currently, there are eight validly described species of Aneurinibacillus; however, several unclassified species have also been reported. Aneurinibacillus spp. have shown the potential for producing secondary metabolites (SMs) and demonstrated diverse types of enzyme activities. These features make them promising candidates with industrial implications. At present, genomes of 9 unique species from the genus Aneurinibacillus are available, which can be utilized to decipher invaluable information on their biosynthetic potential as well as enzyme activities. In this work, we performed the comparative genome analyses of nine Aneurinibacillus species representing the first such comprehensive study of this genus at the genome level. We focused on discovering the biosynthetic, biodegradation, and heavy metal resistance potential of this under-investigated genus. The results indicate that the genomes of Aneurinibacillus contain SM-producing regions with diverse bioactivities, including antimicrobial and antiviral activities. Several carbohydrate-active enzymes (CAZymes) and genes involved in heavy metal resistance were also identified. Additionally, a broad range of enzyme classes were also identified in the Aneurinibacillus pan-genomes, making this group of bacteria potential candidates for future investigations with industrial applications.
Collapse
|
15
|
Hammers DS, Donaghy CM, Heiss SL, Harris LM, Gordon JM, Stevens JW, Murray LP, Schwab AD, Hester BC, Culpepper MA. Identification and Characterization of a DmoB Flavin Oxidoreductase from a Putative Two-Component DMS C-Monooxygenase. ACS OMEGA 2020; 5:9830-9838. [PMID: 32391470 PMCID: PMC7203701 DOI: 10.1021/acsomega.9b04489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
The compound dimethyl sulfide (DMS) links terrestrial and oceanic sulfur with the atmosphere because of its volatility. Atmospheric DMS is responsible for cloud formation and radiation backscattering and has been implicated in climate control mitigation. The enzyme DMS C-monooxygenase degrades DMS and has been classified as a two-component FMNH2-dependent monooxygenase. This enzyme requires a flavin reductase B subunit to supply electrons to the monooxygenase A subunit where DMS conversion occurs. One form of the enzyme from Hyphomicrobium sulfonivorans has been isolated and characterized. In this work, a putative DMS C-monooxygenase has been identified with bioinformatics in Arthrobacter globiformis. We report the expression, purification, and characterization of the DmoB flavin reductase subunit, termed DmoB, from A. globiformis. Data support DmoB preference and optimal activity for the cosubstrates flavin mononucleotide (FMN) and NADH. FMN binds at a 1:1 stoichiometry with high affinity (K d = 1.11 μM). The reductase is able to generate product with the A subunit from H. sulfonivorans expressed in Escherichia coli, albeit at a lower turnover than the natively expressed enzyme. No static protein-protein interactions were observed under the conditions tested between the two subunits. These results provide new details in the classification of enzymes involved in the sulfur cycling pathway and emerging forms of the enzyme DMS monooxygenase.
Collapse
Affiliation(s)
- D. Scott Hammers
- Department
of Chemistry and Fermentation Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - Caroline M. Donaghy
- Department
of Chemistry and Fermentation Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - Sarah L. Heiss
- Department
of Chemistry and Fermentation Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - Lydia M. Harris
- Department
of Chemistry and Fermentation Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - Jackson M. Gordon
- Department
of Chemistry and Fermentation Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - John W. Stevens
- Department
of Chemistry and Fermentation Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - Lucian P. Murray
- Department
of Physics and Astronomy, Appalachian State
University, Boone, North Carolina 28608, United States
| | - Alexander D. Schwab
- Department
of Chemistry and Fermentation Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - Brooke C. Hester
- Department
of Physics and Astronomy, Appalachian State
University, Boone, North Carolina 28608, United States
| | - Megen A. Culpepper
- Department
of Chemistry and Fermentation Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| |
Collapse
|
16
|
Song D, Zhang Y, Liu J, Zhong H, Zheng Y, Zhou S, Yu M, Todd JD, Zhang XH. Metagenomic Insights Into the Cycling of Dimethylsulfoniopropionate and Related Molecules in the Eastern China Marginal Seas. Front Microbiol 2020; 11:157. [PMID: 32132981 PMCID: PMC7039863 DOI: 10.3389/fmicb.2020.00157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
The microbial cycling of dimethylsulfoniopropionate (DMSP) and its gaseous catabolites dimethylsulfide (DMS) and methanethiol (MeSH) are important processes in the global sulfur cycle, marine microbial food webs, signaling pathways, atmospheric chemistry, and potentially climate regulation. Many functional genes have been identified and used to study the genetic potential of microbes to produce and catabolize these organosulfur compounds in different marine environments. Here, we sampled seawater, marine sediment and hydrothermal sediment, and polymetallic sulfide in the eastern Chinese marginal seas and analyzed their microbial communities for the genetic potential to cycle DMSP, DMS, and MeSH using metagenomics. DMSP was abundant in all sediment samples, but was fivefold less prominent in those from hydrothermal samples. Indeed, Yellow Sea (YS) sediment samples had DMSP concentrations two orders of magnitude higher than in surface water samples. Bacterial genetic potential to synthesize DMSP (mainly in Rhodobacteraceae bacteria) was far higher than for phytoplankton in all samples, but particularly in the sediment where no algal DMSP synthesis genes were detected. Thus, we propose bacteria as important DMSP producers in these marine sediments. DMSP catabolic pathways mediated by the DMSP lyase DddP (prominent in Pseudomonas and Mesorhizobium bacteria) and DMSP demethylase DmdA enzymes (prominent in Rhodobacteraceae bacteria) and MddA-mediated MeSH S-methylation were very abundant in Bohai Sea and Yellow Sea sediments (BYSS) samples. In contrast, the genetic potential for DMSP degradation was very low in the hydrothermal sediment samples-dddP was the only catabolic gene detected and in only one sample. However, the potential for DMS production from MeSH (mddA) and DMS oxidation (dmoA and ddhA) was relatively abundant. This metagenomics study does not provide conclusive evidence for DMSP cycling; however, it does highlight the potential importance of bacteria in the synthesis and catabolism of DMSP and related compounds in diverse sediment environments.
