1
|
Shrestha S, Taib N, Gribaldo S, Shen A. Diversification of division mechanisms in endospore-forming bacteria revealed by analyses of peptidoglycan synthesis in Clostridioides difficile. Nat Commun 2023; 14:7975. [PMID: 38042849 PMCID: PMC10693644 DOI: 10.1038/s41467-023-43595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023] Open
Abstract
The bacterial enzymes FtsW and FtsI, encoded in the highly conserved dcw gene cluster, are considered to be universally essential for the synthesis of septal peptidoglycan (PG) during cell division. Here, we show that the pathogen Clostridioides difficile lacks a canonical FtsW/FtsI pair, and its dcw-encoded PG synthases have undergone a specialization to fulfill sporulation-specific roles, including synthesizing septal PG during the sporulation-specific mode of cell division. Although these enzymes are directly regulated by canonical divisome components during this process, dcw-encoded PG synthases and their divisome regulators are dispensable for cell division during normal growth. Instead, C. difficile uses a bifunctional class A penicillin-binding protein as the core divisome PG synthase, revealing a previously unreported role for this class of enzymes. Our findings support that the emergence of endosporulation in the Firmicutes phylum facilitated the functional repurposing of cell division factors. Moreover, they indicate that C. difficile, and likely other clostridia, assemble a distinct divisome that therefore may represent a unique target for therapeutic interventions.
Collapse
Affiliation(s)
- Shailab Shrestha
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
- Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Najwa Taib
- Institut Pasteur, Université Paris Cité, Evolutionary Biology of the Microbial Cell Unit, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, Evolutionary Biology of the Microbial Cell Unit, Paris, France
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
2
|
Shrestha S, Taib N, Gribaldo S, Shen A. Analyses of cell wall synthesis in Clostridioides difficile reveal a diversification in cell division mechanisms in endospore-forming bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552200. [PMID: 37609260 PMCID: PMC10441361 DOI: 10.1101/2023.08.06.552200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Current models of bacterial cell division assume that the core synthases of the multiprotein divisome complex, FtsW-FtsI, are the primary drivers of septal peptidoglycan (PG) synthesis. These enzymes are typically encoded in the highly conserved division and cell wall (dcw) cluster and are considered to be universally essential for cell division. Here, we combine bioinformatics analyses with functional characterization in the pathogen Clostridioides difficile to show that dcw-encoded PG synthases have undergone a surprising specialization in the sole endospore-forming phylum, Firmicutes, to fulfill sporulation-specific roles. We describe a novel role for these enzymes in synthesizing septal PG during the sporulation-specific mode of cell division in C. difficile. Although these enzymes are directly regulated by canonical divisome components during this process, dcw-encoded PG synthases and their divisome regulators are unexpectedly dispensable for cell division during normal growth. Instead, C. difficile uses its sole bifunctional class A penicillin-binding protein (aPBP) to drive cell division, revealing a previously unreported role for this class of PG synthases as the core divisome enzyme. Collectively, our findings reveal how the emergence of endosporulation in the Firmicutes phylum was a key driver for the functional repurposing of an otherwise universally conserved cellular process such as cell division. Moreover, they indicate that C. difficile, and likely other clostridia, assemble a divisome that differs markedly from previously studied bacteria, thus representing an attractive, unique target for therapeutic purposes.
