1
|
Eke IE, Abramovitch RB. Functions of nitroreductases in mycobacterial physiology and drug susceptibility. J Bacteriol 2025; 207:e0032624. [PMID: 39772630 DOI: 10.1128/jb.00326-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Tuberculosis is a respiratory infection that is caused by members of the Mycobacterium tuberculosis complex, with M. tuberculosis (Mtb) being the predominant cause of the disease in humans. The approval of pretomanid and delamanid, two nitroimidazole-based compounds, for the treatment of tuberculosis encourages the development of more nitro-containing drugs that target Mtb. Similar to the nitroimidazoles, many antimycobacterial nitro-containing scaffolds are prodrugs that require reductive activation into metabolites that inhibit the growth of the pathogen. This reductive activation is mediated by mycobacterial nitroreductases, leading to the hypothesis that these nitroreductases contribute to the specificity of the nitro prodrugs for mycobacteria. In addition to their prodrug-activating activities, these nitroreductases have different native activities that support the growth of the bacteria. This review summarizes the activities of different mycobacterial nitroreductases with respect to their activation of different nitro prodrugs and highlights their physiological functions in the bacteria.
Collapse
Affiliation(s)
- Ifeanyichukwu E Eke
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Robert B Abramovitch
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Campos DL, Canales CSC, Demarqui FM, Fernandes GFS, dos Santos CG, Prates JLB, da Silva IGM, Barros-Cordeiro KB, Báo SN, de Andrade LN, Abichabki N, Zacharias LV, de Campos MMA, dos Santos JL, Pavan FR. Screening of novel narrow-spectrum benzofuroxan derivatives for the treatment of multidrug-resistant tuberculosis through in silico, in vitro, and in vivo approaches. Front Microbiol 2024; 15:1487829. [PMID: 39464394 PMCID: PMC11502347 DOI: 10.3389/fmicb.2024.1487829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
Tuberculosis remains a serious global health threat, exacerbated by the rise of resistant strains. This study investigates the potential of two benzofuroxan (Bfx) derivatives, 5n and 5b, as targeted treatments for MDR-TB using in silico, in vitro, and in vivo methodologies. In vitro analyses showed that Bfx compounds have significant activity against Mtb H37Rv, with Bfx 5n standing out with a MIC90 of 0.09 ± 0.04 μM. Additionally, their efficacy against MDR and pre-XDR strains was superior compared to commercial drugs. These Bfx compounds have a narrow spectrum for mycobacteria, which helps avoid dysbiosis of the gut microbiota, and they also exhibit high selectivity and low toxicity. Synergism studies indicate that Bfx derivatives could be combined with rifampicin to enhance treatment efficacy and reduce its duration. Scanning electron microscopy revealed severe damage to the morphology of Mtb following treatment with Bfx 5n, showing significant distortions in the bacillary structures. Whole-genome sequencing of the 5n-resistant isolate suggests resistance mechanisms mediated by the Rv1855c gene, supported by in silico studies. In vivo studies showed that the 5n compound reduced the pulmonary load by 3.0 log10 CFU/mL, demonstrating superiority over rifampicin, which achieved a reduction of 1.23 log10 CFU/mL. In conclusion, Bfx derivatives, especially 5n, effectively address resistant infections caused by Mtb, suggesting they could be a solid foundation for future therapeutic developments against MDR-TB.
