1
|
Nie Z, Tang K, Wang W, Wang P, Guo Y, Wang Y, Kao SJ, Yin J, Wang X. Comparative genomic insights into habitat adaptation of coral-associated Prosthecochloris. Front Microbiol 2023; 14:1138751. [PMID: 37152757 PMCID: PMC10158934 DOI: 10.3389/fmicb.2023.1138751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Green sulfur bacteria (GSB) are a distinct group of anoxygenic phototrophic bacteria that are found in many ecological niches. Prosthecochloris, a marine representative genus of GSB, was found to be dominant in some coral skeletons. However, how coral-associated Prosthecochloris (CAP) adapts to diurnal changing microenvironments in coral skeletons is still poorly understood. In this study, three Prosthecochloris genomes were obtained through enrichment culture from the skeleton of the stony coral Galaxea fascicularis. These divergent three genomes belonged to Prosthecochloris marina and two genomes were circular. Comparative genomic analysis showed that between the CAP and non-CAP clades, CAP genomes possess specialized metabolic capacities (CO oxidation, CO2 hydration and sulfur oxidation), gas vesicles (vertical migration in coral skeletons), and cbb 3-type cytochrome c oxidases (oxygen tolerance and gene regulation) to adapt to the microenvironments of coral skeletons. Within the CAP clade, variable polysaccharide synthesis gene clusters and phage defense systems may endow bacteria with differential cell surface structures and phage susceptibility, driving strain-level evolution. Furthermore, mobile genetic elements (MGEs) or evidence of horizontal gene transfer (HGT) were found in most of the genomic loci containing the above genes, suggesting that MGEs play an important role in the evolutionary diversification between CAP and non-CAP strains and within CAP clade strains. Our results provide insight into the adaptive strategy and population evolution of endolithic Prosthecochloris strains in coral skeletons.
Collapse
Affiliation(s)
- Zhaolong Nie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Kaihao Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Kaihao Tang,
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Jianping Yin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Andrei A, Di Renzo MA, Öztürk Y, Meisner A, Daum N, Frank F, Rauch J, Daldal F, Andrade SLA, Koch HG. The CopA2-Type P 1B-Type ATPase CcoI Serves as Central Hub for cbb 3-Type Cytochrome Oxidase Biogenesis. Front Microbiol 2021; 12:712465. [PMID: 34589071 PMCID: PMC8475189 DOI: 10.3389/fmicb.2021.712465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Copper (Cu)-transporting P1B-type ATPases are ubiquitous metal transporters and crucial for maintaining Cu homeostasis in all domains of life. In bacteria, the P1B-type ATPase CopA is required for Cu-detoxification and exports excess Cu(I) in an ATP-dependent reaction from the cytosol into the periplasm. CopA is a member of the CopA1-type ATPase family and has been biochemically and structurally characterized in detail. In contrast, less is known about members of the CopA2-type ATPase family, which are predicted to transport Cu(I) into the periplasm for cuproprotein maturation. One example is CcoI, which is required for the maturation of cbb 3-type cytochrome oxidase (cbb 3-Cox) in different species. Here, we reconstituted purified CcoI of Rhodobacter capsulatus into liposomes and determined Cu transport using solid-supported membrane electrophysiology. The data demonstrate ATP-dependent Cu(I) translocation by CcoI, while no transport is observed in the presence of a non-hydrolysable ATP analog. CcoI contains two cytosolically exposed N-terminal metal binding sites (N-MBSs), which are both important, but not essential for Cu delivery to cbb 3-Cox. CcoI and cbb 3-Cox activity assays in the presence of different Cu concentrations suggest that the glutaredoxin-like N-MBS1 is primarily involved in regulating the ATPase activity of CcoI, while the CopZ-like N-MBS2 is involved in Cu(I) acquisition. The interaction of CcoI with periplasmic Cu chaperones was analyzed by genetically fusing CcoI to the chaperone SenC. The CcoI-SenC fusion protein was fully functional in vivo and sufficient to provide Cu for cbb 3-Cox maturation. In summary, our data demonstrate that CcoI provides the link between the cytosolic and periplasmic Cu chaperone networks during cbb 3-Cox assembly.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Maria Agostina Di Renzo
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Alexandra Meisner
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Noel Daum
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fabian Frank
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Susana L A Andrade