Collapse
Affiliation(s)
- Delei Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunhui Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ji Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Haohui Zhong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yanfen Zheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shun Zhou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Min Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Xiao-Hua Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
17
|
Soule J, Gnann AD, Gonzalez R, Parker MJ, McKenna KC, Nguyen SV, Phan NT, Wicht DK, Dowling DP. Structure and function of the two-component flavin-dependent methanesulfinate monooxygenase within bacterial sulfur assimilation. Biochem Biophys Res Commun 2020; 522:107-112. [PMID: 31753487 DOI: 10.1016/j.bbrc.2019.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 10/25/2022]
Abstract
Methyl sulfur compounds are a rich source of environmental sulfur for microorganisms, but their use requires redox systems. The bacterial sfn and msu operons contain two-component flavin-dependent monooxygenases for dimethylsulfone (DMSO2) assimilation: SfnG converts DMSO2 to methanesulfinate (MSI-), and MsuD converts methanesulfonate (MS-) to sulfite. However, the enzymatic oxidation of MSI- to MS- has not been demonstrated, and the function of the last enzyme of the msu operon (MsuC) is unresolved. We employed crystallographic and biochemical studies to identify the function of MsuC from Pseudomonas fluorescens. The crystal structure of MsuC adopts the acyl-CoA dehydrogenase fold with putative binding sites for flavin and MSI-, and functional assays of MsuC in the presence of its oxidoreductase MsuE, FMN, and NADH confirm the enzymatic generation of MS-. These studies reveal that MsuC converts MSI- to MS- in sulfite biosynthesis from DMSO2.
Collapse
Affiliation(s)
- Jess Soule
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Andrew D Gnann
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Reyaz Gonzalez
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Mackenzie J Parker
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kylie C McKenna
- Department of Chemistry and Biochemistry, Suffolk University, Boston, MA, 02108, USA
| | - Son V Nguyen
- Department of Chemistry and Biochemistry, Suffolk University, Boston, MA, 02108, USA
| | - Ngan T Phan
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA; Department of Chemistry and Biochemistry, Suffolk University, Boston, MA, 02108, USA
| | - Denyce K Wicht
- Department of Chemistry and Biochemistry, Suffolk University, Boston, MA, 02108, USA.
| | - Daniel P Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA.
| |
Collapse
|
18
|
Ni H, Li N, Qian M, He J, Chen Q, Huang Y, Zou L, Long ZE, Wang F. Identification of a Novel Nitroreductase LNR and Its Role in Pendimethalin Catabolism in Bacillus subtilis Y3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12816-12823. [PMID: 31675231 DOI: 10.1021/acs.jafc.9b04354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbial degradation plays a major role in the dissipation of pendimethalin, and nitroreduction is an initial and detoxicating step. Previously, a pendimethalin nitroreductase, PNR, was identified in Bacillus subtilis Y3. Here, another pendimethalin nitroreductase from strain Y3, LNR, was identified. LNR shares only 40% identity with PNR and reduces the aromatic ring C-6 nitro group of pendimethalin and both nitro groups of trifluralin, butralin, and oryzalin. The catalytic activities against the four dinitroanilines were much higher for LNR than for PNR. lnr deletion significantly reduced the pendimethalin-reduction activity (60% activity loss), while pnr deletion led to only 30% activity loss, indicating that both LNR and PNR were involved in pendimethalin nitroreduction in strain Y3; however, LNR played the major role. This study facilitates the elucidation of pendimethalin catabolism and provides degrading enzyme resources for the removal of dinitroaniline herbicide residues in environment and agricultural products.
Collapse
Affiliation(s)
- Haiyan Ni
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Na Li
- School of Life Science and Technology , Nanyang Normal University , Nanyang , Henan 473061 , China
| | - Meng Qian
- Laboratory Center of Life Science, College of Life Sciences , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Jian He
- Laboratory Center of Life Science, College of Life Sciences , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Qing Chen
- College of Life Sciences , Zaozhuang University , Zaozhuang , Shandong 277160 , China
| | - Yunhong Huang
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Long Zou
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Zhong-Er Long
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Fei Wang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , China
| |
Collapse
|
19
|
Scott J, Sueiro-Olivares M, Ahmed W, Heddergott C, Zhao C, Thomas R, Bromley M, Latgé JP, Krappmann S, Fowler S, Bignell E, Amich J. Pseudomonas aeruginosa-Derived Volatile Sulfur Compounds Promote Distal Aspergillus fumigatus Growth and a Synergistic Pathogen-Pathogen Interaction That Increases Pathogenicity in Co-infection. Front Microbiol 2019; 10:2311. [PMID: 31649650 PMCID: PMC6794476 DOI: 10.3389/fmicb.2019.02311] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Pathogen-pathogen interactions in polymicrobial infections are known to directly impact, often to worsen, disease outcomes. For example, co-infection with Pseudomonas aeruginosa and Aspergillus fumigatus, respectively the most common bacterial and fungal pathogens isolated from cystic fibrosis (CF) airways, leads to a worsened prognosis. Recent studies of in vitro microbial cross-talk demonstrated that P. aeruginosa-derived volatile sulfur compounds (VSCs) can promote A. fumigatus growth in vitro. However, the mechanistic basis of such cross-talk and its physiological relevance during co-infection remains unknown. In this study we combine genetic approaches and GC-MS-mediated volatile analysis to show that A. fumigatus assimilates VSCs via cysteine (CysB)- or homocysteine (CysD)-synthase. This process is essential for utilization of VSCs as sulfur sources, since P. aeruginosa-derived VSCs trigger growth of A. fumigatus wild-type, but not of a ΔcysBΔcysD mutant, on sulfur-limiting media. P. aeruginosa produces VSCs when infecting Galleria mellonella and co-infection with A. fumigatus in this model results in a synergistic increase in mortality and of fungal and bacterial burdens. Interestingly, the increment in mortality is much greater with the A. fumigatus wild-type than with the ΔcysBΔcysD mutant. Therefore, A. fumigatus' ability to assimilate P. aeruginosa derived VSCs significantly triggers a synergistic association that increases the pathobiology of infection. Finally, we show that P. aeruginosa can promote fungal growth when growing on substrates that resemble the lung environment, which suggests that this volatile based synergism is likely to occur during co-infection of the human respiratory airways.
