1
|
Miguel Trabajo T, Guex I, Dubey M, Sarton-Lohéac E, Todorov H, Richard X, Mazza C, van der Meer JR. Inferring bacterial interspecific interactions from microcolony growth expansion. MICROLIFE 2024; 5:uqae020. [PMID: 39524022 PMCID: PMC11549556 DOI: 10.1093/femsml/uqae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 08/19/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Bacterial species interactions significantly shape growth and behavior in communities, determining the emergence of community functions. Typically, these interactions are studied through bulk population measurements, overlooking the role of cell-to-cell variability and spatial context. This study uses real-time surface growth measurements of thousands of sparsely positioned microcolonies to investigate interactions and kinetic variations in monocultures and cocultures of Pseudomonas putida and P. veronii under substrate competition (succinate) or substrate independence (d-mannitol and putrescine). In monoculture, microcolonies exhibited expected substrate-dependent expansion rates, but individual colony sizes were affected by founder cell density, spatial positioning, growth rates, and lag times. In coculture, substrate competition favored P. putida, but unexpectedly, reduced the maximum growth rates of both species. In contrast, 10% of P. veronii microcolonies under competition grew larger than expected, likely due to founder cell phenotypic variation and stochastic spatial positioning. These effects were alleviated under substrate independence. A linear relationship between founder cell ratios and final colony area ratios in local neighborhoods (6.5-65 µm radius) was observed in coculture, with its slope reflecting interaction type and strength. Measured slopes in the P. putida to P. veronii biomass ratio under competition were one-third reduced compared to kinetic predictions using a cell-agent growth model, which exometabolite analysis and simulations suggested may be due to metabolite cross-feeding or inhibitory compound production. This indicates additional factors beyond inherent monoculture growth kinetics driving spatial interactions. Overall, the study demonstrates how microcolony growth experiments offer valuable insights into bacterial interactions, from local to community-level dynamics.
Collapse
Affiliation(s)
- Tania Miguel Trabajo
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Isaline Guex
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
- Department of Mathematics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Manupriyam Dubey
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Elvire Sarton-Lohéac
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Helena Todorov
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Xavier Richard
- Department of Mathematics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Christian Mazza
- Department of Mathematics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Botelho J, Schulenburg H. The Role of Integrative and Conjugative Elements in Antibiotic Resistance Evolution. Trends Microbiol 2020; 29:8-18. [PMID: 32536522 DOI: 10.1016/j.tim.2020.05.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Mobile genetic elements (MGEs), such as plasmids and integrative and conjugative elements (ICEs), are main drivers for the spread of antibiotic resistance (AR). Coevolution between bacteria and plasmids shapes the transfer and stability of plasmids across bacteria. Although ICEs outnumber conjugative plasmids, the dynamics of ICE-bacterium coevolution, ICE transfer rates, and fitness costs are as yet largely unexplored. Conjugative plasmids and ICEs are both transferred by type IV secretion systems, but ICEs are typically immune to segregational loss, suggesting that the evolution of ICE-bacterium associations varies from that of plasmid-bacterium associations. Considering the high abundance of ICEs among bacteria, ICE-bacterium dynamics represent a promising challenge for future research that will enhance our understanding of AR spread in human pathogens.
Collapse
Affiliation(s)
- João Botelho
- Antibiotic Resistance Evolution Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany; Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany.
| | - Hinrich Schulenburg
- Antibiotic Resistance Evolution Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany; Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
3
|
Takano S, Fukuda K, Koto A, Miyazaki R. A novel system of bacterial cell division arrest implicated in horizontal transmission of an integrative and conjugative element. PLoS Genet 2019; 15:e1008445. [PMID: 31609967 PMCID: PMC6812849 DOI: 10.1371/journal.pgen.1008445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/24/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA elements in the prokaryotic world. ICEs are usually retained within the bacterial chromosome, but can be excised and transferred from a donor to a new recipient cell, even of another species. Horizontal transmission of ICEclc, a prevalent ICE in proteobacteria, only occurs from developed specialized transfer competent (tc) cells in the donor population. tc cells become entirely dedicated to the ICE transmission at the cost of cell proliferation. The cell growth impairment is mediated by two ICEclc located genes, parA and shi, but the mechanistic and dynamic details of this process are unknown. To better understand the function of ParA and Shi, we followed their intracellular behavior from fluorescent protein fusions, and studied host cell division at single-cell level. Superresolution imaging revealed that ParA-mCherry colocalized with the host nucleoid while Shi-GFP was enriched at the membrane during the growth impairment. Despite being enriched at different cellular locations, the two proteins showed in vivo interactions, and mutations in the Walker A motif of ParA dislocalized both ParA and Shi. In addition, ParA mutations in the ATPase motif abolished the growth arrest on the host cell. Time-lapse microscopy revealed that ParA and Shi initially delay cell division, suggesting an extension of the S phase of cells, but eventually completely inhibit cell elongation. The parA-shi locus is highly conserved in other ICEclc-related elements, and expressing ParA-Shi from ICEclc in other proteobacterial species caused similar growth arrest, suggesting that the system functions similarly across hosts. The results of our study provide mechanistic insight into the novel and unique system on ICEs and help to understand such epistatic interaction between ICE genes and host physiology that entails efficient horizontal gene transfer.