Collapse
Affiliation(s)
- Shailab Shrestha
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
- Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Najwa Taib
- Institut Pasteur, Université de Paris, Unit Evolutionary Biology of the Microbial Cell, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université de Paris, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Alteration of Proteomes in First-Generation Cultures of Bacillus pumilus Spores Exposed to Outer Space. mSystems 2019; 4:4/4/e00195-19. [PMID: 31186338 PMCID: PMC6561321 DOI: 10.1128/msystems.00195-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacillus pumilus SAFR-032 was originally isolated from the Jet Propulsion Lab Spacecraft Assembly Facility and thoroughly characterized for its enhanced resistance to UV irradiation and oxidative stress. This unusual resistance of SAFR-032 is of particular concern in the context of planetary protection and calls for development of novel disinfection techniques to prevent extraterrestrial contamination. Previously, spores of SAFR-032 were exposed for 18 months to a variety of space conditions on board the International Space Station to investigate their resistance to Mars-like conditions and space travel. Here, proteomic characterization of vegetative SAFR-032 cells from space-surviving spores is presented in comparison to a ground control. Vegetative cells of the first passage were processed and subjected to quantitative proteomics using tandem mass tags. Approximately 60% of all proteins encoded by SAFR-032 were identified, and 301 proteins were differentially expressed among the strains. We found that proteins predicted to be involved in carbohydrate transport/metabolism and energy production/conversion had lower abundance than those of the ground control. For three proteins, we showed that the expected metabolic activities were decreased, as expected with direct enzymatic assays. This was consistent with a decrease of ATP production in the space-surviving strains. The same space-surviving strains showed increased abundance of proteins related to survival, growth advantage, and stress response. Such alterations in the proteomes provide insights into possible molecular mechanisms of B. pumilus SAFR-032 to adapt to and resist extreme extraterrestrial environments.IMPORTANCE Spore-forming bacteria are well known for their resistance to harsh environments and are of concern for spreading contamination to extraterrestrial bodies during future life detection missions. Bacillus pumilus has been regularly isolated from spacecraft-associated surfaces and exhibited unusual resistance to ultraviolet light and other sterilization techniques. A better understanding of the mechanisms of microbial survival and enhanced resistance is essential for developing novel disinfection protocols for the purpose of planetary protection. While genomic analyses did not reveal the unique characteristics that explain elevated UV resistance of space-exposed B. pumilus, the proteomics study presented here provided intriguing insight on key metabolic changes. The observed proteomics aberrations reveal a complex biological phenomenon that plays a role in bacterial survival and adaptation under long-term exposure to outer space. This adaptive ability of microorganisms needs to be considered by those tasked with eliminating forward contamination.
Collapse
|
4
|
Jain P, Malakar B, Khan MZ, Lochab S, Singh A, Nandicoori VK. Delineating FtsQ-mediated regulation of cell division in Mycobacterium tuberculosis. J Biol Chem 2018; 293:12331-12349. [PMID: 29903917 DOI: 10.1074/jbc.ra118.003628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/31/2018] [Indexed: 11/06/2022] Open
Abstract
Identifying and characterizing the individual contributors to bacterial cellular elongation and division will improve our understanding of their impact on cell growth and division. Here, we delineated the role of ftsQ, a terminal gene of the highly conserved division cell wall (dcw) operon, in growth, survival, and cell length maintenance in the human pathogen Mycobacterium tuberculosis (Mtb). We found that FtsQ overexpression significantly increases the cell length and number of multiseptate cells. FtsQ depletion in Mtb resulted in cells that were shorter than WT cells during the initial growth stages (4 days after FtsQ depletion) but were longer than WT cells at later stages (10 days after FtsQ depletion) and compromised the survival in vitro and in differentiated THP1 macrophages. Overexpression of N- and C-terminal FtsQ regions altered the cell length, and the C-terminal domain alone complemented the FtsQ depletion phenotype. MS analyses suggested robust FtsQ phosphorylation on Thr-24, and although phosphoablative and -mimetic mutants rescued the FtsQ depletion-associated cell viability defects, they failed to complement the cell length defects. MS and coimmunoprecipitation experiments identified 63 FtsQ-interacting partners, and we show that the interaction of FtsQ with the recently identified cell division protein SepIVA is independent of FtsQ phosphorylation and suggests a role of FtsQ in modulating cell division. FtsQ exhibited predominantly septal localization in both the presence and absence of SepIVA. Our results suggest a role for FtsQ in modulating the length, division, and survival of Mtb cells both in vitro and in the host.