Collapse
Affiliation(s)
- Jennifer Scott
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Monica Sueiro-Olivares
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Waqar Ahmed
- Respiratory and Allergy Research Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | | | - Can Zhao
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Riba Thomas
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Michael Bromley
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | - Sven Krappmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephen Fowler
- Respiratory and Allergy Research Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,NIHR Manchester Biomedical Research Centre - Manchester Academic Health Science Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Elaine Bignell
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
20
|
Tu X, Xu M, Li J, Li E, Feng R, Zhao G, Huang S, Guo J. Enhancement of using combined packing materials on the removal of mixed sulfur compounds in a biotrickling filter and analysis of microbial communities. BMC Biotechnol 2019; 19:52. [PMID: 31345193 PMCID: PMC6659214 DOI: 10.1186/s12896-019-0540-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/05/2019] [Indexed: 11/23/2022] Open
Abstract
Background Packing materials is a critical design consideration when employing biological reactor to treat malodorous gases. The acidification of packing bed usually results in a significant drop in the removal efficiency. In the present study, a biotrickling filter (BTF2) packed with plastic balls in the upper layer and with lava rocks in the bottom layer, was proposed to mitigate the acidification. Results Results showed that using combined packing materials efficiently enhanced the removal performance of BTF2 when compared with BTF1, which was packed with sole lava rocks. Removal efficiencies of more than 92.5% on four sulfur compounds were achieved in BTF2. Average pH value in its bottom packing bed was about 4.86, significantly higher than that in BTF1 (2.85). Sulfate and elemental sulfur were observed to accumulate more in BTF1 than in BTF2. Analysis of principal coordinate analysis proved that structure of microbial communities in BTF2 changed less after the shutdown but more when the initial pH value was set at 5.5. Network analysis of significant co-occurrence patterns based on the correlations between microbial taxa revealed that BTF2 harbored more diverse microorganisms involving in the bio-oxidation of sulfur compounds and had more complex interactions between microbial species. Conclusions Results confirmed that using combined packing materials effectively improved conditions for the growth of microorganisms. The robustness of reactor against acidification, adverse temperature and gas supply shutdown was greatly enhanced. These provided a theoretical basis for using mixed packing materials to improve removal performance.
Collapse
Affiliation(s)
- Xiang Tu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Meiying Xu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Jianjun Li
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China. .,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China. .,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China.
| | - Enze Li
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Rongfang Feng
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Gang Zhao
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jun Guo
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| |
Collapse
|
21
|
Kröber E, Schäfer H. Identification of Proteins and Genes Expressed by Methylophaga thiooxydans During Growth on Dimethylsulfide and Their Presence in Other Members of the Genus. Front Microbiol 2019; 10:1132. [PMID: 31191477 PMCID: PMC6548844 DOI: 10.3389/fmicb.2019.01132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Dimethylsulfide is a volatile organic sulfur compound that provides the largest input of biogenic sulfur from the oceans to the atmosphere, and thence back to land, constituting an important link in the global sulfur cycle. Microorganisms degrading DMS affect fluxes of DMS in the environment, but the underlying metabolic pathways are still poorly understood. Methylophaga thiooxydans is a marine methylotrophic bacterium capable of growth on DMS as sole source of carbon and energy. Using proteomics and transcriptomics we identified genes expressed during growth on dimethylsulfide and methanol to refine our knowledge of the metabolic pathways that are involved in DMS and methanol degradation in this strain. Amongst the most highly expressed genes on DMS were the two methanethiol oxidases driving the oxidation of this reactive and toxic intermediate of DMS metabolism. Growth on DMS also increased expression of the enzymes of the tetrahydrofolate linked pathway of formaldehyde oxidation, in addition to the tetrahydromethanopterin linked pathway. Key enzymes of the inorganic sulfur oxidation pathway included flavocytochrome c sulfide dehydrogenase, sulfide quinone oxidoreductase, and persulfide dioxygenases. A sulP permease was also expressed during growth on DMS. Proteomics and transcriptomics also identified a number of highly expressed proteins and gene products whose function is currently not understood. As the identity of some enzymes of organic and inorganic sulfur metabolism previously detected in Methylophaga has not been characterized at the genetic level yet, highly expressed uncharacterized genes provide new targets for further biochemical and genetic analysis. A pan-genome analysis of six available Methylophaga genomes showed that only two of the six investigated strains, M. thiooxydans and M. sulfidovorans have the gene encoding methanethiol oxidase, suggesting that growth on methylated sulfur compounds of M. aminisulfidivorans is likely to involve different enzymes and metabolic intermediates. Hence, the pathways of DMS-utilization and subsequent C1 and sulfur oxidation are not conserved across Methylophaga isolates that degrade methylated sulfur compounds.
Collapse
Affiliation(s)
| | - Hendrik Schäfer
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
22
|
Carrión O, Pratscher J, Richa K, Rostant WG, Farhan Ul Haque M, Murrell JC, Todd JD. Methanethiol and Dimethylsulfide Cycling in Stiffkey Saltmarsh. Front Microbiol 2019; 10:1040. [PMID: 31134039 PMCID: PMC6524544 DOI: 10.3389/fmicb.2019.01040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/25/2019] [Indexed: 11/13/2022] Open
Abstract
Methanethiol (MeSH) and dimethylsulfide (DMS) are volatile organic sulfur compounds (VOSCs) with important roles in sulfur cycling, signaling and atmospheric chemistry. DMS can be produced from MeSH through a reaction mediated by the methyltransferase MddA. The mddA gene is present in terrestrial and marine metagenomes, being most abundant in soil environments. The substrate for MddA, MeSH, can also be oxidized by bacteria with the MeSH oxidase (MTO) enzyme, encoded by the mtoX gene, found in marine, freshwater and soil metagenomes. Methanethiol-dependent DMS production (Mdd) pathways have been shown to function in soil and marine sediments, but have not been characterized in detail in the latter environments. In addition, few molecular studies have been conducted on MeSH consumption in the environment. Here, we performed process measurements to confirm that Mdd-dependent and Mdd-independent MeSH consumption pathways are active in tested surface saltmarsh sediment when MeSH is available. We noted that appreciable natural Mdd-independent MeSH and DMS consumption processes masked Mdd activity. 16S rRNA gene amplicon sequencing and metagenomics data showed that Methylophaga, a bacterial genus known to catabolise DMS and MeSH, was enriched by the presence of MeSH. Moreover, some MeSH and/or DMS-degrading bacteria isolated from this marine environment lacked known DMS and/or MeSH cycling genes and can be used as model organisms to potentially identify novel genes in these pathways. Thus, we are likely vastly underestimating the abundance of MeSH and DMS degraders in these marine sediment environments. The future discovery and characterization of novel enzymes involved in MeSH and/or DMS cycling is essential to better assess the role and contribution of microbes to global organosulfur cycling.