Collapse
Affiliation(s)
- Sotaro Takano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Kohei Fukuda
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Akiko Koto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
4
|
Sub-Inhibitory concentrations of SOS-Response inducing antibiotics stimulate integrase expression and excision of pathogenicity islands in uropathogenic Escherichia coli strain 536. Int J Med Microbiol 2019; 310:151361. [PMID: 31640923 DOI: 10.1016/j.ijmm.2019.151361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/26/2019] [Accepted: 09/29/2019] [Indexed: 01/24/2023] Open
Abstract
Urinary tract infections are one of the most common bacterial infections and a major public health problem. The predominant causative agents are uropathogenic Escherichia coli. These strains differ from commensal E. coli by the presence of additional horizontally acquired chromosomal material, so-called pathogenicity islands, which encode traits that promote efficient bacterial colonization of the urinary tract. Uropathogenic model strain E. coli 536 possesses six archetypal pathogenicity islands. Bacteriophage-like integrases encoded by each pathogenicity island contribute to island instability. To learn more about the stability of these six islands and factors controlling their stability we constructed two chromosomal reporter systems for the measurement of island loss, as well as for the measurement of the promoter activity of the six island-associated integrase genes at the population level. We used these reporter gene modules to analyze the role of SOS response in island instability. Tests with subinhibitory concentrations of different antibiotics, including many drugs commonly used for the treatment of urinary tract infection, indicated that only SOS response-inducing antibiotics led to an increased loss of islands which was always associated with an increase in the bacterial subpopulations showing high integrase promoter activity. This suggests that island excision correlates with the expression of the cognate integrase. Our reporter modules are valuable tools to investigate the impact of various growth conditions on genome plasticity. Furthermore, a better understanding of the conditions, which affect bacterial integrase expression may open ways to specifically manipulate the genome content of bacterial pathogens by increasing pathogenicity island deletion rates in infecting or colonizing bacteria, thus leading to the attenuation of bacterial pathogens.
Collapse
|
5
|
Transient Replication in Specialized Cells Favors Transfer of an Integrative and Conjugative Element. mBio 2019; 10:mBio.01133-19. [PMID: 31186329 PMCID: PMC6561031 DOI: 10.1128/mbio.01133-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial evolution is driven to a large extent by horizontal gene transfer (HGT)—the processes that distribute genetic material between species rather than by vertical descent. The different elements and processes mediating HGT have been characterized in great molecular detail. In contrast, very little is known on adaptive features selecting HGT evolvability and fitness optimization. By studying the molecular behavior of an integrated mobile DNA of the class of integrative and conjugative elements in individual Pseudomonas putida donor bacteria, we report here how transient replication of the element after its excision from the chromosome is favorable for its transfer success. Since successful transfer into a new recipient is a measure of the element’s fitness, transient replication may have been selected as an adaptive benefit for more-optimal transfer. Integrative and conjugative elements (ICEs) are widespread mobile DNA within bacterial genomes, whose lifestyle is relatively poorly understood. ICEs transmit vertically through donor cell chromosome replication, but in order to transfer, they have to excise from the chromosome. The excision step makes ICEs prone to loss, in case the donor cell divides and the ICE is not replicated. By adapting the system of LacI-cyan fluorescent protein (CFP) binding to lacO operator arrays, we analyze here the process of excision and transfer of the ICE for 3-chlorobenzoate degradation (ICEclc) in individual cells of the bacterium Pseudomonas putida. We provide evidence that ICEclc excises exclusively in a subset of specialized transfer-competent cells. ICEclc copy numbers in transfer-competent cells were higher than in regular nontransferring cells but were reduced in mutants lacking the ICE oriT1 origin of transfer, the ICE DNA relaxase, or the excision recombination sites. Consistently, transfer-competent cells showed a higher proportion without any observable LacI-CFP foci, suggesting ICEclc loss, but this proportion was independent of the ICE relaxase or the ICE origins of transfer. Our results thus indicated that the excised ICE becomes transiently replicated in transfer-competent cells, with up to six observable copies from LacI-CFP fluorescent focus measurements. Most of the observed ICEclc transfer to ICE-free P. putida recipients occurred from donors displaying 3 to 4 ICE copies, which constitute a minority among all transfer-competent cells. This finding suggests, therefore, that replication of the excised ICEclc in donors is beneficial for transfer fitness to recipient cells.