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Garg N, Taylor AJ, Pastorelli F, Flannery SE, Jackson PJ, Johnson MP, Kelly DJ. Genes Linking Copper Trafficking and Homeostasis to the Biogenesis and Activity of the cbb 3-Type Cytochrome c Oxidase in the Enteric Pathogen Campylobacter jejuni. Front Microbiol 2021; 12:683260. [PMID: 34248902 PMCID: PMC8267372 DOI: 10.3389/fmicb.2021.683260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial C-type haem-copper oxidases in the cbb 3 family are widespread in microaerophiles, which exploit their high oxygen-binding affinity for growth in microoxic niches. In microaerophilic pathogens, C-type oxidases can be essential for infection, yet little is known about their biogenesis compared to model bacteria. Here, we have identified genes involved in cbb 3-oxidase (Cco) assembly and activity in the Gram-negative pathogen Campylobacter jejuni, the commonest cause of human food-borne bacterial gastroenteritis. Several genes of unknown function downstream of the oxidase structural genes ccoNOQP were shown to be essential (cj1483c and cj1486c) or important (cj1484c and cj1485c) for Cco activity; Cj1483 is a CcoH homologue, but Cj1484 (designated CcoZ) has structural similarity to MSMEG_4692, involved in Qcr-oxidase supercomplex formation in Mycobacterium smegmatis. Blue-native polyacrylamide gel electrophoresis of detergent solubilised membranes revealed three major bands, one of which contained CcoZ along with Qcr and oxidase subunits. Deletion of putative copper trafficking genes ccoI (cj1155c) and ccoS (cj1154c) abolished Cco activity, which was partially restored by addition of copper during growth, while inactivation of cj0369c encoding a CcoG homologue led to a partial reduction in Cco activity. Deletion of an operon encoding PCu A C (Cj0909) and Sco (Cj0911) periplasmic copper chaperone homologues reduced Cco activity, which was partially restored in the cj0911 mutant by exogenous copper. Phenotypic analyses of gene deletions in the cj1161c-1166c cluster, encoding several genes involved in intracellular metal homeostasis, showed that inactivation of copA (cj1161c), or copZ (cj1162c) led to both elevated intracellular Cu and reduced Cco activity, effects exacerbated at high external Cu. Our work has therefore identified (i) additional Cco subunits, (ii) a previously uncharacterized set of genes linking copper trafficking and Cco activity, and (iii) connections with Cu homeostasis in this important pathogen.
Collapse
Affiliation(s)
- Nitanshu Garg
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Federica Pastorelli
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Sarah E Flannery
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Phillip J Jackson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
4
|
Steinberg R, Koch HG. The largely unexplored biology of small proteins in pro- and eukaryotes. FEBS J 2021; 288:7002-7024. [PMID: 33780127 DOI: 10.1111/febs.15845] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022]
Abstract
The large abundance of small open reading frames (smORFs) in prokaryotic and eukaryotic genomes and the plethora of smORF-encoded small proteins became only apparent with the constant advancements in bioinformatic, genomic, proteomic, and biochemical tools. Small proteins are typically defined as proteins of < 50 amino acids in prokaryotes and of less than 100 amino acids in eukaryotes, and their importance for cell physiology and cellular adaptation is only beginning to emerge. In contrast to antimicrobial peptides, which are secreted by prokaryotic and eukaryotic cells for combatting pathogens and competitors, small proteins act within the producing cell mainly by stabilizing protein assemblies and by modifying the activity of larger proteins. Production of small proteins is frequently linked to stress conditions or environmental changes, and therefore, cells seem to use small proteins as intracellular modifiers for adjusting cell metabolism to different intra- and extracellular cues. However, the size of small proteins imposes a major challenge for the cellular machinery required for protein folding and intracellular trafficking and recent data indicate that small proteins can engage distinct trafficking pathways. In the current review, we describe the diversity of small proteins in prokaryotes and eukaryotes, highlight distinct and common features, and illustrate how they are handled by the protein trafficking machineries in prokaryotic and eukaryotic cells. Finally, we also discuss future topics of research on this fascinating but largely unexplored group of proteins.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
5
|
Cryo-EM structures of engineered active bc 1-cbb 3 type CIII 2CIV super-complexes and electronic communication between the complexes. Nat Commun 2021; 12:929. [PMID: 33568648 PMCID: PMC7876108 DOI: 10.1038/s41467-021-21051-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/06/2021] [Indexed: 01/30/2023] Open
Abstract
Respiratory electron transport complexes are organized as individual entities or combined as large supercomplexes (SC). Gram-negative bacteria deploy a mitochondrial-like cytochrome (cyt) bc1 (Complex III, CIII2), and may have specific cbb3-type cyt c oxidases (Complex IV, CIV) instead of the canonical aa3-type CIV. Electron transfer between these complexes is mediated by soluble (c2) and membrane-anchored (cy) cyts. Here, we report the structure of an engineered bc1-cbb3 type SC (CIII2CIV, 5.2 Å resolution) and three conformers of native CIII2 (3.3 Å resolution). The SC is active in vivo and in vitro, contains all catalytic subunits and cofactors, and two extra transmembrane helices attributed to cyt cy and the assembly factor CcoH. The cyt cy is integral to SC, its cyt domain is mobile and it conveys electrons to CIV differently than cyt c2. The successful production of a native-like functional SC and determination of its structure illustrate the characteristics of membrane-confined and membrane-external respiratory electron transport pathways in Gram-negative bacteria.
