1
|
Olea-Ozuna RJ, Campbell MJ, Quintanilla SY, Nandy S, Brodbelt JS, Boll JM. Alternative lipid synthesis in response to phosphate limitation promotes antibiotic tolerance in Gram-negative ESKAPE pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612458. [PMID: 39314339 PMCID: PMC11419095 DOI: 10.1101/2024.09.11.612458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The Gram-negative outer membrane protects bacterial cells from environmental toxins such as antibiotics. The outer membrane lipid bilayer is asymmetric; while glycerophospholipids compose the periplasmic facing leaflet, the surface layer is enriched with phosphate-containing lipopolysaccharides. The anionic phosphates that decorate the cell surface promote electrostatic interactions with cationic antimicrobial peptides such as colistin, allowing them to penetrate the bilayer, form pores, and lyse the cell. Colistin is prescribed as a last-line therapy to treat multidrug-resistant Gram-negative infections. Acinetobacter baumannii is an ESKAPE pathogen that rapidly develops resistance to antibiotics and persists for extended periods in the host or on abiotic surfaces. Survival in environmental stress such as phosphate scarcity, represents a clinically significant challenge for nosocomial pathogens. In the face of phosphate starvation, certain bacteria encode adaptive strategies, including the substitution of glycerophospholipids with phosphorus-free lipids. In bacteria, phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin are conserved glycerophospholipids that can form lipid bilayers, particularly in the presence of other lipids. Here, we demonstrate that in response to phosphate limitation, conserved regulatory mechanisms induce alternative lipid production in A. baumannii. Specifically, phosphate limitation induces formation of three lipids, including amine-containing ornithine and lysine aminolipids. Mutations that inactivate aminolipid biosynthesis exhibit fitness defects relative to wild type in colistin growth and killing assays. Furthermore, we show that other Gram-negative ESKAPE pathogens accumulate aminolipids under phosphate limiting growth conditions, suggesting aminolipid biosynthesis may represent a broad strategy to overcome cationic antimicrobial peptide-mediated killing.
Collapse
Affiliation(s)
| | | | | | - Sinjini Nandy
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | | | - Joseph M. Boll
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
2
|
Santoshi M, Bansia H, Hussain M, Jha AK, Nagaraja V. Identification of a 1-acyl-glycerol-3-phosphate acyltransferase from Mycobacterium tuberculosis, a key enzyme involved in triacylglycerol biosynthesis. Mol Microbiol 2024; 121:1164-1181. [PMID: 38676355 DOI: 10.1111/mmi.15265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Latent tuberculosis, caused by dormant Mycobacterium tuberculosis (Mtb), poses a threat to global health through the incubation of undiagnosed infections within the community. Dormant Mtb, which is phenotypically tolerant to antibiotics, accumulates triacylglycerol (TAG) utilizing fatty acids obtained from macrophage lipid droplets. TAG is vital to mycobacteria, serving as a cell envelope component and energy reservoir during latency. TAG synthesis occurs by sequential acylation of glycerol-3-phosphate, wherein the second acylation step is catalyzed by acylglycerol-3-phosphate acyltransferase (AGPAT), resulting in the production of phosphatidic acid (PA), a precursor for the synthesis of TAG and various phospholipids. Here, we have characterized a putative acyltransferase of Mtb encoded by Rv3816c. We found that Rv3816c has all four characteristic motifs of AGPAT, exists as a membrane-bound enzyme, and functions as 1-acylglycerol-3-phosphate acyltransferase. The enzyme could transfer the acyl group to acylglycerol-3-phosphate (LPA) from monounsaturated fatty acyl-coenzyme A of chain length 16 or 18 to produce PA. Complementation of Escherichia coli PlsC mutant in vivo by Rv3816c confirmed that it functions as AGPAT. Its active site mutants, H43A and D48A, were incapable of transferring the acyl group to LPA in vitro and were not able to rescue the growth defect of E. coli PlsC mutant in vivo. Identifying Rv3816c as AGPAT and comparing its properties with other AGPAT homologs is not only a step toward understanding the TAG biosynthesis in mycobacteria but has the potential to explore it as a drug target.