Collapse
|
6
|
Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017; 41:512-537. [PMID: 28369623 PMCID: PMC5812530 DOI: 10.1093/femsre/fux008] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA that transmit both vertically, in a host-integrated state, and horizontally, through excision and transfer to new recipients. Different families of ICEs have been discovered with more or less restricted host ranges, which operate by similar mechanisms but differ in regulatory networks, evolutionary origin and the types of variable genes they contribute to the host. Based on reviewing recent experimental data, we propose a general model of ICE life style that explains the transition between vertical and horizontal transmission as a result of a bistable decision in the ICE-host partnership. In the large majority of cells, the ICE remains silent and integrated, but hidden at low to very low frequencies in the population specialized host cells appear in which the ICE starts its process of horizontal transmission. This bistable process leads to host cell differentiation, ICE excision and transfer, when suitable recipients are present. The ratio of ICE bistability (i.e. ratio of horizontal to vertical transmission) is the outcome of a balance between fitness costs imposed by the ICE horizontal transmission process on the host cell, and selection for ICE distribution (i.e. ICE 'fitness'). From this emerges a picture of ICEs as elements that have adapted to a mostly confined life style within their host, but with a very effective and dynamic transfer from a subpopulation of dedicated cells.
Collapse
Affiliation(s)
- François Delavat
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Nicolas Pradervand
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | | |
Collapse
|
7
|
Andersen SB, Ghoul M, Griffin AS, Petersen B, Johansen HK, Molin S. Diversity, Prevalence, and Longitudinal Occurrence of Type II Toxin-Antitoxin Systems of Pseudomonas aeruginosa Infecting Cystic Fibrosis Lungs. Front Microbiol 2017; 8:1180. [PMID: 28690609 PMCID: PMC5481352 DOI: 10.3389/fmicb.2017.01180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
Type II toxin-antitoxin (TA) systems are most commonly composed of two genes encoding a stable toxin, which harms the cell, and an unstable antitoxin that can inactivate it. TA systems were initially characterized as selfish elements, but have recently gained attention for regulating general stress responses responsible for pathogen virulence, formation of drug-tolerant persister cells and biofilms—all implicated in causing recalcitrant chronic infections. We use a bioinformatics approach to explore the distribution and evolution of type II TA loci of the opportunistic pathogen, Pseudomonas aeruginosa, across longitudinally sampled isolates from cystic fibrosis lungs. We identify their location in the genome, mutations, and gain/loss during infection to elucidate their function(s) in stabilizing selfish elements and pathogenesis. We found (1) 26 distinct TA systems, where all isolates harbor four in their core genome and a variable number of the remaining 22 on genomic islands; (2) limited mutations in core genome TA loci, suggesting they are not under negative selection; (3) no evidence for horizontal transmission of elements with TA systems between clone types within patients, despite their ability to mobilize; (4) no gain and limited loss of TA-bearing genomic islands, and of those elements partially lost, the remnant regions carry the TA systems supporting their role in genomic stabilization; (5) no significant correlation between frequency of TA systems and strain ability to establish as chronic infection, but those with a particular TA, are more successful in establishing a chronic infection.
Collapse
Affiliation(s)
- Sandra B Andersen
- Department of Zoology, University of OxfordOxford, United Kingdom.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkLyngby, Denmark
| | - Melanie Ghoul
- Department of Zoology, University of OxfordOxford, United Kingdom
| | | | - Bent Petersen
- Department of Bio and Health Informatics, Technical University of DenmarkLyngby, Denmark
| | - Helle K Johansen
- Department of Clinical Microbiology, RigshospitaletCopenhagen, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkLyngby, Denmark
| |
Collapse
|
8
|
Highly variable individual donor cell fates characterize robust horizontal gene transfer of an integrative and conjugative element. Proc Natl Acad Sci U S A 2016; 113:E3375-83. [PMID: 27247406 DOI: 10.1073/pnas.1604479113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer is an important evolutionary mechanism for bacterial adaptation. However, given the typical low transfer frequencies in a bacterial population, little is known about the fate and interplay of donor cells and the mobilized DNA during transfer. Here we study transfer of an integrative and conjugative element (ICE) among individual live bacterial cells. ICEs are widely distributed mobile DNA elements that are different than plasmids because they reside silent in the host chromosome and are maintained through vertical descent. Occasionally, ICEs become active, excise, and transmit their DNA to a new recipient, where it is reintegrated. We develop a fluorescent tool to differentiate excision, transfer, and reintegration of a model ICE named ICEclc (for carrying the clc genes for chlorocatechol metabolism) among single Pseudomonas cells by using time-lapse microscopy. We find that ICEclc activation is initiated in stationary phase cells, but excision and transfer predominantly occur only when such cells have been presented with new nutrients. Donors with activated ICE develop a number of different states, characterized by reduced cell division rates or growth arrest, persistence, or lysis, concomitant with ICE excision, and likely, ICE loss or replication. The donor cell state transitions can be described by using a stochastic model, which predicts that ICE fitness is optimal at low initiation rates in stationary phase. Despite highly variable donor cell fates, ICE transfer is remarkably robust overall, with 75% success after excision. Our results help to better understand ICE behavior and shed a new light on bacterial cellular differentiation during horizontal gene transfer.
Collapse
|