1
|
Laughlin ZT, Conn GL. Tuberactinomycin antibiotics: Biosynthesis, anti-mycobacterial action, and mechanisms of resistance. Front Microbiol 2022; 13:961921. [PMID: 36033858 PMCID: PMC9403184 DOI: 10.3389/fmicb.2022.961921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
The tuberactinomycins are a family of cyclic peptide ribosome-targeting antibiotics with a long history of use as essential second-line treatments for drug-resistant tuberculosis. Beginning with the identification of viomycin in the early 1950s, this mini-review briefly describes tuberactinomycin structures and biosynthesis, as well as their past and present application in the treatment of tuberculosis caused by infection with Mycobacterium tuberculosis. More recent studies are also discussed that have revealed details of tuberactinomycin action on the ribosome as well as resistance mechanisms that have emerged since their introduction into the clinic. Finally, future applications of these drugs are considered in the context of their recent removal from the World Health Organization's List of Essential Medicines.
Collapse
Affiliation(s)
- Zane T Laughlin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States.,Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States.,Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA, United States
| |
Collapse
|
2
|
Murphy EL, Singh KV, Avila B, Kleffmann T, Gregory ST, Murray BE, Krause KL, Khayat R, Jogl G. Cryo-electron microscopy structure of the 70S ribosome from Enterococcus faecalis. Sci Rep 2020; 10:16301. [PMID: 33004869 PMCID: PMC7530986 DOI: 10.1038/s41598-020-73199-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/11/2020] [Indexed: 01/21/2023] Open
Abstract
Enterococcus faecalis is a gram-positive organism responsible for serious infections in humans, but as with many bacterial pathogens, resistance has rendered a number of commonly used antibiotics ineffective. Here, we report the cryo-EM structure of the E. faecalis 70S ribosome to a global resolution of 2.8 Å. Structural differences are clustered in peripheral and solvent exposed regions when compared with Escherichia coli, whereas functional centres, including antibiotic binding sites, are similar to other bacterial ribosomes. Comparison of intersubunit conformations among five classes obtained after three-dimensional classification identifies several rotated states. Large ribosomal subunit protein bL31, which forms intersubunit bridges to the small ribosomal subunit, assumes different conformations in the five classes, revealing how contacts to the small subunit are maintained throughout intersubunit rotation. A tRNA observed in one of the five classes is positioned in a chimeric pe/E position in a rotated ribosomal state. The 70S ribosome structure of E. faecalis now extends our knowledge of bacterial ribosome structures and may serve as a basis for the development of novel antibiotic compounds effective against this pathogen.
Collapse
Affiliation(s)
- Eileen L. Murphy
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912 USA
| | - Kavindra V. Singh
- grid.267308.80000 0000 9206 2401Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, Houston, TX 77030 USA
| | - Bryant Avila
- grid.254250.40000 0001 2264 7145Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031 USA
| | - Torsten Kleffmann
- grid.29980.3a0000 0004 1936 7830Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Steven T. Gregory
- grid.20431.340000 0004 0416 2242Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI 02881 USA
| | - Barbara E. Murray
- grid.267308.80000 0000 9206 2401Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030 USA
| | - Kurt L. Krause
- grid.29980.3a0000 0004 1936 7830Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Reza Khayat
- grid.254250.40000 0001 2264 7145Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031 USA
| | - Gerwald Jogl
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912 USA
| |
Collapse
|
3
|
The structural basis for inhibition of ribosomal translocation by viomycin. Proc Natl Acad Sci U S A 2020; 117:10271-10277. [PMID: 32341159 DOI: 10.1073/pnas.2002888117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Viomycin, an antibiotic that has been used to fight tuberculosis infections, is believed to block the translocation step of protein synthesis by inhibiting ribosomal subunit dissociation and trapping the ribosome in an intermediate state of intersubunit rotation. The mechanism by which viomycin stabilizes this state remains unexplained. To address this, we have determined cryo-EM and X-ray crystal structures of Escherichia coli 70S ribosome complexes trapped in a rotated state by viomycin. The 3.8-Å resolution cryo-EM structure reveals a ribosome trapped in the hybrid state with 8.6° intersubunit rotation and 5.3° rotation of the 30S subunit head domain, bearing a single P/E state transfer RNA (tRNA). We identify five different binding sites for viomycin, four of which have not been previously described. To resolve the details of their binding interactions, we solved the 3.1-Å crystal structure of a viomycin-bound ribosome complex, revealing that all five viomycins bind to ribosomal RNA. One of these (Vio1) corresponds to the single viomycin that was previously identified in a complex with a nonrotated classical-state ribosome. Three of the newly observed binding sites (Vio3, Vio4, and Vio5) are clustered at intersubunit bridges, consistent with the ability of viomycin to inhibit subunit dissociation. We propose that one or more of these same three viomycins induce intersubunit rotation by selectively binding the rotated state of the ribosome at dynamic elements of 16S and 23S rRNA, thus, blocking conformational changes associated with molecular movements that are required for translocation.