Collapse
Affiliation(s)
- Débora Leite Campos
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Christian Shleider Carnero Canales
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
- School of Pharmacy, Biochemistry and Biotechnology, Santa Maria Catholic University, Arequipa, Peru
| | - Fernanda Manaia Demarqui
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Guilherme F. S. Fernandes
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
- School of Pharmacy, University College London, London, United Kingdom
| | - Camila Gonçalves dos Santos
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - João Lucas B. Prates
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Ingrid Gracielle Martins da Silva
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Karine Brenda Barros-Cordeiro
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Leonardo Neves de Andrade
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Nathália Abichabki
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Luísa Vieira Zacharias
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Marli Matiko Anraku de Campos
- Mycobacteriology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jean Leandro dos Santos
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| |
Collapse
|
3
|
Diversification by CofC and Control by CofD Govern Biosynthesis and Evolution of Coenzyme F 420 and Its Derivative 3PG-F 420. mBio 2022; 13:e0350121. [PMID: 35038903 PMCID: PMC8764529 DOI: 10.1128/mbio.03501-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Coenzyme F420 is a microbial redox cofactor that mediates diverse physiological functions and is increasingly used for biocatalytic applications. Recently, diversified biosynthetic routes to F420 and the discovery of a derivative, 3PG-F420, were reported. 3PG-F420 is formed via activation of 3-phospho-d-glycerate (3-PG) by CofC, but the structural basis of substrate binding, its evolution, as well as the role of CofD in substrate selection remained elusive. Here, we present a crystal structure of the 3-PG-activating CofC from Mycetohabitans sp. B3 and define amino acids governing substrate specificity. Site-directed mutagenesis enabled bidirectional switching of specificity and thereby revealed the short evolutionary trajectory to 3PG-F420 formation. Furthermore, CofC stabilized its product, thus confirming the structure of the unstable molecule and revealing its binding mode. The CofD enzyme was shown to significantly contribute to the selection of related intermediates to control the specificity of the combined biosynthetic CofC/D step. These results imply the need to change the design of combined CofC/D activity assays. Taken together, this work presents novel mechanistic and structural insights into 3PG-F420 biosynthesis and evolution and opens perspectives for the discovery and enhanced biotechnological production of coenzyme F420 derivatives in the future. IMPORTANCE The microbial cofactor F420 is crucial for processes like methanogenesis, antibiotics biosynthesis, drug resistance, and biocatalysis. Recently, a novel derivative of F420 (3PG-F420) was discovered, enabling the production and use of F420 in heterologous hosts. By analyzing the crystal structure of a CofC homolog whose substrate choice leads to formation of 3PG-F420, we defined amino acid residues governing the special substrate selectivity. A diagnostic residue enabled reprogramming of the substrate specificity, thus mimicking the evolution of the novel cofactor derivative. Furthermore, a labile reaction product of CofC was revealed that has not been directly detected so far. CofD was shown to provide another layer of specificity of the combined CofC/D reaction, thus controlling the initial substrate choice of CofC. The latter finding resolves a current debate in the literature about the starting point of F420 biosynthesis in various organisms.
Collapse
|
4
|
Grinter R, Greening C. Cofactor F420: an expanded view of its distribution, biosynthesis and roles in bacteria and archaea. FEMS Microbiol Rev 2021; 45:fuab021. [PMID: 33851978 PMCID: PMC8498797 DOI: 10.1093/femsre/fuab021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Many bacteria and archaea produce the redox cofactor F420. F420 is structurally similar to the cofactors FAD and FMN but is catalytically more similar to NAD and NADP. These properties allow F420 to catalyze challenging redox reactions, including key steps in methanogenesis, antibiotic biosynthesis and xenobiotic biodegradation. In the last 5 years, there has been much progress in understanding its distribution, biosynthesis, role and applications. Whereas F420 was previously thought to be confined to Actinobacteria and Euryarchaeota, new evidence indicates it is synthesized across the bacterial and archaeal domains, as a result of extensive horizontal and vertical biosynthetic gene transfer. F420 was thought to be synthesized through one biosynthetic pathway; however, recent advances have revealed variants of this pathway and have resolved their key biosynthetic steps. In parallel, new F420-dependent biosynthetic and metabolic processes have been discovered. These advances have enabled the heterologous production of F420 and identified enantioselective F420H2-dependent reductases for biocatalysis. New research has also helped resolve how microorganisms use F420 to influence human and environmental health, providing opportunities for tuberculosis treatment and methane mitigation. A total of 50 years since its discovery, multiple paradigms associated with F420 have shifted, and new F420-dependent organisms and processes continue to be discovered.