Collapse
Affiliation(s)
- Meghna Santoshi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Harsh Bansia
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Muzammil Hussain
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Abodh Kumar Jha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
3
|
Vasilopoulos G, Heflik L, Czolkoss S, Heinrichs F, Kleetz J, Yesilyurt C, Tischler D, Westhoff P, Exterkate M, Aktas M, Narberhaus F. Characterization of multiple lysophosphatidic acid acyltransferases in the plant pathogen Xanthomonas campestris. FEBS J 2024; 291:705-721. [PMID: 37943159 DOI: 10.1111/febs.16996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023]
Abstract
Phosphatidic acid (PA) is the precursor of most phospholipids like phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. In bacteria, its biosynthesis begins with the acylation of glycerol-3-phosphate to lysophosphatidic acid (LPA), which is further acylated to PA by the PlsC enzyme. Some bacteria, like the plant pathogen Xanthomonas campestris, use a similar pathway to acylate lysophosphatidylcholine to phosphatidylcholine (PC). Previous studies assigned two acyltransferases to PC formation. Here, we set out to study their activity and found a second much more prominent function of these enzymes in LPA to PA conversion. This PlsC-like activity was supported by the functional complementation of a temperature-sensitive plsC-deficient Escherichia coli strain. Biocomputational analysis revealed two further PlsC homologs in X. campestris. The cellular levels of the four PlsC-like proteins varied with respect to growth phase and growth temperature. To address the question whether these enzymes have redundant or specific functions, we purified two recombinant, detergent-solubilized enzymes in their active form, which enabled the first direct biochemical comparison of PlsC isoenzymes from the same organism. Overlapping but not identical acyl acceptor and acyl donor preferences suggest redundant and specialized functions of the X. campestris PlsC enzymes. The altered fatty acid composition in plsC mutant strains further supports the functional differentiation of these enzymes.
Collapse
Affiliation(s)
- Georgios Vasilopoulos
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Lukas Heflik
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Simon Czolkoss
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Florian Heinrichs
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Julia Kleetz
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Cansel Yesilyurt
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Dirk Tischler
- Faculty of Biology and Biotechnology, Microbial Biotechnology, Ruhr University Bochum, Germany
| | - Philipp Westhoff
- Metabolomics and Metabolism Laboratory, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Germany
| | - Marten Exterkate
- Faculty of Mathematics and Natural Sciences, Membrane Biogenesis and Lipidomics, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Meriyem Aktas
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Franz Narberhaus
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| |
Collapse
|
4
|
Ogawa T, Kuboshima M, Suwanawat N, Kawamoto J, Kurihara T. Division of the role and physiological impact of multiple lysophosphatidic acid acyltransferase paralogs. BMC Microbiol 2022; 22:241. [PMID: 36203164 PMCID: PMC9541089 DOI: 10.1186/s12866-022-02641-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Lysophosphatidic acid acyltransferase (LPAAT) is a phospholipid biosynthesis enzyme that introduces a particular set of fatty acids at the sn-2 position of phospholipids. Many bacteria have multiple LPAAT paralogs, and these enzymes are considered to have different fatty acid selectivities and to produce diverse phospholipids with distinct fatty acid compositions. This feature is advantageous for controlling the physicochemical properties of lipid membranes to maintain membrane integrity in response to the environment. However, it remains unclear how LPAAT paralogs are functionally differentiated and biologically significant. Results To better understand the division of roles of the LPAAT paralogs, we analyzed the functions of two LPAAT paralogs, PlsC4 and PlsC5, from the psychrotrophic bacterium Shewanella livingstonensis Ac10. As for their enzymatic function, lipid analysis of plsC4- and plsC5-inactivated mutants revealed that PlsC4 prefers iso-tridecanoic acid (C12-chain length, methyl-branched), whereas PlsC5 prefers palmitoleic acid (C16-chain length, monounsaturated). Regarding the physiological role, we found that plsC4, not plsC5, contributes to tolerance to cold stress. Using bioinformatics analysis, we demonstrated that orthologs of PlsC4/PlsC5 and their close relatives, constituting a new clade of LPAATs, are present in many γ-proteobacteria. We also found that LPAATs of this clade are phylogenetically distant from principal LPAATs, such as PlsC1 of S. livingstonensis Ac10, which are universally conserved among bacteria, suggesting the presence of functionally differentiated LPAATs in these bacteria. Conclusions PlsC4 and PlsC5, which are LPAAT paralogs of S. livingstonensis Ac10, play different roles in phospholipid production and bacterial physiology. An enzyme belonging to PlsC4/PlsC5 subfamilies and their close relatives are present, in addition to principal LPAATs, in many γ-proteobacteria, suggesting that the division of roles is more common than previously thought. Thus, both principal LPAATs and PlsC4/PlsC5-related enzymes should be considered to decipher the metabolism and physiology of bacterial cell membranes. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02641-8.