Collapse
|
4
|
Drug development against tuberculosis: Past, present and future. ACTA ACUST UNITED AC 2017; 64:252-275. [DOI: 10.1016/j.ijtb.2017.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/15/2017] [Indexed: 12/29/2022]
|
5
|
Dremann DN, Chow CS. The development of peptide ligands that target helix 69 rRNA of bacterial ribosomes. Bioorg Med Chem 2016; 24:4486-4491. [PMID: 27492196 PMCID: PMC4992606 DOI: 10.1016/j.bmc.2016.07.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 12/19/2022]
Abstract
Antibiotic resistance prevents successful treatment of common bacterial infections, making it clear that new target locations and drugs are required to resolve this ongoing challenge. The bacterial ribosome is a common target for antibacterials due to its essential contribution to cell viability. The focus of this work is a region of the ribosome called helix 69 (H69), which was recently identified as a secondary target site for aminoglycoside antibiotics. H69 has key roles in essential ribosomal processes such as subunit association, ribosome recycling, and tRNA selection. Conserved across phylogeny, bacterial H69 also contains two pseudouridines and one 3-methylpseudouridine. Phage display revealed a heptameric peptide sequence that targeted H69. Using solid-phase synthesis, peptide variants with higher affinity and improved selectivity to modified H69 were generated. Electrospray ionization mass spectrometry was used to determine relative apparent dissociation constants of the RNA-peptide complexes.
Collapse
Affiliation(s)
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
6
|
Molecular mechanism of viomycin inhibition of peptide elongation in bacteria. Proc Natl Acad Sci U S A 2016; 113:978-83. [PMID: 26755601 DOI: 10.1073/pnas.1517541113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Viomycin is a tuberactinomycin antibiotic essential for treating multidrug-resistant tuberculosis. It inhibits bacterial protein synthesis by blocking elongation factor G (EF-G) catalyzed translocation of messenger RNA on the ribosome. Here we have clarified the molecular aspects of viomycin inhibition of the elongating ribosome using pre-steady-state kinetics. We found that the probability of ribosome inhibition by viomycin depends on competition between viomycin and EF-G for binding to the pretranslocation ribosome, and that stable viomycin binding requires an A-site bound tRNA. Once bound, viomycin stalls the ribosome in a pretranslocation state for a minimum of ∼ 45 s. This stalling time increases linearly with viomycin concentration. Viomycin inhibition also promotes futile cycles of GTP hydrolysis by EF-G. Finally, we have constructed a kinetic model for viomycin inhibition of EF-G catalyzed translocation, allowing for testable predictions of tuberactinomycin action in vivo and facilitating in-depth understanding of resistance development against this important class of antibiotics.
Collapse
|
7
|
The antituberculosis antibiotic capreomycin inhibits protein synthesis by disrupting interaction between ribosomal proteins L12 and L10. Antimicrob Agents Chemother 2014; 58:2038-44. [PMID: 24449778 DOI: 10.1128/aac.02394-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capreomycin is a second-line drug for multiple-drug-resistant tuberculosis (TB). However, with increased use in clinics, the therapeutic efficiency of capreomycin is decreasing. To better understand TB resistance to capreomycin, we have done research to identify the molecular target of capreomycin. Mycobacterium tuberculosis ribosomal proteins L12 and L10 interact with each other and constitute the stalk of the 50S ribosomal subunit, which recruits initiation and elongation factors during translation. Hence, the L12-L10 interaction is considered to be essential for ribosomal function and protein synthesis. Here we provide evidence showing that capreomycin inhibits the L12-L10 interaction by using an established L12-L10 interaction assay. Overexpression of L12 and/or L10 in M. smegmatis, a species close to M. tuberculosis, increases the MIC of capreomycin. Moreover, both elongation factor G-dependent GTPase activity and ribosome-mediated protein synthesis are inhibited by capreomycin. When protein synthesis was blocked with thiostrepton, however, the bactericidal activity of capreomycin was restrained. All of these results suggest that capreomycin seems to inhibit TB by interrupting the L12-L10 interaction. This finding might provide novel clues for anti-TB drug discovery.