Collapse
Affiliation(s)
- Rhys Grinter
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Chris Greening
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Mapping the biosynthetic pathway of a hybrid polyketide-nonribosomal peptide in a metazoan. Nat Commun 2021; 12:4912. [PMID: 34389721 PMCID: PMC8363725 DOI: 10.1038/s41467-021-24682-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/30/2021] [Indexed: 11/10/2022] Open
Abstract
Polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) hybrid systems typically use complex protein-protein interactions to facilitate direct transfer of intermediates between these multimodular megaenzymes. In the canal-associated neurons (CANs) of Caenorhabditis elegans, PKS-1 and NRPS-1 produce the nemamides, the only known hybrid polyketide-nonribosomal peptides biosynthesized by animals, through a poorly understood mechanism. Here, we use genome editing and mass spectrometry to map the roles of individual PKS-1 and NRPS-1 enzymatic domains in nemamide biosynthesis. Furthermore, we show that nemamide biosynthesis requires at least five additional enzymes expressed in the CANs that are encoded by genes distributed across the worm genome. We identify the roles of these enzymes and discover a mechanism for trafficking intermediates between a PKS and an NRPS. Specifically, the enzyme PKAL-1 activates an advanced polyketide intermediate as an adenylate and directly loads it onto a carrier protein in NRPS-1. This trafficking mechanism provides a means by which a PKS-NRPS system can expand its biosynthetic potential and is likely important for the regulation of nemamide biosynthesis. The only known animal polyketide-nonribosomal peptides, the nemamides, are biosynthesized by two megasynthetases in the canal-associated neurons (CANs) of C. elegans. Here, the authors map the biosynthetic roles of individual megasynthetase domains and identify additional enzymes in the CANs required for nemamide biosynthesis.
Collapse
|
6
|
Mascotti ML, Juri Ayub M, Fraaije MW. On the diversity of F 420 -dependent oxidoreductases: A sequence- and structure-based classification. Proteins 2021; 89:1497-1507. [PMID: 34216160 PMCID: PMC8518648 DOI: 10.1002/prot.26170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/30/2021] [Accepted: 06/26/2021] [Indexed: 11/05/2022]
Abstract
The F420 deazaflavin cofactor is an intriguing molecule as it structurally resembles the canonical flavin cofactor, although behaves as a nicotinamide cofactor due to its obligate hydride-transfer reactivity and similar low redox potential. Since its discovery, numerous enzymes relying on it have been described. The known deazaflavoproteins are taxonomically restricted to Archaea and Bacteria. The biochemistry of the deazaflavoenzymes is diverse and they exhibit great structural variability. In this study a thorough sequence and structural homology evolutionary analysis was performed in order to generate an overarching classification of the F420 -dependent oxidoreductases. Five different deazaflavoenzyme Classes (I-V) are described according to their structural folds as follows: Class I encompassing the TIM-barrel F420 -dependent enzymes; Class II including the Rossmann fold F420 -dependent enzymes; Class III comprising the β-roll F420 -dependent enzymes; Class IV which exclusively gathers the SH3 barrel F420 -dependent enzymes and Class V including the three layer ββα sandwich F420 -dependent enzymes. This classification provides a framework for the identification and biochemical characterization of novel deazaflavoenzymes.
Collapse
Affiliation(s)
- María Laura Mascotti
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands.,IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Maximiliano Juri Ayub
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Redox Coenzyme F 420 Biosynthesis in Thermomicrobia Involves Reduction by Stand-Alone Nitroreductase Superfamily Enzymes. Appl Environ Microbiol 2020; 86:AEM.00457-20. [PMID: 32276981 DOI: 10.1128/aem.00457-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
Coenzyme F420 is a redox cofactor involved in hydride transfer reactions in archaea and bacteria. Since F420-dependent enzymes are attracting increasing interest as tools in biocatalysis, F420 biosynthesis is being revisited. While it was commonly accepted for a long time that the 2-phospho-l-lactate (2-PL) moiety of F420 is formed from free 2-PL, it was recently shown that phosphoenolpyruvate is incorporated in Actinobacteria and that the C-terminal domain of the FbiB protein, a member of the nitroreductase (NTR) superfamily, converts dehydro-F420 into saturated F420 Outside the Actinobacteria, however, the situation is still unclear because FbiB is missing in these organisms and enzymes of the NTR family are highly diversified. Here, we show by heterologous expression and in vitro assays that stand-alone NTR enzymes from Thermomicrobia exhibit dehydro-F420 reductase activity. Metabolome analysis and proteomics studies confirmed the proposed biosynthetic pathway in Thermomicrobium roseum These results clarify the biosynthetic route of coenzyme F420 in a class of Gram-negative bacteria, redefine functional subgroups of the NTR superfamily, and offer an alternative for large-scale production of F420 in Escherichia coli in the future.IMPORTANCE Coenzyme F420 is a redox cofactor of Archaea and Actinobacteria, as well as some Gram-negative bacteria. Its involvement in processes such as the biosynthesis of antibiotics, the degradation of xenobiotics, and asymmetric enzymatic reductions renders F420 of great relevance for biotechnology. Recently, a new biosynthetic step during the formation of F420 in Actinobacteria was discovered, involving an enzyme domain belonging to the versatile nitroreductase (NTR) superfamily, while this process remained blurred in Gram-negative bacteria. Here, we show that a similar biosynthetic route exists in Thermomicrobia, although key biosynthetic enzymes show different domain architectures and are only distantly related. Our results shed light on the biosynthesis of F420 in Gram-negative bacteria and refine the knowledge about sequence-function relationships within the NTR superfamily of enzymes. Appreciably, these results offer an alternative route to produce F420 in Gram-negative model organisms and unveil yet another biochemical facet of this pathway to be explored by synthetic microbiologists.