Collapse
|
6
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|
7
|
The cbb 3-type cytochrome oxidase assembly factor CcoG is a widely distributed cupric reductase. Proc Natl Acad Sci U S A 2019; 116:21166-21175. [PMID: 31570589 DOI: 10.1073/pnas.1913803116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Copper (Cu)-containing proteins execute essential functions in prokaryotic and eukaryotic cells, but their biogenesis is challenged by high Cu toxicity and the preferential presence of Cu(II) under aerobic conditions, while Cu(I) is the preferred substrate for Cu chaperones and Cu-transport proteins. These proteins form a coordinated network that prevents Cu accumulation, which would lead to toxic effects such as Fenton-like reactions and mismetalation of other metalloproteins. Simultaneously, Cu-transport proteins and Cu chaperones sustain Cu(I) supply for cuproprotein biogenesis and are therefore essential for the biogenesis of Cu-containing proteins. In eukaryotes, Cu(I) is supplied for import and trafficking by cell-surface exposed metalloreductases, but specific cupric reductases have not been identified in bacteria. It was generally assumed that the reducing environment of the bacterial cytoplasm would suffice to provide sufficient Cu(I) for detoxification and cuproprotein synthesis. Here, we identify the proposed cbb 3-type cytochrome c oxidase (cbb 3-Cox) assembly factor CcoG as a cupric reductase that binds Cu via conserved cysteine motifs and contains 2 low-potential [4Fe-4S] clusters required for Cu(II) reduction. Deletion of ccoG or mutation of the cysteine residues results in defective cbb 3-Cox assembly and Cu sensitivity. Furthermore, anaerobically purified CcoG catalyzes Cu(II) but not Fe(III) reduction in vitro using an artificial electron donor. Thus, CcoG is a bacterial cupric reductase and a founding member of a widespread class of enzymes that generate Cu(I) in the bacterial cytosol by using [4Fe-4S] clusters.
Collapse
|
8
|
Utz M, Andrei A, Milanov M, Trasnea PI, Marckmann D, Daldal F, Koch HG. The Cu chaperone CopZ is required for Cu homeostasis in Rhodobacter capsulatus and influences cytochrome cbb 3 oxidase assembly. Mol Microbiol 2019; 111:764-783. [PMID: 30582886 DOI: 10.1111/mmi.14190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/19/2022]
Abstract
Cu homeostasis depends on a tightly regulated network of proteins that transport or sequester Cu, preventing the accumulation of this toxic metal while sustaining Cu supply for cuproproteins. In Rhodobacter capsulatus, Cu-detoxification and Cu delivery for cytochrome c oxidase (cbb3 -Cox) assembly depend on two distinct Cu-exporting P1B -type ATPases. The low-affinity CopA is suggested to export excess Cu and the high-affinity CcoI feeds Cu into a periplasmic Cu relay system required for cbb3 -Cox biogenesis. In most organisms, CopA-like ATPases receive Cu for export from small Cu chaperones like CopZ. However, whether these chaperones are also involved in Cu export via CcoI-like ATPases is unknown. Here we identified a CopZ-like chaperone in R. capsulatus, determined its cellular concentration and its Cu binding activity. Our data demonstrate that CopZ has a strong propensity to form redox-sensitive dimers via two conserved cysteine residues. A ΔcopZ strain, like a ΔcopA strain, is Cu-sensitive and accumulates intracellular Cu. In the absence of CopZ, cbb3 -Cox activity is reduced, suggesting that CopZ not only supplies Cu to P1B -type ATPases for detoxification but also for cuproprotein assembly via CcoI. This finding was further supported by the identification of a ~150 kDa CcoI-CopZ protein complex in native R. capsulatus membranes.
Collapse
Affiliation(s)
- Marcel Utz
- Faculty of Medicine, Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 17, Freiburg, 79104, Germany
| | - Andreea Andrei
- Faculty of Medicine, Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 17, Freiburg, 79104, Germany.,Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| | - Martin Milanov
- Faculty of Medicine, Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 17, Freiburg, 79104, Germany
| | - Petru-Iulian Trasnea
- Faculty of Medicine, Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 17, Freiburg, 79104, Germany.,Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dorian Marckmann
- Faculty of Medicine, Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 17, Freiburg, 79104, Germany
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hans-Georg Koch
- Faculty of Medicine, Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 17, Freiburg, 79104, Germany
| |
Collapse
|
9
|
Trasnea PI, Andrei A, Marckmann D, Utz M, Khalfaoui-Hassani B, Selamoglu N, Daldal F, Koch HG. A Copper Relay System Involving Two Periplasmic Chaperones Drives cbb 3-Type Cytochrome c Oxidase Biogenesis in Rhodobacter capsulatus. ACS Chem Biol 2018; 13:1388-1397. [PMID: 29613755 DOI: 10.1021/acschembio.8b00293] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PccA and SenC are periplasmic copper chaperones required for the biogenesis of cbb3-type cytochrome c oxidase ( cbb3-Cox) in Rhodobacter capsulatus at physiological Cu concentrations. However, both proteins are dispensable for cbb3-Cox assembly when the external Cu concentration is high. PccA and SenC bind Cu using Met and His residues and Cys and His residues as ligands, respectively, and both proteins form a complex during cbb3-Cox biogenesis. SenC also interacts directly with cbb3-Cox, as shown by chemical cross-linking. Here we determined the periplasmic concentrations of both proteins in vivo and analyzed their Cu binding stoichiometries and their Cu(I) and Cu(II) binding affinity constants ( KD) in vitro. Our data show that both proteins bind a single Cu atom with high affinity. In vitro Cu transfer assays demonstrate Cu transfer both from PccA to SenC and from SenC to PccA at similar levels. We conclude that PccA and SenC constitute a Cu relay system that facilitates Cu delivery to cbb3-Cox.