Collapse
Affiliation(s)
- Ornella Carrión
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | | | - Kumari Richa
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, FL, United States
| | - Wayne G Rostant
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
23
|
Chen Y, Schäfer H. Towards a systematic understanding of structure-function relationship of dimethylsulfoniopropionate-catabolizing enzymes. Mol Microbiol 2019; 111:1399-1403. [PMID: 30802340 DOI: 10.1111/mmi.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2019] [Indexed: 11/28/2022]
Abstract
Each year, several million tons of dimethylsulfoniopropionate (DMSP) are produced by marine phytoplankton and bacteria as an important osmolyte to regulate their cellular osmosis. Microbial breakdown of DMSP to the volatile gas dimethylsulfide (DMS) plays an important role in global biogeochemical cycles of the sulphur element between land and the sea. Understanding the enzymes involved in the transformation of DMSP and DMS holds the key to a better understanding of oceanic DMSP cycles. Recent work by Shao et al. (2019) has resolved the crystal structure of two important enzymes, DmdB and DmdC, involved in DMSP transformation through the demethylation pathway. Their work represents an important step towards a systematic understanding of the structure-function relationships of DMSP-catabolizing enzymes in marine microbes.
Collapse
Affiliation(s)
- Yin Chen
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
24
|
Wu H, Sun Q, Sun Y, Zhou Y, Wang J, Hou C, Jiang X, Liu X, Shen J. Co-metabolic enhancement of 1H-1,2,4-triazole biodegradation through nitrification. BIORESOURCE TECHNOLOGY 2019; 271:236-243. [PMID: 30273827 DOI: 10.1016/j.biortech.2018.09.112] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
Due to highly recalcitrant nature of 1H-1,2,4-triazole (TZ), the conventional biological process is quite ineffective for TZ removal from wastewater. In this study, co-metabolic enhancement of TZ biodegradation through nitrification was investigated in an activated sludge reactor. The link between enhanced TZ degradation and nitrification was established through highly efficient removal of TZ, TOC as well as dissolved organic matter with the supplement of NH4+. A new co-metabolic degradation pathway of TZ was proposed based on the identification of five co-metabolic intermediates, including 2,4-dihydro-[1,2,4]triazol-3-one and [1,2,4]triazolidine-3,5-dione. High-throughput sequencing analysis suggested the significant improvement of microbial community in the co-metabolic system in terms of richness, abundance and uniformity. Functional species related to nitrification and biodegradation was enriched with the supplement of NH4+, confirming the key role of nitrification. This study demonstrated that nitrification-assisted co-metabolism had a promising potential for the removal of recalcitrant contaminants such as TZ from wastewater.
Collapse
Affiliation(s)
- Haobo Wu
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Qianqian Sun
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China; Jiangsu Academy of Environmental Industry and Technology Corp., Nanjing 210000, Jiangsu Province, China
| | - Yinglu Sun
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Yukun Zhou
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Jing Wang
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Cheng Hou
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Xiaodong Liu
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Jinyou Shen
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| |
Collapse
|
25
|
Cao HY, Wang P, Peng M, Shao X, Chen XL, Li CY. Crystal structure of the dimethylsulfide monooxygenase DmoA from Hyphomicrobium sulfonivorans. Acta Crystallogr F Struct Biol Commun 2018; 74:781-786. [PMID: 30511672 PMCID: PMC6277965 DOI: 10.1107/s2053230x18015844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
DmoA is a monooxygenase which uses dioxygen (O2) and reduced flavin mononucleotide (FMNH2) to catalyze the oxidation of dimethylsulfide (DMS). Although it has been characterized, the structure of DmoA remains unknown. Here, the crystal structure of DmoA was determined to a resolution of 2.28 Å and was compared with those of its homologues LadA and BdsA. The results showed that their overall structures are similar: they all share a conserved TIM-barrel fold which is composed of eight α-helices and eight β-strands. In addition, they all have five additional insertions. Detailed comparison showed that the structures have notable differences despite their high sequence similarity. The substrate-binding pocket of DmoA is smaller compared with those of LadA and BdsA.
Collapse
Affiliation(s)
- Hai-Yan Cao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Peng Wang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Ming Peng
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Xuan Shao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
| | - Chun-Yang Li
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People’s Republic of China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People’s Republic of China
- Suzhou Institute of Shandong University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
26
|
Koch T, Dahl C. A novel bacterial sulfur oxidation pathway provides a new link between the cycles of organic and inorganic sulfur compounds. ISME JOURNAL 2018; 12:2479-2491. [PMID: 29930335 DOI: 10.1038/s41396-018-0209-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022]
Abstract
Dimethylsulfide (DMS) plays a globally significant role in carbon and sulfur cycling and impacts Earth's climate because its oxidation products serve as nuclei for cloud formation. While the initial steps of aerobic DMS degradation and the fate of its carbon atoms are reasonably well documented, oxidation of the contained sulfur is largely unexplored. Here, we identified a novel pathway of sulfur compound oxidation in the ubiquitously occurring DMS-degrader Hyphomicrobium denitrificans XT that links the oxidation of the volatile organosulfur compound with that of the inorganic sulfur compound thiosulfate. DMS is first transformed to methanethiol from which sulfide is released and fully oxidized to sulfate. Comparative proteomics indicated thiosulfate as an intermediate of this pathway and pointed at a heterodisulfide reductase (Hdr)-like system acting as a sulfur-oxidizing entity. Indeed, marker exchange mutagenesis of hdr-like genes disrupted the ability of H. denitrificans to metabolize DMS and also prevented formation of sulfate from thiosulfate provided as an additional electron source during chemoorganoheterotrophic growth. Complementation with the hdr-like genes under a constitutive promoter rescued the phenotype on thiosulfate as well as on DMS. The production of sulfate from an organosulfur precursor via the Hdr-like system is previously undocumented and provides a new shunt in the biogeochemical sulfur cycle. Furthermore, our findings fill a long-standing knowledge gap in microbial dissimilatory sulfur metabolism because the Hdr-like pathway is abundant not only in chemoheterotrophs, but also in a wide range of chemo- and photolithoautotrophic sulfur oxidizers acting as key players in global sulfur cycling.
Collapse
Affiliation(s)
- Tobias Koch
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany.