Collapse
|
8
|
Cofactor F420-Dependent Enzymes: An Under-Explored Resource for Asymmetric Redox Biocatalysis. Catalysts 2019. [DOI: 10.3390/catal9100868] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The asymmetric reduction of enoates, imines and ketones are among the most important reactions in biocatalysis. These reactions are routinely conducted using enzymes that use nicotinamide cofactors as reductants. The deazaflavin cofactor F420 also has electrochemical properties that make it suitable as an alternative to nicotinamide cofactors for use in asymmetric reduction reactions. However, cofactor F420-dependent enzymes remain under-explored as a resource for biocatalysis. This review considers the cofactor F420-dependent enzyme families with the greatest potential for the discovery of new biocatalysts: the flavin/deazaflavin-dependent oxidoreductases (FDORs) and the luciferase-like hydride transferases (LLHTs). The characterized F420-dependent reductions that have the potential for adaptation for biocatalysis are discussed, and the enzymes best suited for use in the reduction of oxidized cofactor F420 to allow cofactor recycling in situ are considered. Further discussed are the recent advances in the production of cofactor F420 and its functional analog FO-5′-phosphate, which remains an impediment to the adoption of this family of enzymes for industrial biocatalytic processes. Finally, the prospects for the use of this cofactor and dependent enzymes as a resource for industrial biocatalysis are discussed.
Collapse
|
9
|
Reconstructing the evolutionary history of F 420-dependent dehydrogenases. Sci Rep 2018; 8:17571. [PMID: 30514849 PMCID: PMC6279831 DOI: 10.1038/s41598-018-35590-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
During the last decade the number of characterized F420-dependent enzymes has significantly increased. Many of these deazaflavoproteins share a TIM-barrel fold and are structurally related to FMN-dependent luciferases and monooxygenases. In this work, we traced the origin and evolutionary history of the F420-dependent enzymes within the luciferase-like superfamily. By a thorough phylogenetic analysis we inferred that the F420-dependent enzymes emerged from a FMN-dependent common ancestor. Furthermore, the data show that during evolution, the family of deazaflavoproteins split into two well-defined groups of enzymes: the F420-dependent dehydrogenases and the F420-dependent reductases. By such event, the dehydrogenases specialized in generating the reduced deazaflavin cofactor, while the reductases employ the reduced F420 for catalysis. Particularly, we focused on investigating the dehydrogenase subfamily and demonstrated that this group diversified into three types of dehydrogenases: the already known F420-dependent glucose-6-phosphate dehydrogenases, the F420-dependent alcohol dehydrogenases, and the sugar-6-phosphate dehydrogenases that were identified in this study. By reconstructing and experimentally characterizing ancestral and extant representatives of F420-dependent dehydrogenases, their biochemical properties were investigated and compared. We propose an evolutionary path for the emergence and diversification of the TIM-barrel fold F420-dependent dehydrogenases subfamily.