Collapse
Affiliation(s)
- Petru-Iulian Trasnea
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | - Bahia Khalfaoui-Hassani
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nur Selamoglu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
10
|
Durand A, Bourbon ML, Steunou AS, Khalfaoui-Hassani B, Legrand C, Guitton A, Astier C, Ouchane S. Biogenesis of the bacterial cbb3 cytochrome c oxidase: Active subcomplexes support a sequential assembly model. J Biol Chem 2017; 293:808-818. [PMID: 29150446 DOI: 10.1074/jbc.m117.805184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/30/2017] [Indexed: 11/06/2022] Open
Abstract
The cbb3 oxidase has a high affinity for oxygen and is required for growth of bacteria, including pathogens, in oxygen-limited environments. However, the assembly of this oxidase is poorly understood. Most cbb3 are composed of four subunits: the catalytic CcoN subunit, the two cytochrome c subunits (CcoO and CcoP) involved in electron transfer, and the small CcoQ subunit with an unclear function. Here, we address the role of these four subunits in cbb3 biogenesis in the purple bacterium Rubrivivax gelatinosus Analyses of membrane proteins from different mutants revealed the presence of active CcoNQO and CcoNO subcomplexes and also showed that the CcoP subunit is not essential for their assembly. However, CcoP was required for the oxygen reduction activity in the absence of CcoQ. We also found that CcoQ is dispensable for forming an active CcoNOP subcomplex in membranes. CcoNOP exhibited oxygen reductase activity, indicating that the cofactors (hemes b and copper for CcoN and cytochromes c for CcoO and CcoP) were present within the subunits. Finally, we discovered the presence of a CcoNQ subcomplex and showed that CcoN is the required anchor for the assembly of the full CcoNQOP complex. On the basis of these findings, we propose a sequential assembly model in which the CcoQ subunit is required for the early maturation step: CcoQ first associates with CcoN before the CcoNQ-CcoO interaction. CcoP associates to CcoNQO subcomplex in the late maturation step, and once the CcoNQOP complex is fully formed, CcoQ is released for degradation by the FtsH protease. This model could be conserved in other bacteria, including the pathogenic bacteria lacking the assembly factor CcoH as in R. gelatinosus.
Collapse
Affiliation(s)
- Anne Durand
- From the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Marie-Line Bourbon
- From the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Anne-Soisig Steunou
- From the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Bahia Khalfaoui-Hassani
- From the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Camille Legrand
- From the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Audrey Guitton
- From the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Chantal Astier
- From the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Soufian Ouchane
- From the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| |
Collapse
|
11
|
Carvalheda CA, Pisliakov AV. On the role of subunit M in cytochrome cbb 3 oxidase. Biochem Biophys Res Commun 2017; 491:47-52. [PMID: 28694191 DOI: 10.1016/j.bbrc.2017.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
Cytochrome cbb3 (or C-type) oxidases are a highly divergent group and the least studied members of the heme-copper oxidases (HCOs) superfamily. HCOs couple the reduction of oxygen at the end of the respiratory chain to the active proton translocation across the membrane, contributing to establishment of an electrochemical gradient essential for ATP synthesis. Cbb3 oxidases exhibit unique structural and functional features and have an essential role in the metabolism of many clinically relevant human pathogens. Such characteristics make them a promising therapeutic target. Three subunits, N, O and P, comprise the core cbb3 complex, with N, the catalytic subunit, being highly conserved among all members of the HCO superfamily, including the A-type (aa3, mitochondrial-like) oxidases. An additional fourth subunit containing a single transmembrane (TM) helix was present in the first crystal structure of cbb3. This TM segment was recently proposed to be part of a novel protein CcoM, which was shown to have a putative role in the complex stability and assembly. In this work, we performed large-scale all-atom molecular dynamics simulations of the CcoNOPM complex to further characterize the interactions between subunit M and the core subunits and to determine whether the presence of the fourth subunit influences the water/proton channels previously described for the core complex. The previously proposed putative CcoNOPH complex is also assessed, and the potential functional redundancy of CcoM and CcoQ is discussed.
Collapse
Affiliation(s)
- Catarina A Carvalheda
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom; Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee, DD1 4HN, United Kingdom.
| | - Andrei V Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom; Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee, DD1 4HN, United Kingdom.