Collapse
Affiliation(s)
- Takuya Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Misaki Kuboshima
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Nittikarn Suwanawat
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
5
|
Ogawa T, Suwanawat N, Toyotake Y, Watanabe B, Kawamoto J, Kurihara T. Lysophosphatidic acid acyltransferase from the thermophilic bacterium Thermus thermophilus HB8 displays substrate promiscuity. Biosci Biotechnol Biochem 2020; 84:1831-1838. [PMID: 32456605 DOI: 10.1080/09168451.2020.1771169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Lysophosphatidic acid acyltransferase is a phospholipid biosynthetic enzyme that introduces a fatty acyl group into the sn-2 position of phospholipids. Its substrate selectivity is physiologically important in defining the physicochemical properties of lipid membranes and modulating membrane protein function. However, it remains unclear how these enzymes recognize various fatty acids. Successful purification of bacterial lysophosphatidic acid acyltransferases (PlsCs) was recently reported and has paved a path for the detailed analysis of their reaction mechanisms. Here, we purified and characterized PlsC from the thermophilic bacterium Thermus thermophilus HB8. This integral membrane protein remained active even after solubilization and purification and showed reactivity toward saturated, unsaturated, and methyl-branched fatty acids, although branched-chain acyl groups are the major constituent of phospholipids of this bacterium. Multiple sequence alignment revealed the N-terminal end of the enzyme to be shorter than that of PlsCs with defined substrate selectivity, suggesting that the shortened N-terminus confers substrate promiscuity. ABBREVIATIONS ACP: acyl carrier protein; CAPS: N-cyclohexyl-3-aminopropanesulfonic acid; CoA: coenzyme A; CYMAL-6: 6-cyclohexyl-1-hexyl-β-D-maltoside; DDM: n-dodecyl-β-D-maltoside; DTNB: 5,5´-dithiobis(2-nitrobenzoic acid); EPA: eicosapentaenoic acid; G3P: glycerol 3-phosphate; HEPES: N-2-hydroxyethylpiperazine-N´-2-ethanesulfonic acid; LPA: lysophosphatidic acid; MS: mass spectrometry; PA: phosphatidic acid.
Collapse
Affiliation(s)
- Takuya Ogawa
- Institute for Chemical Research, Kyoto University , Kyoto, Japan
| | | | - Yosuke Toyotake
- Institute for Chemical Research, Kyoto University , Kyoto, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University , Kyoto, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University , Kyoto, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University , Kyoto, Japan
| |
Collapse
|
6
|
Toyotake Y, Nishiyama M, Yokoyama F, Ogawa T, Kawamoto J, Kurihara T. A Novel Lysophosphatidic Acid Acyltransferase of Escherichia coli Produces Membrane Phospholipids with a cis-vaccenoyl Group and Is Related to Flagellar Formation. Biomolecules 2020; 10:E745. [PMID: 32403425 PMCID: PMC7277886 DOI: 10.3390/biom10050745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Lysophosphatidic acid acyltransferase (LPAAT) introduces fatty acyl groups into the sn-2 position of membrane phospholipids (PLs). Various bacteria produce multiple LPAATs, whereas it is believed that Escherichia coli produces only one essential LPAAT homolog, PlsC-the deletion of which is lethal. However, we found that E. coli possesses another LPAAT homolog named YihG. Here, we show that overexpression of YihG in E. coli carrying a temperature-sensitive mutation in plsC allowed its growth at non-permissive temperatures. Analysis of the fatty acyl composition of PLs from the yihG-deletion mutant (∆yihG) revealed that endogenous YihG introduces the cis-vaccenoyl group into the sn-2 position of PLs. Loss of YihG did not affect cell growth or morphology, but ∆yihG cells swam well in liquid medium in contrast to wild-type cells. Immunoblot analysis showed that FliC was highly expressed in ∆yihG cells, and this phenotype was suppressed by expression of recombinant YihG in ∆yihG cells. Transmission electron microscopy confirmed that the flagellar structure was observed only in ∆yihG cells. These results suggest that YihG has specific functions related to flagellar formation through modulation of the fatty acyl composition of membrane PLs.