Collapse
|
10
|
Coenzyme F 420-Dependent Glucose-6-Phosphate Dehydrogenase-Coupled Polyglutamylation of Coenzyme F 420 in Mycobacteria. J Bacteriol 2018; 200:JB.00375-18. [PMID: 30249701 DOI: 10.1128/jb.00375-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022] Open
Abstract
Coenzyme F420 plays a key role in the redox metabolisms of various archaea and bacteria, including Mycobacterium tuberculosis In M. tuberculosis, F420-dependent reactions have been linked to several virulence factors. F420 carries multiple glutamate residues in the side chain, forming F420-n species (n, number of glutamate residues), and the length of this side chain impacts cellular physiology. M. tuberculosis strains with F420 species carrying shorter side chains exhibit resistance to delamanid and pretomanid, two new tuberculosis (TB) drugs. Thus, the process of polyglutamylation of F420 is of great interest. It has been known from genetic analysis that in mycobacteria an F420-0 γ-glutamyl ligase (FbiB) introduces up to seven glutamate residues into F420 However, purified FbiB of M. tuberculosis (MtbFbiB) is either inefficient or incapable of incorporating more than two glutamates. We found that, in vitro, MtbFbiB synthesized side chains containing up to seven glutamate residues if F420 was presented to the enzyme in a two-electron reduced state (F420H2). Our genetic analysis in Mycobacterium bovis BCG and Mycobacterium smegmatis and an analysis of literature data on M. tuberculosis revealed that in these mycobacteria the polyglutamylation process requires the assistance of F420-dependent glucose-6-phosphate dehydrogenase (Fgd) which reduces F420 to F420H2 We hypothesize that, starting with F420-0H2, the amino-terminal domain of FbiB builds F420-2H2, which is then transferred to the carboxy-terminal domain for further glutamylation; F420-2H2 modifies the carboxy-terminal domain structurally to accommodate longer glutamyl chains. This system is analogous to folylpolyglutamate synthase, which introduces more than one glutamate residue into folate only after this vitamin is reduced to tetrahydrofolate.IMPORTANCE Coenzyme F420-dependent reactions of Mycobacterium tuberculosis, which causes tuberculosis, potentially contributes to the virulence of this bacterium. The coenzyme carries a glutamic acid-derived tail, the length of which influences the metabolism of M. tuberculosis Mutations that eliminate the production of F420 with longer tails make M. tuberculosis resistant to two new tuberculosis drugs. This report describes that the synthesis of longer glutamyl tails of F420 requires concerted actions of two enzymes, one of which reduces the coenzyme prior to the action of the other, which catalyzes polyglutamylation. This knowledge will help to develop more effective tuberculosis (TB) drugs. Remarkably, the introduction of multiple glutamate residues into the sidechain of folate (vitamin B9) requires similar concerted actions, where one enzyme reduces the vitamin to tetrahydrofolate and the other catalyzes polyglutamylation; folate is required for DNA and amino acid synthesis. Thus, the reported research has also revealed a key similarity between two important cellular systems.
Collapse
|
11
|
Singh P, Rameshwaram NR, Ghosh S, Mukhopadhyay S. Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis. Future Microbiol 2018; 13:689-710. [PMID: 29771143 DOI: 10.2217/fmb-2017-0135] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mycobacterium tuberculosis is an intracellular bacterium that persists and replicates inside macrophages. The bacterium possesses an unusual lipid-rich cell envelope that provides a hydrophobic impermeable barrier against many environmental stressors and allows it to survive extremely hostile intracellular surroundings. Since the lipid-rich envelope is crucial for M. tuberculosis virulence, the components of the cell wall lipid biogenesis pathways constitute an attractive target for the development of vaccines and antimycobacterial chemotherapeutics. In this review, we provide a detailed description of the mycobacterial cell envelope lipid components and their contributions to the physiology and pathogenicity of mycobacteria. We also discussed the current status of the antimycobacterial drugs that target biosynthesis, export and regulation of cell envelope lipids.