| |
Collapse
|
12
|
|
13
|
Trasnea PI, Utz M, Khalfaoui-Hassani B, Lagies S, Daldal F, Koch HG. Cooperation between two periplasmic copper chaperones is required for full activity of the cbb3 -type cytochrome c oxidase and copper homeostasis in Rhodobacter capsulatus. Mol Microbiol 2016; 100:345-61. [PMID: 26718481 DOI: 10.1111/mmi.13321] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2015] [Indexed: 11/30/2022]
Abstract
Copper (Cu) is an essential micronutrient that functions as a cofactor in several important enzymes, such as respiratory heme-copper oxygen reductases. Yet, Cu is also toxic and therefore cells engage a highly coordinated Cu uptake and delivery system to prevent the accumulation of toxic Cu concentrations. In this study, we analyzed Cu delivery to the cbb3 -type cytochrome c oxidase (cbb3 -Cox) of Rhodobacter capsulatus. We identified the PCuA C-like periplasmic chaperone PccA and analyzed its contribution to cbb3 -Cox assembly. Our data demonstrate that PccA is a Cu-binding protein with a preference for Cu(I), which is required for efficient cbb3 -Cox assembly, in particular, at low Cu concentrations. By using in vivo and in vitro cross-linking, we show that PccA forms a complex with the Sco1-homologue SenC. This complex is stabilized in the absence of the cbb3 -Cox-specific assembly factors CcoGHIS. In cells lacking SenC, the cytoplasmic Cu content is significantly increased, but the simultaneous absence of PccA prevents this Cu accumulation. These data demonstrate that the interplay between PccA and SenC not only is required for Cu delivery during cbb3 -Cox assembly but also regulates Cu homeostasis in R. capsulatus.
Collapse
Affiliation(s)
- Petru-Iulian Trasnea
- Institut für Biochemie und Molekularbiologie, ZBMZ, Stefan-Meier-Strasse 17, 79104, Freiburg, Germany.,Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| | - Marcel Utz
- Institut für Biochemie und Molekularbiologie, ZBMZ, Stefan-Meier-Strasse 17, 79104, Freiburg, Germany
| | | | - Simon Lagies
- Institut für Biochemie und Molekularbiologie, ZBMZ, Stefan-Meier-Strasse 17, 79104, Freiburg, Germany
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Stefan-Meier-Strasse 17, 79104, Freiburg, Germany
| |
Collapse
|
14
|
Identification and Characterization of the Novel Subunit CcoM in the cbb3₃Cytochrome c Oxidase from Pseudomonas stutzeri ZoBell. mBio 2016; 7:e01921-15. [PMID: 26814183 PMCID: PMC4742706 DOI: 10.1128/mbio.01921-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytochrome c oxidases (CcOs), members of the heme-copper containing oxidase (HCO) superfamily, are the terminal enzymes of aerobic respiratory chains. The cbb3-type cytochrome c oxidases (cbb3-CcO) form the C-family and have only the central catalytic subunit in common with the A- and B-family HCOs. In Pseudomonas stutzeri, two cbb3 operons are organized in a tandem repeat. The atomic structure of the first cbb3 isoform (Cbb3-1) was determined at 3.2 Å resolution in 2010 (S. Buschmann, E. Warkentin, H. Xie, J. D. Langer, U. Ermler, and H. Michel, Science 329:327–330, 2010, http://dx.doi.org/10.1126/science.1187303). Unexpectedly, the electron density map of Cbb3-1 revealed the presence of an additional transmembrane helix (TMH) which could not be assigned to any known protein. We now identified this TMH as the previously uncharacterized protein PstZoBell_05036, using a customized matrix-assisted laser desorption ionization (MALDI)–tandem mass spectrometry setup. The amino acid sequence matches the electron density of the unassigned TMH. Consequently, the protein was renamed CcoM. In order to identify the function of this new subunit in the cbb3 complex, we generated and analyzed a CcoM knockout strain. The results of the biochemical and biophysical characterization indicate that CcoM may be involved in CcO complex assembly or stabilization. In addition, we found that CcoM plays a role in anaerobic respiration, as the ΔCcoM strain displayed altered growth rates under anaerobic denitrifying conditions. The respiratory chain has recently moved into the focus for drug development against prokaryotic human pathogens, in particular, for multiresistant strains (P. Murima, J. D. McKinney, and K. Pethe, Chem Biol 21:1423–1432, 2014, http://dx.doi.org/10.1016/j.chembiol.2014.08.020). cbb3-CcO is an essential enzyme for many different pathogenic bacterial species, e.g., Helicobacter pylori, Vibrio cholerae, and Pseudomonas aeruginosa, and represents a promising drug target. In order to develop compounds targeting these proteins, a detailed understanding of the molecular architecture and function is required. Here we identified and characterized a novel subunit, CcoM, in the cbb3-CcO complex and thereby completed the crystal structure of the Cbb3 oxidase from Pseudomonas stutzeri, a bacterium closely related to the human pathogen Pseudomonas aeruginosa.