Collapse
|
8
|
Tools for characterizing bacterial protein synthesis inhibitors. Antimicrob Agents Chemother 2013; 57:5994-6004. [PMID: 24041905 DOI: 10.1128/aac.01673-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many antibiotics inhibit the growth of sensitive bacteria by interfering with ribosome function. However, discovery of new protein synthesis inhibitors is curbed by the lack of facile techniques capable of readily identifying antibiotic target sites and modes of action. Furthermore, the frequent rediscovery of known antibiotic scaffolds, especially in natural product extracts, is time-consuming and expensive and diverts resources that could be used toward the isolation of novel lead molecules. In order to avoid these pitfalls and improve the process of dereplication of chemically complex extracts, we designed a two-pronged approach for the characterization of inhibitors of protein synthesis (ChIPS) that is suitable for the rapid identification of the site and mode of action on the bacterial ribosome. First, we engineered antibiotic-hypersensitive Escherichia coli strains that contain only one rRNA operon. These strains are used for the rapid isolation of resistance mutants in which rRNA mutations identify the site of the antibiotic action. Second, we show that patterns of drug-induced ribosome stalling on mRNA, monitored by primer extension, can be used to elucidate the mode of antibiotic action. These analyses can be performed within a few days and provide a rapid and efficient approach for identifying the site and mode of action of translation inhibitors targeting the bacterial ribosome. Both techniques were validated using a bacterial strain whose culture extract, composed of unknown metabolites, exhibited protein synthesis inhibitory activity; we were able to rapidly detect the presence of the antibiotic chloramphenicol.
Collapse
|
9
|
Monshupanee T. Increased Bacterial Hemolytic Activity is Conferred by Expression of TlyA Methyltransferase but not by its 2′-O-methylation of the Ribosome. Curr Microbiol 2013; 67:61-8. [DOI: 10.1007/s00284-013-0332-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 02/06/2013] [Indexed: 11/28/2022]
|
10
|
Monshupanee T, Johansen SK, Dahlberg AE, Douthwaite S. Capreomycin susceptibility is increased by TlyA-directed 2'-O-methylation on both ribosomal subunits. Mol Microbiol 2012; 85:1194-203. [PMID: 22779429 DOI: 10.1111/j.1365-2958.2012.08168.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The binding site of the cyclic peptide antibiotics capreomycin and viomycin is located on the ribosomal subunit interface close to nucleotides C1409 in 16S rRNA and C1920 in 23S rRNA. In Mycobacterium tuberculosis, the 2'-hydroxyls of both nucleotides are methylated by the enzyme TlyA. Loss of these methylations through inactivation of TlyA confers resistance to capreomycin and viomycin. We report here that TlyA orthologues occur in diverse bacteria and fall into two distinct groups. One group, now termed TlyA(I) , has shorter N- and C-termini and methylates only C1920; the second group (now TlyA(II) ) includes the mycobacterial enzyme, and these longer orthologues methylate at both C1409 and C1920. Ribosomal subunits are the preferred substrates for both groups of orthologues. Amino acid substitutions at the N-terminus of TlyA(II) reduce its ability to methylate these substrates. Growing pairs of recombinant TlyA(II) Escherichia coli strains in competition shows that even subtle changes in the level of rRNA methylation lead to significant differences in susceptibility to sub-inhibitory concentrations of capreomycin. The findings reveal that 2'-O-methyls at both C1409 and C1920 play a role in facilitating the inhibitory effects of capreomycin and viomycin on the bacterial ribosome.
Collapse
Affiliation(s)
- Tanakarn Monshupanee
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | | | |
Collapse
|
11
|
Sumita M, Jiang J, SantaLucia J, Chow CS. Comparison of solution conformations and stabilities of modified helix 69 rRNA analogs from bacteria and human. Biopolymers 2011; 97:94-106. [PMID: 21858779 DOI: 10.1002/bip.21706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/31/2011] [Indexed: 12/20/2022]
Abstract
The helix 69 (H69) region of the large subunit (28S) ribosomal RNA (rRNA) of Homo sapiens contains five pseudouridine (Ψ) residues out of 19 total nucleotides, three of which are highly conserved. In this study, the effects of this abundant modified nucleotide on the structure and stability of H69 were compared with those of uridine in double-stranded (stem) regions. These results were compared with previous hairpin (stem plus single-stranded loop) studies to understand the contributions of the loop sequences to H69 structure and stability. The role of a loop nucleotide substitution from an A in bacteria (position 1918 in Escherichia coli 23S rRNA) to a G in eukaryotes (position 3734 in H. sapiens 28S rRNA) was examined. Thermodynamic parameters for the duplex RNAs were obtained through UV melting studies, and differences in the modified and unmodified RNA structures were examined by circular dichroism spectroscopy. The overall folded structure of human H69 appears to be similar to the bacterial RNA, consistent with the idea that ribosome structure and function are highly conserved; however, our results reveal subtle differences in structure and stability between the bacterial and human H69 RNAs in both the stem and loop regions. These findings may be significant with respect to H69 as a potential drug target site.