| |
Collapse
|
27
|
A Novel Aerobic Degradation Pathway for Thiobencarb Is Initiated by the TmoAB Two-Component Flavin Mononucleotide-Dependent Monooxygenase System in Acidovorax sp. Strain T1. Appl Environ Microbiol 2017; 83:AEM.01490-17. [PMID: 28939603 DOI: 10.1128/aem.01490-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/13/2017] [Indexed: 11/20/2022] Open
Abstract
Thiobencarb is a thiocarbamate herbicide used in rice paddies worldwide. Microbial degradation plays a crucial role in the dissipation of thiobencarb in the environment. However, the physiological and genetic mechanisms underlying thiobencarb degradation remain unknown. In this study, a novel thiobencarb degradation pathway was proposed in Acidovorax sp. strain T1. Thiobencarb was oxidized and cleaved at the C-S bond, generating diethylcarbamothioic S-acid and 4-chlorobenzaldehyde (4CDA). 4CDA was then oxidized to 4-chlorobenzoic acid (4CBA) and hydrolytically dechlorinated to 4-hydroxybenzoic acid (4HBA). The identification of catabolic genes suggested further hydroxylation to protocatechuic acid (PCA) and finally degradation through the protocatechuate 4,5-dioxygenase pathway. A novel two-component monooxygenase system identified in the strain, TmoAB, was responsible for the initial catabolic reaction. TmoA shared 28 to 32% identity with the oxygenase components of pyrimidine monooxygenase from Agrobacterium fabrum, alkanesulfonate monooxygenase from Pseudomonas savastanoi, and dibenzothiophene monooxygenase from Rhodococcus sp. TmoB shared 25 to 37% identity with reported flavin reductases and oxidized NADH but not NADPH. TmoAB is a flavin mononucleotide (FMN)-dependent monooxygenase and catalyzed the C-S bond cleavage of thiobencarb. Introduction of tmoAB into cells of the thiobencarb degradation-deficient mutant T1m restored its ability to degrade and utilize thiobencarb. A dehydrogenase gene, tmoC, was located 7,129 bp downstream of tmoAB, and its transcription was clearly induced by thiobencarb. The purified TmoC catalyzed the dehydrogenation of 4CDA to 4CBA using NAD+ as a cofactor. A gene cluster responsible for the complete 4CBA metabolic pathway was also cloned, and its involvement in thiobencarb degradation was preliminarily verified by transcriptional analysis.IMPORTANCE Microbial degradation is the main factor in thiobencarb dissipation in soil. In previous studies, thiobencarb was degraded initially via N-deethylation, sulfoxidation, hydroxylation, and dechlorination. However, enzymes and genes involved in the microbial degradation of thiobencarb have not been studied. This study revealed a new thiobencarb degradation pathway in Acidovorax sp. strain T1 and identified a novel two-component FMN-dependent monooxygenase system, TmoAB. Under TmoAB-mediated catalysis, thiobencarb was cleaved at the C-S bond, producing diethylcarbamothioic S-acid and 4CDA. Furthermore, the downstream degradation pathway of thiobencarb was proposed. Our study provides the physiological, biochemical, and genetic foundation of thiobencarb degradation in this microorganism.
Collapse
|
28
|
Eyice Ö, Myronova N, Pol A, Carrión O, Todd JD, Smith TJ, Gurman SJ, Cuthbertson A, Mazard S, Mennink-Kersten MA, Bugg TD, Andersson KK, Johnston AW, Op den Camp HJ, Schäfer H. Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere. ISME JOURNAL 2017; 12:145-160. [PMID: 29064480 PMCID: PMC5739008 DOI: 10.1038/ismej.2017.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/07/2017] [Accepted: 07/27/2017] [Indexed: 12/05/2022]
Abstract
Oxidation of methanethiol (MT) is a significant step in the sulfur cycle. MT is an intermediate of metabolism of globally significant organosulfur compounds including dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS), which have key roles in marine carbon and sulfur cycling. In aerobic bacteria, MT is degraded by a MT oxidase (MTO). The enzymatic and genetic basis of MT oxidation have remained poorly characterized. Here, we identify for the first time the MTO enzyme and its encoding gene (mtoX) in the DMS-degrading bacterium Hyphomicrobium sp. VS. We show that MTO is a homotetrameric metalloenzyme that requires Cu for enzyme activity. MTO is predicted to be a soluble periplasmic enzyme and a member of a distinct clade of the Selenium-binding protein (SBP56) family for which no function has been reported. Genes orthologous to mtoX exist in many bacteria able to degrade DMS, other one-carbon compounds or DMSP, notably in the marine model organism Ruegeria pomeroyi DSS-3, a member of the Rhodobacteraceae family that is abundant in marine environments. Marker exchange mutagenesis of mtoX disrupted the ability of R. pomeroyi to metabolize MT confirming its function in this DMSP-degrading bacterium. In R. pomeroyi, transcription of mtoX was enhanced by DMSP, methylmercaptopropionate and MT. Rates of MT degradation increased after pre-incubation of the wild-type strain with MT. The detection of mtoX orthologs in diverse bacteria, environmental samples and its abundance in a range of metagenomic data sets point to this enzyme being widely distributed in the environment and having a key role in global sulfur cycling.
Collapse
Affiliation(s)
- Özge Eyice
- School of Life Sciences, University of Warwick, Coventry, UK.,School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Ornella Carrión
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Tom J Smith
- Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| | - Stephen J Gurman
- Department of Physics and Astronomy, University of Leicester, Leicester, UK
| | | | - Sophie Mazard
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Monique Ash Mennink-Kersten
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Timothy Dh Bugg
- Department of Chemistry, University of Warwick, Coventry, UK
| | | | | | - Huub Jm Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
29
|
Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME JOURNAL 2017; 11:2754-2766. [PMID: 28777380 PMCID: PMC5702731 DOI: 10.1038/ismej.2017.125] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/30/2017] [Accepted: 06/14/2017] [Indexed: 12/12/2022]
Abstract
Sulfide (H2S, HS- and S2-) oxidation to sulfite and thiosulfate by heterotrophic bacteria, using sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO), has recently been reported as a possible detoxification mechanism for sulfide at high levels. Bioinformatic analysis revealed that the sqr and pdo genes were common in sequenced bacterial genomes, implying the sulfide oxidation may have other physiological functions. SQRs have previously been classified into six types. Here we grouped PDOs into three types and showed that some heterotrophic bacteria produced and released H2S from organic sulfur into the headspace during aerobic growth, and others, for example, Pseudomonas aeruginosa PAO1, with sqr and pdo did not release H2S. When the sqr and pdo genes were deleted, the mutants also released H2S. Both sulfide-oxidizing and non-oxidizing heterotrophic bacteria were readily isolated from various environmental samples. The sqr and pdo genes were also common in the published marine metagenomic and metatranscriptomic data, indicating that the genes are present and expressed. Thus, heterotrophic bacteria actively produce and consume sulfide when growing on organic compounds under aerobic conditions. Given their abundance on Earth, their contribution to the sulfur cycle should not be overlooked.