Collapse
Affiliation(s)
- Yosuke Toyotake
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Masayoshi Nishiyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
| | - Fumiaki Yokoyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
| | - Takuya Ogawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
| |
Collapse
|
7
|
Tong X, Oh EK, Lee BH, Lee JK. Production of long-chain free fatty acids from metabolically engineered Rhodobacter sphaeroides heterologously producing periplasmic phospholipase A2 in dodecane-overlaid two-phase culture. Microb Cell Fact 2019; 18:20. [PMID: 30704481 PMCID: PMC6357386 DOI: 10.1186/s12934-019-1070-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/22/2019] [Indexed: 12/03/2022] Open
Abstract
Background Long-chain free fatty acids (FFAs) are a type of backbone molecule that can react with alcohol to produce biodiesels. Various microorganisms have become potent producers of FFAs. Efforts have focused on increasing metabolic flux to the synthesis of either neutral fat or fatty acyl intermediates attached to acyl carrier protein (ACP), which are the source of FFAs. Membrane lipids are also a source of FFAs. As an alternative way of producing FFAs, exogenous phospholipase may be used after heterologous production and localization in the periplasmic space. In this work, we examined whether Rhodobacter sphaeroides, which forms an intracytoplasmic membrane, can be used for long-chain FFA production using phospholipase. Results The recombinant R. sphaeroides strain Rs-A2, which heterologously produces Arabidopsis thaliana phospholipase A2 (PLA2) in the periplasm, excretes FFAs during growth. FFA productivity under photoheterotrophic conditions is higher than that observed under aerobic or semiaerobic conditions. When the biosynthetic enzymes for FA (β-ketoacyl-ACP synthase, FabH) and phosphatidate (1-acyl-sn-glycerol-3-phosphate acyltransferase, PlsC) were overproduced in Rs-A2, the FFA productivity of the resulting strain Rs-HCA2 was elevated, and the FFAs produced mainly consisted of long-chain FAs of cis-vaccenate, stearate, and palmitate in an approximately equimolar ratio. The high-cell-density culture of Rs-HCA2 with DMSO in two-phase culture with dodecane resulted in an increase of overall carbon substrate consumption, which subsequently leads to a large increase in FFA productivity of up to 2.0 g L−1 day−1. Overexpression of the genes encoding phosphate acyltransferase (PlsX) and glycerol-3-phosphate acyltransferase (PlsY), which catalyze the biosynthetic steps immediately upstream from PlsC, in Rs-HCA2 generated Rs-HXYCA2, which grew faster than Rs-HCA2 and showed an FFA productivity of 2.8 g L−1 day−1 with an FFA titer of 8.5 g L−1. Conclusion We showed that long-chain FFAs can be produced from metabolically engineered R. sphaeroides heterologously producing PLA2 in the periplasm. The FFA productivity was greatly increased by high-cell-density culture in two-phase culture with dodecane. This approach provides highly competitive productivity of long-chain FFAs by R. sphaeroides compared with other bacteria. This method may be applied to FFA production by other photosynthetic bacteria with similar differentiated membrane systems. Electronic supplementary material The online version of this article (10.1186/s12934-019-1070-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaomeng Tong
- Department of Life Science, Sogang University, Mapo, Shinsu 1, Seoul, 121-742, South Korea
| | - Eun Kyoung Oh
- Department of Life Science, Sogang University, Mapo, Shinsu 1, Seoul, 121-742, South Korea
| | - Byeong-Ha Lee
- Department of Life Science, Sogang University, Mapo, Shinsu 1, Seoul, 121-742, South Korea
| | - Jeong K Lee
- Department of Life Science, Sogang University, Mapo, Shinsu 1, Seoul, 121-742, South Korea.