Collapse
Affiliation(s)
- Preeti Jain
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067 and
| | - Basanti Malakar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067 and
| | - Mehak Zahoor Khan
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067 and
| | - Savita Lochab
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067 and
| | - Archana Singh
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | | |
Collapse
|
5
|
Bradshaw N, Losick R. Asymmetric division triggers cell-specific gene expression through coupled capture and stabilization of a phosphatase. eLife 2015; 4. [PMID: 26465112 PMCID: PMC4714977 DOI: 10.7554/elife.08145] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/13/2015] [Indexed: 11/13/2022] Open
Abstract
Formation of a division septum near a randomly chosen pole during sporulation in Bacillus subtilis creates unequal sized daughter cells with dissimilar programs of gene expression. An unanswered question is how polar septation activates a transcription factor (σ(F)) selectively in the small cell. We present evidence that the upstream regulator of σ(F), the phosphatase SpoIIE, is compartmentalized in the small cell by transfer from the polar septum to the adjacent cell pole where SpoIIE is protected from proteolysis and activated. Polar recognition, protection from proteolysis, and stimulation of phosphatase activity are linked to oligomerization of SpoIIE. This mechanism for initiating cell-specific gene expression is independent of additional sporulation proteins; vegetative cells engineered to divide near a pole sequester SpoIIE and activate σ(F) in small cells. Thus, a simple model explains how SpoIIE responds to a stochastically-generated cue to activate σ(F) at the right time and in the right place.
Collapse
Affiliation(s)
- Niels Bradshaw
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Richard Losick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
6
|
Reddy PJ, Sinha S, Ray S, Sathe GJ, Chatterjee A, Prasad TSK, Dhali S, Srikanth R, Panda D, Srivastava S. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment. PLoS One 2015; 10:e0120620. [PMID: 25874956 PMCID: PMC4397091 DOI: 10.1371/journal.pone.0120620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 02/05/2015] [Indexed: 11/18/2022] Open
Abstract
Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.
Collapse
Affiliation(s)
- Panga Jaipal Reddy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sneha Sinha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Gajanan J. Sathe
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India
- Manipal University, Madhav Nagar,Manipal, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India
- Manipal University, Madhav Nagar,Manipal, India
| | - T. S. Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India
| | - Snigdha Dhali
- Proteomics Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Rapole Srikanth
- Proteomics Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- * E-mail:
| |
Collapse
|
7
|
Bottomley AL, Kabli AF, Hurd AF, Turner RD, Garcia-Lara J, Foster SJ. Staphylococcus aureus DivIB is a peptidoglycan-binding protein that is required for a morphological checkpoint in cell division. Mol Microbiol 2014; 94:1041-1064. [PMID: 25287423 DOI: 10.1111/mmi.12813] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2014] [Indexed: 01/08/2023]
Abstract
Bacterial cell division is a fundamental process that requires the coordinated actions of a number of proteins which form a complex macromolecular machine known as the divisome. The membrane-spanning proteins DivIB and its orthologue FtsQ are crucial divisome components in Gram-positive and Gram-negative bacteria respectively. However, the role of almost all of the integral division proteins, including DivIB, still remains largely unknown. Here we show that the extracellular domain of DivIB is able to bind peptidoglycan and have mapped the binding to its β subdomain. Conditional mutational studies show that divIB is essential for Staphylococcus aureus growth, while phenotypic analyses following depletion of DivIB results in a block in the completion, but not initiation, of septum formation. Localisation studies suggest that DivIB only transiently localises to the division site and may mark previous sites of septation. We propose that DivIB is required for a molecular checkpoint during division to ensure the correct assembly of the divisome at midcell and to prevent hydrolytic growth of the cell in the absence of a completed septum.
Collapse
Affiliation(s)
- Amy L Bottomley
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | | | | | | | | | | |
Collapse
|
8
|
Evidence from artificial septal targeting and site-directed mutagenesis that residues in the extracytoplasmic β domain of DivIB mediate its interaction with the divisomal transpeptidase PBP 2B. J Bacteriol 2010; 192:6116-25. [PMID: 20870765 DOI: 10.1128/jb.00783-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial cytokinesis is achieved through the coordinated action of a multiprotein complex known as the divisome. The Escherichia coli divisome is comprised of at least 10 essential proteins whose individual functions are mostly unknown. Most divisomal proteins have multiple binding partners, making it difficult to pinpoint epitopes that mediate pairwise interactions between these proteins. We recently introduced an artificial septal targeting approach that allows the interaction between pairs of proteins to be studied in vivo without the complications introduced by other interacting proteins (C. Robichon, G. F. King, N. W. Goehring, and J. Beckwith, J. Bacteriol. 190:6048-6059, 2008). We have used this approach to perform a molecular dissection of the interaction between Bacillus subtilis DivIB and the divisomal transpeptidase PBP 2B, and we demonstrate that this interaction is mediated exclusively through the extracytoplasmic domains of these proteins. Artificial septal targeting in combination with mutagenesis experiments revealed that the C-terminal region of the β domain of DivIB is critical for its interaction with PBP 2B. These findings are consistent with previously defined loss-of-function point mutations in DivIB as well as the recent demonstration that the β domain of DivIB mediates its interaction with the FtsL-DivIC heterodimer. These new results have allowed us to construct a model of the DivIB/PBP 2B/FtsL/DivIC quaternary complex that strongly implicates DivIB, FtsL, and DivIC in modulating the transpeptidase activity of PBP 2B.