Collapse
|
30
|
Carrión O, Pratscher J, Curson ARJ, Williams BT, Rostant WG, Murrell JC, Todd JD. Methanethiol-dependent dimethylsulfide production in soil environments. ISME JOURNAL 2017; 11:2379-2390. [PMID: 28763056 PMCID: PMC5607357 DOI: 10.1038/ismej.2017.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/04/2017] [Accepted: 05/12/2017] [Indexed: 11/17/2022]
Abstract
Dimethylsulfide (DMS) is an environmentally important trace gas with roles in sulfur cycling, signalling to higher organisms and in atmospheric chemistry. DMS is believed to be predominantly produced in marine environments via microbial degradation of the osmolyte dimethylsulfoniopropionate (DMSP). However, significant amounts of DMS are also generated from terrestrial environments, for example, peat bogs can emit ~6 μmol DMS m−2 per day, likely via the methylation of methanethiol (MeSH). A methyltransferase enzyme termed ‘MddA’, which catalyses the methylation of MeSH, generating DMS, in a wide range of bacteria and some cyanobacteria, may mediate this process, as the mddA gene is abundant in terrestrial metagenomes. This is the first study investigating the functionality of MeSH-dependent DMS production (Mdd) in a wide range of aerobic environments. All soils and marine sediment samples tested produced DMS when incubated with MeSH. Cultivation-dependent and cultivation-independent methods were used to assess microbial community changes in response to MeSH addition in a grassland soil where 35.9% of the bacteria were predicted to contain mddA. Bacteria of the genus Methylotenera were enriched in the presence of MeSH. Furthermore, many novel Mdd+ bacterial strains were isolated. Despite the abundance of mddA in the grassland soil, the Mdd pathway may not be a significant source of DMS in this environment as MeSH addition was required to detect DMS at only very low conversion rates.
Collapse
Affiliation(s)
- Ornella Carrión
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Jennifer Pratscher
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Andrew R J Curson
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Beth T Williams
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Wayne G Rostant
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
31
|
Boden R. Editorial: Stewardship-in praise of thankless tasks and the respecting of Wombles. FEMS Microbiol Lett 2017; 364:3038571. [PMID: 28364734 DOI: 10.1093/femsle/fnx041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
32
|
Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev 2017; 117:5457-5520. [PMID: 28135077 PMCID: PMC5408752 DOI: 10.1021/acs.chemrev.6b00591] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Lanthipeptides
are ribosomally synthesized and post-translationally
modified peptides (RiPPs) that display a wide variety of biological
activities, from antimicrobial to antiallodynic. Lanthipeptides that
display antimicrobial activity are called lantibiotics. The post-translational
modification reactions of lanthipeptides include dehydration of Ser
and Thr residues to dehydroalanine and dehydrobutyrine, a transformation
that is carried out in three unique ways in different classes of lanthipeptides.
In a cyclization process, Cys residues then attack the dehydrated
residues to generate the lanthionine and methyllanthionine thioether
cross-linked amino acids from which lanthipeptides derive their name.
The resulting polycyclic peptides have constrained conformations that
confer their biological activities. After installation of the characteristic
thioether cross-links, tailoring enzymes introduce additional post-translational
modifications that are unique to each lanthipeptide and that fine-tune
their activities and/or stability. This review focuses on studies
published over the past decade that have provided much insight into
the mechanisms of the enzymes that carry out the post-translational
modifications.
Collapse
Affiliation(s)
- Lindsay M Repka
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan R Chekan
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Satish K Nair
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
The reduced flavin-dependent monooxygenase SfnG converts dimethylsulfone to methanesulfinate. Arch Biochem Biophys 2016; 604:159-66. [PMID: 27392454 DOI: 10.1016/j.abb.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 06/28/2016] [Accepted: 07/02/2016] [Indexed: 11/21/2022]
Abstract
The biochemical pathway through which sulfur may be assimilated from dimethylsulfide (DMS) is proposed to proceed via oxidation of DMS to dimethylsulfoxide (DMSO) and subsequent conversion of DMSO to dimethylsulfone (DMSO2). Analogous chemical oxidation processes involving biogenic DMS in the atmosphere result in the deposition of DMSO2 into the terrestrial environment. Elucidating the enzymatic pathways that involve DMSO2 contribute to our understanding of the global sulfur cycle. Dimethylsulfone monooxygenase SfnG and flavin mononucleotide (FMN) reductase MsuE from the genome of the aerobic soil bacterium Pseudomonas fluorescens Pf0-1 were produced in Escherichia coli, purified, and biochemically characterized. The enzyme MsuE functions as a reduced nicotinamide adenine dinucleotide (NADH)-dependent FMN reductase with apparent steady state kinetic parameters of Km = 69 μM and kcat/Km = 9 min(-1) μM (-1) using NADH as the variable substrate, and Km = 8 μM and kcat/Km = 105 min(-1) μM (-1) using FMN as the variable substrate. The enzyme SfnG functions as a flavoprotein monooxygenase and converts DMSO2 to methanesulfinate in the presence of FMN, NADH, and MsuE, as evidenced by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy. The results suggest that methanesulfinate is a biochemical intermediate in sulfur assimilation.
Collapse
|
34
|
Metabolic Pathway Involved in 6-Chloro-2-Benzoxazolinone Degradation by Pigmentiphaga sp. Strain DL-8 and Identification of the Novel Metal-Dependent Hydrolase CbaA. Appl Environ Microbiol 2016; 82:4169-4179. [PMID: 27208123 DOI: 10.1128/aem.00532-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/27/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED 6-Chloro-2-benzoxazolinone (CDHB) is a precursor of herbicide, insecticide, and fungicide synthesis and has a broad spectrum of biological activity. Pigmentiphaga sp. strain DL-8 can transform CDHB into 2-amino-5-chlorophenol (2A5CP), which it then utilizes as a carbon source for growth. The CDHB hydrolase (CbaA) was purified from strain DL-8, which can also hydrolyze 2-benzoxazolinone (BOA), 5-chloro-2-BOA, and benzamide. The specific activity of purified CbaA was 5,900 U · mg protein(-1) for CDHB, with Km and kcat values of 0.29 mM and 8,500 s(-1), respectively. The optimal pH for purified CbaA was 9.0, the highest activity was observed at 55°C, and the inactive metal-free enzyme could be reactivated by Mg(2+), Ni(2+), Ca(2+), or Zn(2+) Based on the results obtained for the CbaA peptide mass fingerprinting and draft genome sequence of strain DL-8, cbaA (encoding 339 amino acids) was cloned and expressed in Escherichia coli BL21(DE3). CbaA shared 18 to 21% identity with some metal-dependent hydrolases of the PF01499 family and contained the signature metal-binding motif Q127XXXQ131XD133XXXH137 The conserved amino acid residues His288 and Glu301 served as the proton donor and acceptor. E. coli BL21(DE3-pET-cbaA) resting cells could transform 0.2 mM CDHB into 2A5CP. The mutant strain DL-8ΔcbaA lost the ability to degrade CDHB but retained the ability to degrade 2A5CP, consistent with strain DL-8. These results indicated that cbaA was the key gene responsible for CDHB degradation by strain DL-8. IMPORTANCE 2-Benzoxazolinone (BOA) derivatives are widely used as synthetic intermediates and are also an important group of allelochemicals acting in response to tissue damage or pathogen attack in gramineous plants. However, the degradation mechanism of BOA derivatives by microorganisms is not clear. In the present study, we reported the identification of CbaA and metabolic pathway responsible for the degradation of CDHB in Pigmentiphaga sp. DL-8. This will provide microorganism and gene resources for the bioremediation of the environmental pollution caused by BOA derivatives.