Collapse
|
15
|
Khalfaoui-Hassani B, Verissimo AF, Shroff NP, Ekici S, Trasnea PI, Utz M, Koch HG, Daldal F. Biogenesis of Cytochrome c Complexes: From Insertion of Redox Cofactors to Assembly of Different Subunits. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Ahn YO, Lee HJ, Kaluka D, Yeh SR, Rousseau DL, Ädelroth P, Gennis RB. The two transmembrane helices of CcoP are sufficient for assembly of the cbb3-type heme-copper oxygen reductase from Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1231-9. [PMID: 26116881 DOI: 10.1016/j.bbabio.2015.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
The C-family (cbb3) of heme-copper oxygen reductases are proton-pumping enzymes terminating the aerobic respiratory chains of many bacteria, including a number of human pathogens. The most common form of these enzymes contains one copy each of 4 subunits encoded by the ccoNOQP operon. In the cbb3 from Rhodobacter capsulatus, the enzyme is assembled in a stepwise manner, with an essential role played by an assembly protein CcoH. Importantly, it has been proposed that a transient interaction between the transmembrane domains of CcoP and CcoH is essential for assembly. Here, we test this proposal by showing that a genetically engineered form of cbb3 from Vibrio cholerae (CcoNOQP(X)) that lacks the hydrophilic domain of CcoP, where the two heme c moieties are present, is fully assembled and stable. Single-turnover kinetics of the reaction between the fully reduced CcoNOQP(X) and O2 are essentially the same as the wild type enzyme in oxidizing the 4 remaining redox-active sites. The enzyme retains approximately 10% of the steady state oxidase activity using the artificial electron donor TMPD, but has no activity using the physiological electron donor cytochrome c4, since the docking site for this cytochrome is presumably located on the absent domain of CcoP. Residue E49 in the hydrophobic domain of CcoP is the entrance of the K(C)-channel for proton input, and the E49A mutation in the truncated enzyme further reduces the steady state activity to less than 3%. Hence, the same proton channel is used by both the wild type and truncated enzymes.
Collapse
Affiliation(s)
- Young O Ahn
- Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, IL 61801, USA
| | - Hyun Ju Lee
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Daniel Kaluka
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Denis L Rousseau
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, IL 61801, USA.
| |
Collapse
|
17
|
Torres M, Hidalgo-García A, Bedmar E, Delgado M. Functional analysis of the copy 1 of the fixNOQP
operon of Ensifer meliloti
under free-living micro-oxic and symbiotic conditions. J Appl Microbiol 2013; 114:1772-81. [DOI: 10.1111/jam.12168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/08/2013] [Accepted: 02/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
- M.J. Torres
- Estación Experimental del Zaidin; CSIC; Granada Spain
| | | | - E.J. Bedmar
- Estación Experimental del Zaidin; CSIC; Granada Spain
| | - M.J. Delgado
- Estación Experimental del Zaidin; CSIC; Granada Spain
| |
Collapse
|
18
|
Missense mutations in cytochrome c maturation genes provide new insights into Rhodobacter capsulatus cbb3-type cytochrome c oxidase biogenesis. J Bacteriol 2012; 195:261-9. [PMID: 23123911 DOI: 10.1128/jb.01415-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Rhodobacter capsulatus cbb(3)-type cytochrome c oxidase (cbb(3)-Cox) belongs to the heme-copper oxidase superfamily, and its subunits are encoded by the ccoNOQP operon. Biosynthesis of this enzyme is complex and needs dedicated biogenesis genes (ccoGHIS). It also relies on the c-type cytochrome maturation (Ccm) process, which requires the ccmABCDEFGHI genes, because two of the cbb(3)-Cox subunits (CcoO and CcoP) are c-type cytochromes. Recently, we reported that mutants lacking CcoA, a major facilitator superfamily type transporter, produce very small amounts of cbb(3)-Cox unless the growth medium is supplemented with copper. In this work, we isolated "Cu-unresponsive" derivatives of a ccoA deletion strain that exhibited no cbb(3)-Cox activity even upon Cu supplementation. Molecular characterization of these mutants revealed missense mutations in the ccmA or ccmF gene, required for the Ccm process. As expected, Cu-unresponsive mutants lacked the CcoO and CcoP subunits due to Ccm defects, but remarkably, they contained the CcoN subunit of cbb(3)-Cox. Subsequent construction and examination of single ccm knockout mutants demonstrated that membrane insertion and stability of CcoN occurred in the absence of the Ccm process. Moreover, while the ccm knockout mutants were completely incompetent for photosynthesis, the Cu-unresponsive mutants grew photosynthetically at lower rates and produced smaller amounts of cytochromes c(1) and c(2) than did a wild-type strain due to their restricted Ccm capabilities. These findings demonstrate that different levels of Ccm efficiency are required for the production of various c-type cytochromes and reveal for the first time that maturation of the heme-Cu-containing subunit CcoN of R. capsulatus cbb(3)-Cox proceeds independently of that of the c-type cytochromes during the biogenesis of this enzyme.
Collapse
|
19
|
Rademacher C, Hoffmann MC, Lackmann JW, Moser R, Pfänder Y, Leimkühler S, Narberhaus F, Masepohl B. Tellurite resistance gene trgB confers copper tolerance to Rhodobacter capsulatus. Biometals 2012; 25:995-1008. [PMID: 22767205 DOI: 10.1007/s10534-012-9566-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/15/2012] [Indexed: 11/25/2022]
Abstract
To identify copper homeostasis genes in Rhodobacter capsulatus, we performed random transposon Tn5 mutagenesis. Screening of more than 10,000 Tn5 mutants identified tellurite resistance gene trgB as a so far unrecognized major copper tolerance determinant. The trgB gene is flanked by tellurite resistance gene trgA and cysteine synthase gene cysK2. While growth of trgA mutants was only moderately restricted by tellurite, trgB and cysK2 mutants were severely affected by tellurite, which implies that viability under tellurite stress requires increased cysteine levels. Mutational analyses revealed that trgB was the only gene in this chromosomal region conferring cross-tolerance towards copper. Expression of the monocistronic trgB gene required promoter elements overlapping the trgA coding region as shown by nested deletions. Neither copper nor tellurite affected trgB transcription as demonstrated by reverse transcriptase PCR and trgB-lacZ fusions. Addition of tellurite or copper gave rise to increased cellular tellurium and copper concentrations, respectively, as determined by inductively coupled plasma-optical emission spectroscopy. By contrast, cellular iron concentrations remained fairly constant irrespective of tellurite or copper addition. This is the first study demonstrating a direct link between copper and tellurite response in bacteria.