Collapse
Affiliation(s)
- Parul Singh
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500 039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| | - Nagender Rao Rameshwaram
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500 039, India
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, 500 007, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500 039, India
| |
Collapse
|
12
|
Ney B, Carere CR, Sparling R, Jirapanjawat T, Stott MB, Jackson CJ, Oakeshott JG, Warden AC, Greening C. Cofactor Tail Length Modulates Catalysis of Bacterial F 420-Dependent Oxidoreductases. Front Microbiol 2017; 8:1902. [PMID: 29021791 PMCID: PMC5623714 DOI: 10.3389/fmicb.2017.01902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/15/2017] [Indexed: 11/13/2022] Open
Abstract
F420 is a microbial cofactor that mediates a wide range of physiologically important and industrially relevant redox reactions, including in methanogenesis and tetracycline biosynthesis. This deazaflavin comprises a redox-active isoalloxazine headgroup conjugated to a lactyloligoglutamyl tail. Here we studied the catalytic significance of the oligoglutamate chain, which differs in length between bacteria and archaea. We purified short-chain F420 (two glutamates) from a methanogen isolate and long-chain F420 (five to eight glutamates) from a recombinant mycobacterium, confirming their different chain lengths by HPLC and LC/MS analysis. F420 purified from both sources was catalytically compatible with purified enzymes from the three major bacterial families of F420-dependent oxidoreductases. However, long-chain F420 bound to these enzymes with a six- to ten-fold higher affinity than short-chain F420. The cofactor side chain also significantly modulated the kinetics of the enzymes, with long-chain F420 increasing the substrate affinity (lower Km) but reducing the turnover rate (lower kcat) of the enzymes. Molecular dynamics simulations and comparative structural analysis suggest that the oligoglutamate chain of F420 makes dynamic electrostatic interactions with conserved surface residues of the oxidoreductases while the headgroup binds the catalytic site. In conjunction with the kinetic data, this suggests that electrostatic interactions made by the oligoglutamate tail result in higher-affinity, lower-turnover catalysis. Physiologically, we propose that bacteria have selected for long-chain F420 to better control cellular redox reactions despite tradeoffs in catalytic rate. Conversely, this suggests that industrial use of shorter-length F420 will greatly increase the rates of bioremediation and biocatalysis processes relying on purified F420-dependent oxidoreductases.
Collapse
Affiliation(s)
- Blair Ney
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.,Land and Water Flagship, The Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Carlo R Carere
- GNS Science, Wairakei Research Centre, Lower Hutt, New Zealand
| | - Richard Sparling
- GNS Science, Wairakei Research Centre, Lower Hutt, New Zealand.,Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | - Matthew B Stott
- GNS Science, Wairakei Research Centre, Lower Hutt, New Zealand
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Acton, ACT, Australia
| | - John G Oakeshott
- Land and Water Flagship, The Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Andrew C Warden
- Land and Water Flagship, The Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.,Land and Water Flagship, The Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| |
Collapse
|
13
|
Susanti D, Loganathan U, Mukhopadhyay B. A Novel F420-dependent Thioredoxin Reductase Gated by Low Potential FAD: A TOOL FOR REDOX REGULATION IN AN ANAEROBE. J Biol Chem 2016; 291:23084-23100. [PMID: 27590343 DOI: 10.1074/jbc.m116.750208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Indexed: 12/18/2022] Open
Abstract
A recent report suggested that the thioredoxin-dependent metabolic regulation, which is widespread in all domains of life, existed in methanogenic archaea about 3.5 billion years ago. We now show that the respective electron delivery enzyme (thioredoxin reductase, TrxR), although structurally similar to flavin-containing NADPH-dependent TrxRs (NTR), lacked an NADPH-binding site and was dependent on reduced coenzyme F420 (F420H2), a stronger reductant with a mid-point redox potential (E'0) of -360 mV; E'0 of NAD(P)H is -320 mV. Because F420 is a deazaflavin, this enzyme was named deazaflavin-dependent flavin-containing thioredoxin reductase (DFTR). It transferred electrons from F420H2 to thioredoxin via protein-bound flavin; Km values for thioredoxin and F420H2 were 6.3 and 28.6 μm, respectively. The E'0 of DFTR-bound flavin was approximately -389 mV, making electron transfer from NAD(P)H or F420H2 to flavin endergonic. However, under high partial pressures of hydrogen prevailing on early Earth and present day deep-sea volcanoes, the potential for the F420/F420H2 pair could be as low as -425 mV, making DFTR efficient. The presence of DFTR exclusively in ancient methanogens and mostly in the early Earth environment of deep-sea volcanoes and DFTR's characteristics suggest that the enzyme developed on early Earth and gave rise to NTR. A phylogenetic analysis revealed six more novel-type TrxR groups and suggested that the broader flavin-containing disulfide oxidoreductase family is more diverse than previously considered. The unprecedented structural similarities between an F420-dependent enzyme (DFTR) and an NADPH-dependent enzyme (NTR) brought new thoughts to investigations on F420 systems involved in microbial pathogenesis and antibiotic production.
Collapse
Affiliation(s)
| | | | - Biswarup Mukhopadhyay
- From the Department of Biochemistry, .,Biocomplexity Institute, and.,Virginia Tech Carilion School of Medicine, Virginia Tech, Blacksburg, Virginia 24061
| |
Collapse
|