Collapse
|
35
|
Sun Y, Qiu J, Chen D, Ye J, Chen J. Characterization of the novel dimethyl sulfide-degrading bacterium Alcaligenes sp. SY1 and its biochemical degradation pathway. JOURNAL OF HAZARDOUS MATERIALS 2016; 304:543-552. [PMID: 26623933 DOI: 10.1016/j.jhazmat.2015.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 06/05/2023]
Abstract
Recently, the biodegradation of volatile organic sulfur compounds (VOSCs) has become a burgeoning field, with a growing focus on the reduction of VOSCs. The reduction of VOSCs encompasses both organic emission control and odor control. Herein, Alcaligenes sp. SY1 was isolated from active sludge and found to utilize dimethyl sulfide (DMS) as a growth substrate in a mineral salt medium. Response surface methodology (RSM) analysis was applied to optimize the incubation conditions. The following conditions for optimal degradation were identified: temperature 27.03°C; pH 7.80; inoculum salinity 0.84%; and initial DMS concentration 1585.39 μM. Under these conditions, approximately 99% of the DMS was degraded within 30 h of incubation. Two metabolic compounds were detected and identified by gas chromatography-mass spectrometry (GC-MS): dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). The DMS degradation kinetics for different concentrations were evaluated using the Haldane-Andrews model and the pseudo first-order model. The maximum specific growth rate and degradation rate of Alcaligenes sp. SY1 were 0.17 h(-1) and 0.63 gs gx(-1)h(-1). A possible degradation pathway is proposed, and the results suggest that Alcaligenes sp. SY1 has the potential to control odor emissions under aerobic conditions.
Collapse
Affiliation(s)
- Yiming Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiguo Qiu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dongzhi Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiexu Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianmeng Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
36
|
Eyice Ö, Namura M, Chen Y, Mead A, Samavedam S, Schäfer H. SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment. ISME JOURNAL 2015; 9:2336-48. [PMID: 25822481 PMCID: PMC4611497 DOI: 10.1038/ismej.2015.37] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 02/01/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
Dimethylsulphide (DMS) has an important role in the global sulphur cycle and atmospheric chemistry. Microorganisms using DMS as sole carbon, sulphur or energy source, contribute to the cycling of DMS in a wide variety of ecosystems. The diversity of microbial populations degrading DMS in terrestrial environments is poorly understood. Based on cultivation studies, a wide range of bacteria isolated from terrestrial ecosystems were shown to be able to degrade DMS, yet it remains unknown whether any of these have important roles in situ. In this study, we identified bacteria using DMS as a carbon and energy source in terrestrial environments, an agricultural soil and a lake sediment, by DNA stable isotope probing (SIP). Microbial communities involved in DMS degradation were analysed by denaturing gradient gel electrophoresis, high-throughput sequencing of SIP gradient fractions and metagenomic sequencing of phi29-amplified community DNA. Labelling patterns of time course SIP experiments identified members of the Methylophilaceae family, not previously implicated in DMS degradation, as dominant DMS-degrading populations in soil and lake sediment. Thiobacillus spp. were also detected in 13C-DNA from SIP incubations. Metagenomic sequencing also suggested involvement of Methylophilaceae in DMS degradation and further indicated shifts in the functional profile of the DMS-assimilating communities in line with methylotrophy and oxidation of inorganic sulphur compounds. Overall, these data suggest that unlike in the marine environment where gammaproteobacterial populations were identified by SIP as DMS degraders, betaproteobacterial Methylophilaceae may have a key role in DMS cycling in terrestrial environments.
Collapse
Affiliation(s)
- Özge Eyice
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Motonobu Namura
- MOAC Doctoral Training Centre, University of Warwick, Coventry, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Andrew Mead
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Siva Samavedam
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
37
|
Involvement of the cytochrome P450 system EthBAD in the N-deethoxymethylation of acetochlor by Rhodococcus sp. strain T3-1. Appl Environ Microbiol 2015; 81:2182-8. [PMID: 25595756 DOI: 10.1128/aem.03764-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] is a widely applied herbicide with potential carcinogenic properties. N-Deethoxymethylation is the key step in acetochlor biodegradation. N-Deethoxymethylase is a multicomponent enzyme that catalyzes the conversion of acetochlor to 2'-methyl-6'-ethyl-2-chloroacetanilide (CMEPA). Fast detection of CMEPA by a two-enzyme (N-deethoxymethylase-amide hydrolase) system was established in this research. Based on the fast detection method, a three-component enzyme was purified from Rhodococcus sp. strain T3-1 using ammonium sulfate precipitation and hydrophobic interaction chromatography. The molecular masses of the components of the purified enzyme were estimated to be 45, 43, and 11 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Based on the results of peptide mass fingerprint analysis, acetochlor N-deethoxymethylase was identified as a cytochrome P450 system, composed of a cytochrome P450 oxygenase (43-kDa component; EthB), a ferredoxin (45 kDa; EthA), and a reductase (11 kDa; EthD), that is involved in the degradation of methyl tert-butyl ether. The gene cluster ethABCD was cloned by PCR amplification and expressed in Escherichia coli BL21(DE3). Resting cells of a recombinant E. coli strain showed deethoxymethylation activity against acetochlor. Subcloning of ethABCD showed that ethABD expressed in E. coli BL21(DE3) has the activity of acetochlor N-deethoxymethylase and is capable of converting acetochlor to CMEPA.
Collapse
|
38
|
Oduaran E. Dimethylsulfide metabolism in marine isolates and their role in the biogeochemical cycling of sulfur (575.8). FASEB J 2014. [DOI: 10.1096/fasebj.28.1_supplement.575.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Erica Oduaran
- Department of Chemistry Roger Williams UniversityBristolRIUnited States
| |
Collapse
|
39
|
Shi Y, Bueno A, van der Donk WA. Heterologous production of the lantibiotic Ala(0)actagardine in Escherichia coli. Chem Commun (Camb) 2012; 48:10966-8. [PMID: 23034674 PMCID: PMC3485686 DOI: 10.1039/c2cc36336d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report the heterologous production of Ala(0)actagardine in E. coli by co-expression of the substrate peptide GarA and its modification enzymes GarM and GarO. The activity of GarO, a luciferase-like monooxygenase that introduces the unique sulfoxide group of actagardine, was also investigated in vitro.