Collapse
Affiliation(s)
- Corinna Rademacher
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lohmeyer E, Schröder S, Pawlik G, Trasnea PI, Peters A, Daldal F, Koch HG. The ScoI homologue SenC is a copper binding protein that interacts directly with the cbb₃-type cytochrome oxidase in Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2005-15. [PMID: 22771512 DOI: 10.1016/j.bbabio.2012.06.621] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 11/28/2022]
Abstract
Sco proteins are widespread assembly factors for the Cu(A) centre of aa₃-type cytochrome oxidases in eukaryotic and prokaryotic organisms. However, Sco homologues are also found in bacteria like Rhodobacter capsulatus which lack aa₃-type cytochrome oxidases and instead use a cbb₃-type cytochrome oxidase (cbb₃ Cox) without a Cu(A) centre as a terminal oxidase. In the current study, we have analyzed the role of Sco (SenC) during cbb₃ Cox assembly in R. capsulatus. In agreement with earlier works, we found a strong cbb₃ Cox defect in the absence of SenC that impairs the steady-state stability of the CcoN, CcoO and CcoP core subunits, without the accumulation of detectable assembly intermediates. In vivo cross-linking results demonstrate that SenC is in close proximity to the CcoP and CcoH subunits of cbb₃ Cox, suggesting that SenC interacts directly with cbb₃ Cox during its assembly. SenC binds copper and the cbb₃ Cox assembly defect in the absence of SenC can be rescued by the addition of least 0.5μM Cu. Neither copper nor SenC influenced the transcription of the ccoNOQP operon encoding for cbb₃ Cox. Transcription of senC itself was also not influenced by Cu unless the putative Cu-export ATPase CcoI was absent. As CcoI is specifically required for the cbb₃ Cox assembly, these data provide a direct link between Cu delivery to cbb₃ Cox and SenC function.
Collapse
Affiliation(s)
- Eva Lohmeyer
- Institut für Biochemie und Molekularbiologie, ZBMZ, Stefan-Meier-Strasse 17, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 2012; 16:819-52. [PMID: 22098259 PMCID: PMC3283443 DOI: 10.1089/ars.2011.4051] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 12/22/2022]
Abstract
Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments.
Collapse
Affiliation(s)
- Emilio Bueno
- Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | | | |
Collapse
|
22
|
Novel transporter required for biogenesis of cbb3-type cytochrome c oxidase in Rhodobacter capsulatus. mBio 2012; 3:mBio.00293-11. [PMID: 22294680 PMCID: PMC3266609 DOI: 10.1128/mbio.00293-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED The acquisition, delivery, and incorporation of metals into their respective metalloproteins are important cellular processes. These processes are tightly controlled in order to prevent exposure of cells to free-metal concentrations that could yield oxidative damage. Copper (Cu) is one such metal that is required as a cofactor in a variety of proteins. However, when present in excessive amounts, Cu is toxic due to its oxidative capability. Cytochrome c oxidases (Coxs) are among the metalloproteins whose assembly and activity require the presence of Cu in their catalytic subunits. In this study, we focused on the acquisition of Cu for incorporation into the heme-Cu binuclear center of the cbb(3)-type Cox (cbb(3)-Cox) in the facultative phototroph Rhodobacter capsulatus. Genetic screens identified a cbb(3)-Cox defective mutant that requires Cu(2+) supplementation to produce an active cbb(3)-Cox. Complementation of this mutant using wild-type genomic libraries unveiled a novel gene (ccoA) required for cbb(3)-Cox biogenesis. In the absence of CcoA, the cellular Cu content decreases and cbb(3)-Cox assembly and activity become defective. CcoA shows homology to major facilitator superfamily (MFS)-type transporter proteins. Members of this family are known to transport small solutes or drugs, but so far, no MFS protein has been implicated in cbb(3)-Cox biogenesis. These findings provide novel insights into the maturation and assembly of membrane-integral metalloproteins and on a hitherto-unknown function(s) of MFS-type transporters in bacterial Cu acquisition. IMPORTANCE Biogenesis of energy-transducing membrane-integral enzymes, like the heme copper-containing cytochrome c oxidases, and the acquisition of transition metals, like copper, as their catalytic cofactors are vital processes for all cells. These widespread and well-controlled processes are poorly understood in all organisms, including bacteria. Defects in these processes lead to severe mitochondrial diseases in humans and poor crop yields in plants. In this study, using the facultative phototroph Rhodobacter capsulatus as a model organism, we report on the discovery of a novel major facilitator superfamily (MFS)-type transporter (CcoA) that affects cellular copper content and cbb(3)-type cytochrome c oxidase production in bacteria.