Collapse
|
9
|
Schirner K, Marles-Wright J, Lewis RJ, Errington J. Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. EMBO J 2009; 28:830-42. [PMID: 19229300 PMCID: PMC2670855 DOI: 10.1038/emboj.2009.25] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 01/16/2009] [Indexed: 11/09/2022] Open
Abstract
Teichoic acids (TAs) are anionic polymers that constitute a major component of the cell wall in most Gram-positive bacteria. Despite decades of study, their function has remained unclear. TAs are covalently linked either to the cell wall peptidoglycan (wall TA (WTA)) or to the membrane (lipo-TA (LTA)). We have characterized the key enzyme of LTA synthesis in Bacillus subtilis, LTA synthase (LtaS). We show that LTA is needed for divalent cation homoeostasis and that its absence has severe effects on cell morphogenesis and cell division. Inactivation of both LTA and WTA is lethal and comparison of the individual mutants suggests that they have differentiated roles in elongation (WTA) and division (LTA). B. subtilis has four ltaS paralogues and we show how their roles are partially differentiated. Two paralogues have a redundant role in LTA synthesis during sporulation and their absence gives a novel absolute block in sporulation. The crystal structure of the extracytoplasmic part of LtaS, solved at 2.4-A resolution, reveals a phosphorylated threonine residue, which provides clues about the catalytic mechanism and identifies the active site of the enzyme.
Collapse
Affiliation(s)
- Kathrin Schirner
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Jon Marles-Wright
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Richard J Lewis
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Abstract
The growing problem of antibiotic resistance has been exacerbated by the use of new drugs that are merely variants of older overused antibiotics. While it is naive to expect to restrain the spread of resistance without controlling antibacterial usage, the desperate need for drugs with novel targets has been recognized by health organizations, industry and academia alike. The wealth of knowledge available about the bacterial cell-division pathway has aided target-driven approaches to identify novel inhibitors. Here, we discuss the therapeutic potential of inhibiting bacterial cell division, and review the progress made in this exciting new area of antibacterial discovery.
Collapse
|
11
|
Wadsworth KD, Rowland SL, Harry EJ, King GF. The divisomal protein DivIB contains multiple epitopes that mediate its recruitment to incipient division sites. Mol Microbiol 2008; 67:1143-55. [PMID: 18208530 DOI: 10.1111/j.1365-2958.2008.06114.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bacterial cytokinesis is orchestrated by an assembly of essential cell division proteins that form a supramolecular structure known as the divisome. DivIB and its orthologue FtsQ are essential members of the divisome in Gram-positive and Gram-negative bacteria respectively. DivIB is a bitopic membrane protein composed of an N-terminal cytoplasmic domain, a single-pass transmembrane domain, and a C-terminal extracytoplasmic region comprised of three separate protein domains. A molecular dissection approach was used to determine which of these domains are essential for recruitment of DivIB to incipient division sites and for its cell division functions. We show that DivIB has three molecular epitopes that mediate its localization to division septa; two epitopes are encoded within the extracytoplasmic region while the third is located in the transmembrane domain. It is proposed that these epitopes represent sites of interaction with other divisomal proteins, and we have used this information to develop a model of the way in which DivIB and FtsQ are integrated into the divisome. Remarkably, two of the three DivIB localization epitopes are dispensable for vegetative cell division; this suggests that the divisome is assembled using a complex network of protein-protein interactions, many of which are redundant and likely to be individually non-essential.
Collapse
Affiliation(s)
- Kimberly D Wadsworth
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824;
| |
Collapse
|