| |
Collapse
|
8
|
Smith AF, Rihtman B, Stirrup R, Silvano E, Mausz MA, Scanlan DJ, Chen Y. Elucidation of glutamine lipid biosynthesis in marine bacteria reveals its importance under phosphorus deplete growth in Rhodobacteraceae. ISME JOURNAL 2018; 13:39-49. [PMID: 30108306 PMCID: PMC6298996 DOI: 10.1038/s41396-018-0249-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 11/09/2022]
Abstract
Marine microorganisms employ multiple strategies to cope with transient and persistent nutrient limitation, one of which, for alleviating phosphorus (P) stress, is to substitute membrane glycerophospholipids with non-P containing surrogate lipids. Such a membrane lipid remodelling strategy enables the most abundant marine phytoplankton and heterotrophic bacteria to adapt successfully to nutrient scarcity in marine surface waters. An important group of non-P lipids, the aminolipids which lack a diacylglycerol backbone, are poorly studied in marine microbes. Here, using a combination of genetic, lipidomics and metagenomics approaches, we reveal for the first time the genes (glsB, olsA) required for the formation of the glutamine-containing aminolipid. Construction of a knockout mutant in either glsB or olsA in the model marine bacterium Ruegeria pomeroyi DSS-3 completely abolished glutamine lipid production. Moreover, both mutants showed a considerable growth cost under P-deplete conditions and the olsA mutant, that is unable to produce the glutamine and ornithine aminolipids, ceased to grow under P-deplete conditions. Analysis of sequenced microbial genomes show that glsB is primarily confined to the Rhodobacteraceae family, which includes the ecologically important marine Roseobacter clade that are key players in the marine sulphur and nitrogen cycles. Analysis of the genes involved in glutamine lipid biosynthesis in the Tara ocean metagenome dataset revealed the global occurrence of glsB in marine surface waters and a positive correlation between glsB abundance and N* (a measure of the deviation from the canonical Redfield ratio), suggesting glutamine lipid plays an important role in the adaptation of marine Rhodobacteraceae to P limitation.
Collapse
Affiliation(s)
- Alastair F Smith
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Branko Rihtman
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Rachel Stirrup
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Eleonora Silvano
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Michaela A Mausz
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
9
|
Ogawa T, Tanaka A, Kawamoto J, Kurihara T. Purification and characterization of 1-acyl-sn-glycerol-3-phosphate acyltransferase with a substrate preference for polyunsaturated fatty acyl donors from the eicosapentaenoic acid-producing bacterium Shewanella livingstonensis Ac10. J Biochem 2018; 164:33-39. [PMID: 29415144 DOI: 10.1093/jb/mvy025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/21/2018] [Indexed: 11/12/2022] Open
Abstract
1-Acyl-sn-glycerol-3-phosphate acyltransferase (designated as PlsC in bacteria) catalyzes the acylation of lysophosphatidic acid and is responsible for the de novo production of phosphatidic acid, a precursor for the synthesis of various membrane glycerophospholipids. Because PlsC is an integral membrane protein, it is generally difficult to solubilize it without causing its inactivation, which has been hampering its biochemical characterization despite its ubiquitous presence and physiological importance. Most biochemical studies of PlsC have been carried out using crude membrane preparations or intact cells. In this study, we succeeded in solubilization and purification of a recombinant PlsC in its active form from the eicosapentaenoic acid-producing bacterium Shewanella livingstonensis Ac10 using 6-cyclohexyl-1-hexyl-β-d-maltoside as the detergent. We characterized the purified enzyme and found that it has a substrate preference for the acyl donors with a polyunsaturated fatty acyl group, such as eicosapentaenoyl group. These results provide a new method for purification of the PlsC family enzyme and demonstrate the occurrence of a new PlsC with unique substrate specificity.
Collapse
Affiliation(s)
- Takuya Ogawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Asako Tanaka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
10
|
Toyotake Y, Cho HN, Kawamoto J, Kurihara T. A novel 1-acyl-sn-glycerol-3-phosphate O-acyltransferase homolog for the synthesis of membrane phospholipids with a branched-chain fatty acyl group in Shewanella livingstonensis Ac10. Biochem Biophys Res Commun 2018; 500:704-709. [PMID: 29678574 DOI: 10.1016/j.bbrc.2018.04.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
1-Acyl-sn-glycerol-3-phosphate O-acyltransferase (PlsC) plays an essential role in the formation of phosphatidic acid, a precursor of various membrane phospholipids (PLs), in bacteria by catalyzing the introduction of an acyl group into the sn-2 position of lysophosphatidic acid. Various bacteria produce more than one PlsC. However, the physiological significance of the occurrence of multiple PlsCs is poorly understood. A psychrotrophic bacterium, Shewanella livingstonensis Ac10, which produces eicosapentaenoic acid at low temperatures, has five putative PlsCs (PlsC1-5). We previously showed that PlsC1 is responsible for the production of PLs containing an eicosapentaenoyl group. Here, we characterized another putative PlsC of this bacterium named PlsC4. We generated a plsC4-disrupted mutant and found that PLs containing 13:0 found in the parental strain were almost completely absent in the mutant. The loss of these PLs was suppressed by introduction of a plsC4-expression plasmid. PLs containing 15:0 were also drastically decreased by plsC4 disruption. Gas chromatography-mass spectrometry analysis of fatty acyl methyl esters derived from PLs of the parental strain showed that the 13:0 and 15:0 groups were an 11-methyllauroyl group and a 13-methylmyristoyl group, respectively. Phospholipase A2 treatment revealed that these fatty acyl groups were linked to the sn-2 position of PLs. Thus, PlsC4 is a new type of PlsC homolog that is responsible for the synthesis of PLs containing a branched-chain fatty acyl group at the sn-2 position and plays a clearly different role from that of PlsC1 in vivo.