Collapse
|
23
|
Thompson AK, Gray J, Liu A, Hosler JP. The roles of Rhodobacter sphaeroides copper chaperones PCu(A)C and Sco (PrrC) in the assembly of the copper centers of the aa(3)-type and the cbb(3)-type cytochrome c oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:955-64. [PMID: 22248670 DOI: 10.1016/j.bbabio.2012.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 11/28/2022]
Abstract
The α proteobacter Rhodobacter sphaeroides accumulates two cytochrome c oxidases (CcO) in its cytoplasmic membrane during aerobic growth: a mitochondrial-like aa(3)-type CcO containing a di-copper Cu(A) center and mono-copper Cu(B), plus a cbb(3)-type CcO that contains Cu(B) but lacks Cu(A). Three copper chaperones are located in the periplasm of R. sphaeroides, PCu(A)C, PrrC (Sco) and Cox11. Cox11 is required to assemble Cu(B) of the aa(3)-type but not the cbb(3)-type CcO. PrrC is homologous to mitochondrial Sco1; Sco proteins are implicated in Cu(A) assembly in mitochondria and bacteria, and with Cu(B) assembly of the cbb(3)-type CcO. PCu(A)C is present in many bacteria, but not mitochondria. PCu(A)C of Thermus thermophilus metallates a Cu(A) center in vitro, but its in vivo function has not been explored. Here, the extent of copper center assembly in the aa(3)- and cbb(3)-type CcOs of R. sphaeroides has been examined in strains lacking PCu(A)C, PrrC, or both. The absence of either chaperone strongly lowers the accumulation of both CcOs in the cells grown in low concentrations of Cu(2+). The absence of PrrC has a greater effect than the absence of PCu(A)C and PCu(A)C appears to function upstream of PrrC. Analysis of purified aa(3)-type CcO shows that PrrC has a greater effect on the assembly of its Cu(A) than does PCu(A)C, and both chaperones have a lesser but significant effect on the assembly of its Cu(B) even though Cox11 is present. Scenarios for the cellular roles of PCu(A)C and PrrC are considered. The results are most consistent with a role for PrrC in the capture and delivery of copper to Cu(A) of the aa(3)-type CcO and to Cu(B) of the cbb(3)-type CcO, while the predominant role of PCu(A)C may be to capture and deliver copper to PrrC and Cox11. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Audie K Thompson
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | |
Collapse
|
24
|
Luirink J, Yu Z, Wagner S, de Gier JW. Biogenesis of inner membrane proteins in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:965-76. [PMID: 22201544 DOI: 10.1016/j.bbabio.2011.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/05/2011] [Accepted: 12/12/2011] [Indexed: 11/26/2022]
Abstract
The inner membrane proteome of the model organism Escherichia coli is composed of inner membrane proteins, lipoproteins and peripherally attached soluble proteins. Our knowledge of the biogenesis of inner membrane proteins is rapidly increasing. This is in particular true for the early steps of biogenesis - protein targeting to and insertion into the membrane. However, our knowledge of inner membrane protein folding and quality control is still fragmentary. Furthering our knowledge in these areas will bring us closer to understand the biogenesis of individual inner membrane proteins in the context of the biogenesis of the inner membrane proteome of Escherichia coli as a whole. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Joen Luirink
- Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
25
|
Ekici S, Pawlik G, Lohmeyer E, Koch HG, Daldal F. Biogenesis of cbb(3)-type cytochrome c oxidase in Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:898-910. [PMID: 22079199 DOI: 10.1016/j.bbabio.2011.10.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 10/31/2011] [Indexed: 11/18/2022]
Abstract
The cbb(3)-type cytochrome c oxidases (cbb(3)-Cox) constitute the second most abundant cytochrome c oxidase (Cox) group after the mitochondrial-like aa(3)-type Cox. They are present in bacteria only, and are considered to represent a primordial innovation in the domain of Eubacteria due to their phylogenetic distribution and their similarity to nitric oxide (NO) reductases. They are crucial for the onset of many anaerobic biological processes, such as anoxygenic photosynthesis or nitrogen fixation. In addition, they are prevalent in many pathogenic bacteria, and important for colonizing low oxygen tissues. Studies related to cbb(3)-Cox provide a fascinating paradigm for the biogenesis of sophisticated oligomeric membrane proteins. Complex subunit maturation and assembly machineries, producing the c-type cytochromes and the binuclear heme b(3)-Cu(B) center, have to be coordinated precisely both temporally and spatially to yield a functional cbb(3)-Cox enzyme. In this review we summarize our current knowledge on the structure, regulation and assembly of cbb(3)-Cox, and provide a highly tentative model for cbb(3)-Cox assembly and formation of its heme b(3)-Cu(B) binuclear center. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Seda Ekici
- University of Pennsylvania, Department of Biology, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|