Collapse
Affiliation(s)
- Minako Sumita
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
12
|
Molecular basis for the selectivity of antituberculosis compounds capreomycin and viomycin. Antimicrob Agents Chemother 2011; 55:4712-7. [PMID: 21768509 DOI: 10.1128/aac.00628-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capreomycin and the structurally similar compound viomycin are cyclic peptide antibiotics which are particularly active against Mycobacterium tuberculosis, including multidrug resistant strains. Both antibiotics bind across the ribosomal interface involving 23S rRNA helix 69 (H69) and 16S rRNA helix 44 (h44). The binding site of tuberactinomycins in h44 partially overlaps with that of aminoglycosides, and they share with these drugs the side effect of irreversible hearing loss. Here we studied the drug target interaction on ribosomes modified by site-directed mutagenesis. We identified rRNA residues in h44 as the main determinants of phylogenetic selectivity, predict compensatory evolution to impact future resistance development, and propose mechanisms involved in tuberactinomycin ototoxicity, which may enable the development of improved, less-toxic derivatives.
Collapse
|
13
|
The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat Struct Mol Biol 2010; 17:289-93. [PMID: 20154709 PMCID: PMC2917106 DOI: 10.1038/nsmb.1755] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/02/2009] [Indexed: 11/18/2022]
Abstract
Viomycin and capreomycin belong to the tuberactinomycin family of antibiotics, which are among the most effective antibiotics against multidrug-resistant tuberculosis. Here we present two crystal structures of the 70S ribosome complexed with three tRNAs and bound to either viomycin or capreomycin at 3.3 and 3.5 Å resolution, respectively. Both antibiotics bind to the same site on the ribosome, which lies at the interface between helix 44 (h44) of the small ribosomal subunit and Helix 69 (H69) of the large ribosomal subunit. The structures of these complexes suggest that the tuberactinomycins inhibit translocation by stabilizing the tRNA in the A site in the pre-translocation state. In addition these structures show that the tuberactinomycins bind adjacent to the paromomycin and hygromycin B antibiotics, which may enable the development of new derivatives of tuberactinomycins that are effective against drug resistant strains.
Collapse
|
14
|
Helix 69 in 23S rRNA modulates decoding by wild type and suppressor tRNAs. Mol Genet Genomics 2009; 282:371-80. [PMID: 19603183 DOI: 10.1007/s00438-009-0470-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 06/27/2009] [Indexed: 10/20/2022]
Abstract
Helix 69 of 23S rRNA forms one of the major inter-subunit bridges of the 70S ribosome and interacts with A- and P-site tRNAs and translation factors. Despite the proximity of h69 to the decoding center and tRNAs, the contribution of h69 to the tRNA selection process is unclear: previous genetic analyses have shown that h69 mutations increase frameshifting and readthrough of stop codons. However, a complete deletion of h69 does not affect the selection of cognate tRNAs in vitro. To address these discrepancies, the in vivo effects of a range of single- and multi-base h69 mutations in Escherichia coli 23S rRNA on various translation errors have been determined. While a majority of the h69 mutations examined here affected readthrough of stop codons and frameshifting, the DeltaA1916 single base deletion mutation uniquely influenced missense decoding. Different h69 mutants had either increased or decreased levels of stop codon readthrough. The h69 mutations that decreased UGA readthrough also decreased UGA reading by a mutant, near-cognate tRNA(Trp) carrying a G24A substitution in the D arm, but had far less effect on UGA reading by a suppressor tRNA with a complementary anticodon. These results suggest that h69 interactions with release factors contribute significantly to termination efficiency and that interaction with the D arm of A-site tRNA is important for discrimination between cognate and near-cognate tRNAs.
Collapse
|