Collapse
Affiliation(s)
- Yosuke Toyotake
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hyun-Nam Cho
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
11
|
Gao J, Guo Z. Progress in the synthesis and biological evaluation of lipid A and its derivatives. Med Res Rev 2018; 38:556-601. [PMID: 28621828 PMCID: PMC5732894 DOI: 10.1002/med.21447] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/09/2017] [Accepted: 04/20/2017] [Indexed: 12/31/2022]
Abstract
Lipid A is one of the core structures of bacterial lipopolysaccharides (LPSs), and it is mainly responsible for the strong immunostimulatory activities of LPS through interactions with the Toll-like receptors and other molecules in the human immune system. To obtain structurally homogeneous and well-defined lipid As and its derivatives in quantities meaningful for various biological studies and applications, their chemical synthesis has become a focal point. This review has provided a survey of significant progresses made in the synthesis of lipid A, and its derivatives that carry diverse saturated and unsaturated lipids, have the phosphate group at its reducing end replaced with a more stable phosphate or carboxyl group, or lack the reducing end phosphate or both phosphate groups, as well as progresses in the synthesis of LPS analogs and other lipid A conjugates. These synthetic molecules have facilitated the elucidation of the structure-activity relationships of lipid A useful for the design and development of lipid A based therapeutics, such as those utilized to treat sepsis, and other medical applications, for example the use of monophosphoryl lipid A as a carrier molecule for the study of fully synthetic self-adjuvanting conjugate vaccines. These topics are also briefly covered in the current review.
Collapse
Affiliation(s)
- Jian Gao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan 250100, China
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
12
|
Khatib A, Arhab Y, Bentebibel A, Abousalham A, Noiriel A. Reassessing the Potential Activities of Plant CGI-58 Protein. PLoS One 2016; 11:e0145806. [PMID: 26745266 PMCID: PMC4706320 DOI: 10.1371/journal.pone.0145806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 12/09/2015] [Indexed: 11/23/2022] Open
Abstract
Comparative Gene Identification-58 (CGI-58) is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL), the initial enzyme responsible for the triacylglycerol (TAG) catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed.
Collapse
Affiliation(s)
- Abdallah Khatib
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires UMR 5246 CNRS, Organisation et Dynamique des Membranes Biologiques, Université Lyon 1, Villeurbanne, France
| | - Yani Arhab
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires UMR 5246 CNRS, Organisation et Dynamique des Membranes Biologiques, Université Lyon 1, Villeurbanne, France
| | - Assia Bentebibel
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires UMR 5246 CNRS, Organisation et Dynamique des Membranes Biologiques, Université Lyon 1, Villeurbanne, France
| | - Abdelkarim Abousalham
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires UMR 5246 CNRS, Organisation et Dynamique des Membranes Biologiques, Université Lyon 1, Villeurbanne, France
| | - Alexandre Noiriel
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires UMR 5246 CNRS, Organisation et Dynamique des Membranes Biologiques, Université Lyon 1, Villeurbanne, France
- * E-mail:
| |
Collapse
|
13
|
Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:495-502. [PMID: 22981714 DOI: 10.1016/j.bbalip.2012.08.018] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 12/15/2022]
Abstract
Membrane phospholipid synthesis is a vital facet of bacterial physiology. Although the spectrum of phospholipid headgroup structures produced by bacteria is large, the key precursor to all of these molecules is phosphatidic acid (PtdOH). Glycerol-3-phosphate derived from the glycolysis via glycerol-phosphate synthase is the universal source for the glycerol backbone of PtdOH. There are two distinct families of enzymes responsible for the acylation of the 1-position of glycerol-3-phosphate. The PlsB acyltransferase was discovered in Escherichia coli, and homologs are present in many eukaryotes. This protein family primarily uses acyl-acyl carrier protein (ACP) endproducts of fatty acid synthesis as acyl donors, but may also use acyl-CoA derived from exogenous fatty acids. The second protein