Collapse
Affiliation(s)
- Yanxiang Shi
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, USA. Fax: (217) 244-8533; Tel: (217) 244-5360
| | - Alejandro Bueno
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, USA. Fax: (217) 244-8533; Tel: (217) 244-5360
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, USA. Fax: (217) 244-8533; Tel: (217) 244-5360
| |
Collapse
|
40
|
Abstract
Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. While biotic and abiotic cycling of organic sulfur compounds has been well documented in low-temperature anaerobic environments, cycling of organic sulfur in hydrothermal environments has received less attention. Recently published thermodynamic data have been used to estimate aqueous alkyl thiol and sulfide activities in deep-sea hydrothermal systems. Here we use geochemical mixing models to predict fluid compositions that result from mixing end-member hydrothermal fluid from the East Pacific Rise with bottom seawater. These fluid compositions are combined with estimates of methanethiol and dimethylsulfide activities to evaluate energy yields for potential organic sulfur-based metabolisms under hydrothermal conditions. Aerobic respiration has the highest energy yields (over -240 kJ/mol e⁻) at lower temperature; however, oxygen is unlikely to persist at high temperatures, restricting aerobic respiration to mesophilic communities. Nitrite reduction to N₂ has the highest energy yields at higher temperatures (greater than ∼40 °C). Nitrate and nitrite reduction to ammonium also yield significant energy (up to -70 kJ/mol e⁻). Much lower, but still feasible energy yields are calculated for sulfate reduction, disproportionation, and reduction with H₂. Organic compound family and the activity of methanethiol and dimethylsulfide were less important than metabolic strategy in determining overall energy yields. All metabolic strategies considered were exergonic within some portion of the mixing regime suggesting that organic sulfur-based metabolisms may be prevalent within deep-sea hydrothermal vent microbial communities.
Collapse
Affiliation(s)
- Karyn L Rogers
- Department of Geological Sciences, University of Missouri, Columbia, MO 65203, USA.
| | | |
Collapse
|
41
|
Reisch CR, Moran MA, Whitman WB. Bacterial Catabolism of Dimethylsulfoniopropionate (DMSP). Front Microbiol 2011; 2:172. [PMID: 21886640 PMCID: PMC3155054 DOI: 10.3389/fmicb.2011.00172] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/28/2011] [Indexed: 11/13/2022] Open
Abstract
Dimethylsulfoniopropionate (DMSP) is a metabolite produced primarily by marine phytoplankton and is the main precursor to the climatically important gas dimethylsulfide (DMS). DMS is released upon bacterial catabolism of DMSP, but it is not the only possible fate of DMSP sulfur. An alternative demethylation/demethiolation pathway results in the eventual release of methanethiol, a highly reactive volatile sulfur compound that contributes little to the atmospheric sulfur flux. The activity of these pathways control the natural flux of sulfur released to the atmosphere. Although these biochemical pathways and the factors that regulate them are of great interest, they are poorly understood. Only recently have some of the genes and pathways responsible for DMSP catabolism been elucidated. Thus far, six different enzymes have been identified that catalyze the cleavage of DMSP, resulting in the release of DMS. In addition, five of these enzymes appear to produce acrylate, while one produces 3-hydroxypropionate. In contrast, only one enzyme, designated DmdA, has been identified that catalyzes the demethylation reaction producing methylmercaptopropionate (MMPA). The metabolism of MMPA is performed by a series of three coenzyme-A mediated reactions catalyzed by DmdB, DmdC, and DmdD. Interestingly, CandidatusPelagibacter ubique, a member of the SAR11 clade of Alphaproteobacteria that is highly abundant in marine surface waters, possessed functional DmdA, DmdB, and DmdC enzymes. Microbially mediated transformations of both DMS and methanethiol are also possible, although many of the biochemical and molecular genetic details are still unknown. This review will focus on the recent discoveries in the biochemical pathways that mineralize and assimilate DMSP carbon and sulfur, as well as the areas for which a comprehensive understanding is still lacking.
Collapse
Affiliation(s)
- Chris R Reisch
- Department of Microbiology, University of Georgia Athens, GA, USA
| | | | | |
Collapse
|
42
|
Boden R, Murrell JC, Schäfer H. Dimethylsulfide is an energy source for the heterotrophic marine bacterium Sagittula stellata. FEMS Microbiol Lett 2011; 322:188-93. [PMID: 21718347 DOI: 10.1111/j.1574-6968.2011.02349.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dimethylsulfide (DMS) is a volatile organosulfur compound, ubiquitous in the oceans, that has been credited with various roles in biogeochemical cycling and in climate control. Various oceanic sinks of DMS are known - both chemical and biological - although they are poorly understood. In addition to the utilization of DMS as a carbon or a sulfur source, some Bacteria are known to oxidize it to dimethylsulfoxide (DMSO). Sagittula stellata is a heterotrophic member of the Alphaproteobacteria found in marine environments. It has been shown to oxidize DMS during heterotrophic growth on sugars, but the reasons for and the mechanisms of this oxidation have not been investigated. Here, we show that the oxidation of DMS to DMSO is coupled to ATP synthesis in S. stellata and that DMS acts as an energy source during chemoorganoheterotrophic growth of the organism on fructose and on succinate. DMS dehydrogenase (which is responsible for the oxidation of DMS to DMSO in other marine Bacteria) and DMSO reductase activities were absent from cells grown in the presence of DMS, indicating an alternative route of DMS oxidation in this organism.
Collapse
Affiliation(s)
- Rich Boden
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
43
|
Methylotrophy in a lake: from metagenomics to single-organism physiology. Appl Environ Microbiol 2011; 77:4705-11. [PMID: 21622781 DOI: 10.1128/aem.00314-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This review provides a brief summary of ongoing studies in Lake Washington (Seattle, WA) directed at an understanding of the content and activities of microbial communities involved in methylotrophy. One of the findings from culture-independent approaches, including functional metagenomics, is the prominent presence of Methylotenera species in the site and their inferred activity in C(1) metabolism, highlighting the local environmental importance of this group. Comparative analyses of individual genomes of Methylophilaceae from Lake Washington provide insights into their genomic divergence and suggest significant metabolic flexibility.
Collapse
|
44
|
|