family, PlsY, is more widely distributed in bacteria and utilizes the unique acyl donor, acyl-phosphate, which is produced from acyl-ACP by the enzyme PlsX. The acylation of the 2-position is carried out by members of the PlsC protein family. All PlsCs use acyl-ACP as the acyl donor, although the PlsCs of the γ-proteobacteria also may use acyl-CoA. Phospholipid headgroups are precursors in the biosynthesis of other membrane-associated molecules and the diacylglycerol product of these reactions is converted to PtdOH by one of two distinct families of lipid kinases. The central importance of the de novo and recycling pathways to PtdOH in cell physiology suggest that these enzymes are suitable targets for the development of antibacterial therapeutics in Gram-positive pathogens. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
|
14
|
Ekici S, Pawlik G, Lohmeyer E, Koch HG, Daldal F. Biogenesis of cbb(3)-type cytochrome c oxidase in Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:898-910. [PMID: 22079199 DOI: 10.1016/j.bbabio.2011.10.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 10/31/2011] [Indexed: 11/18/2022]
Abstract
The cbb(3)-type cytochrome c oxidases (cbb(3)-Cox) constitute the second most abundant cytochrome c oxidase (Cox) group after the mitochondrial-like aa(3)-type Cox. They are present in bacteria only, and are considered to represent a primordial innovation in the domain of Eubacteria due to their phylogenetic distribution and their similarity to nitric oxide (NO) reductases. They are crucial for the onset of many anaerobic biological processes, such as anoxygenic photosynthesis or nitrogen fixation. In addition, they are prevalent in many pathogenic bacteria, and important for colonizing low oxygen tissues. Studies related to cbb(3)-Cox provide a fascinating paradigm for the biogenesis of sophisticated oligomeric membrane proteins. Complex subunit maturation and assembly machineries, producing the c-type cytochromes and the binuclear heme b(3)-Cu(B) center, have to be coordinated precisely both temporally and spatially to yield a functional cbb(3)-Cox enzyme. In this review we summarize our current knowledge on the structure, regulation and assembly of cbb(3)-Cox, and provide a highly tentative model for cbb(3)-Cox assembly and formation of its heme b(3)-Cu(B) binuclear center. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Seda Ekici
- University of Pennsylvania, Department of Biology, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
15
|
González-Silva N, López-Lara IM, Reyes-Lamothe R, Taylor AM, Sumpton D, Thomas-Oates J, Geiger O. The dioxygenase-encoding olsD gene from Burkholderia cenocepacia causes the hydroxylation of the amide-linked fatty acyl moiety of ornithine-containing membrane lipids. Biochemistry 2011; 50:6396-408. [PMID: 21707055 DOI: 10.1021/bi200706v] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Burkholderia cenocepacia is an important opportunistic pathogen, and one of the most striking features of the Burkholderia genus is the collection of polar lipids present in its membrane, including phosphatidylethanolamine (PE) and ornithine-containing lipids (OLs), as well as the 2-hydroxylated derivatives of PE and OLs (2-OH-PE and 2-OH-OLs, respectively), which differ from the standard versions by virtue of the presence of a hydroxyl group at C2 (2-OH) of an esterified fatty acyl residue. Similarly, a lipid A-esterified myristoyl group from Salmonella typhimurium can have a 2-hydroxy modification that is due to the LpxO enzyme. We thus postulated that 2-hydroxylation of 2-OH-OLs might be catalyzed by a novel dioxygenase homologue of LpxO. In B. cenocepacia, we have now identified two open reading frames (BCAM1214 and BCAM2401) homologous to LpxO from S. typhimurium. The introduction of bcam2401 (designated olsD) into Sinorhizobium meliloti leads to the formation of one new lipid and in B. cenocepacia of two new lipids. Surprisingly, the lipid modifications on OLs due to OlsD occur on the amide-linked fatty acyl chain. This is the first report of a hydroxyl modification of OLs on the amide-linked fatty acyl moiety. Formation of hydroxylated OLs occurs only when the biosynthesis pathway for nonmodified standard OLs is intact. The hydroxyl modification of OLs on the amide-linked fatty acyl moiety occurs only under acid stress conditions. An assay has been developed for the OlsD dioxygenase, and an initial characterization of the enzyme is presented.
Collapse
Affiliation(s)
- Napoleón González-Silva
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos CP62251, Mexico
| | | | | | | | | | | | | |
Collapse
|
16
|
Isolation and characterization of a mutant of the marine bacterium Alcanivorax borkumensis SK2 defective in lipid biosynthesis. Appl Environ Microbiol 2010; 76:2884-94. [PMID: 20305021 DOI: 10.1128/aem.02832-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many microorganisms, the key enzyme responsible for catalyzing the last step in triacylglycerol (TAG) and wax ester (WE) biosynthesis is an unspecific acyltransferase which is also referred to as wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT; AtfA). The importance and function of two AtfA homologues (AtfA1 and AtfA2) in the biosynthesis of TAGs and WEs in the hydrocarbon-degrading marine bacterium Alcanivorax borkumensis SK2 have been described recently. However, after the disruption of both the AtfA1 and AtfA2 genes, reduced but substantial accumulation of TAGs was still observed, indicating the existence of an alternative TAG biosynthesis pathway. In this study, transposon-induced mutagenesis was applied to an atfA1 atfA2 double mutant to screen for A. borkumensis mutants totally defective in biosynthesis of neutral lipids in order to identify additional enzymes involved in the biosynthesis of these lipids. At the same time, we have searched for a totally TAG-negative mutant in order to study the function of TAGs in A. borkumensis. Thirteen fluorescence-negative mutants were identified on Nile red ONR7a agar plates and analyzed for their abilities to synthesize lipids. Among these, mutant 2 M(131) was no longer able to synthesize and accumulate TAGs if pyruvate was used as the sole carbon source. The transposon insertion was localized in a gene encoding a putative cytochrome c family protein (ABO_1185). Growth and TAG accumulation experiments showed that the disruption of this gene resulted in the absence of TAGs in 2 M(131) but that growth was not affected. In cells of A. borkumensis SK2 grown on pyruvate as the sole carbon source, TAGs represented about 11% of the dry weight of the cells, while in the mutant 2 M(131), TAGs were not detected by thin-layer and gas chromatography analyses. Starvation and lipid mobilization experiments revealed that the lipids play an important role in the survival of the cells. The function of neutral lipids in A. borkumensis SK2 is discussed.
Collapse
|
17
|
Geiger O, González-Silva N, López-Lara IM, Sohlenkamp C. Amino acid-containing membrane lipids in bacteria. Prog Lipid Res 2010; 49:46-60. [DOI: 10.1016/j.plipres.2009.08.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
A shotgun lipidomics study of a putative lysophosphatidic acid acyl transferase (PlsC) in Sinorhizobium meliloti. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2873-82. [DOI: 10.1016/j.jchromb.2009.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/05/2009] [Accepted: 05/09/2009] [Indexed: 02/04/2023]
|
19
|
Zhang YM, Rock CO. Thematic review series: Glycerolipids. Acyltransferases in bacterial glycerophospholipid synthesis. J Lipid Res 2008; 49:1867-74. [PMID: 18369234 DOI: 10.1194/jlr.r800005-jlr200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phospholipid biosynthesis is a vital facet of bacterial physiology that begins with the synthesis of the fatty acids by a soluble type II fatty acid synthase. The bacterial glycerol-phosphate acyltransferases utilize the completed fatty acid chains to form the first membrane phospholipid and thus play a critical role in the regulation of membrane biogenesis. The first bacterial acyltransferase described was PlsB, a glycerol-phosphate acyltransferase. PlsB is a key regulatory point that coordinates membrane phospholipid formation with cell growth and macromolecular synthesis. Phosphatidic acid is then produced by PlsC, a 1-acylglycerol-phosphate acyltransferase. These two acyltransferases use thioesters of either CoA or acyl carrier protein (ACP) as the acyl donors and have homologs that perform the same reactions in higher organisms. However, the most prevalent glycerol-phosphate acyltransferase in the bacterial world is PlsY, which uses a recently discovered acyl-phosphate fatty acid intermediate as an acyl donor. This unique activated fatty acid is formed from the acyl-ACP end products of the fatty acid biosynthetic pathway by PlsX, an acyl-ACP:phosphate transacylase.
Collapse
Affiliation(s)
- Yong-Mei Zhang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|