1
|
Giermasińska-Buczek K, Gawor J, Stefańczyk E, Gągała U, Żuchniewicz K, Rekosz-Burlaga H, Gromadka R, Łobocka M. Interaction of bacteriophage P1 with an epiphytic Pantoea agglomerans strain-the role of the interplay between various mobilome elements. Front Microbiol 2024; 15:1356206. [PMID: 38591037 PMCID: PMC10999674 DOI: 10.3389/fmicb.2024.1356206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024] Open
Abstract
P1 is a model, temperate bacteriophage of the 94 kb genome. It can lysogenize representatives of the Enterobacterales order. In lysogens, it is maintained as a plasmid. We tested P1 interactions with the biocontrol P. agglomerans L15 strain to explore the utility of P1 in P. agglomerans genome engineering. A P1 derivative carrying the Tn9 (cmR) transposon could transfer a plasmid from Escherichia coli to the L15 cells. The L15 cells infected with this derivative formed chloramphenicol-resistant colonies. They could grow in a liquid medium with chloramphenicol after adaptation and did not contain prophage P1 but the chromosomally inserted cmR marker of P1 Tn9 (cat). The insertions were accompanied by various rearrangements upstream of the Tn9 cat gene promoter and the loss of IS1 (IS1L) from the corresponding region. Sequence analysis of the L15 strain genome revealed a chromosome and three plasmids of 0.58, 0.18, and 0.07 Mb. The largest and the smallest plasmid appeared to encode partition and replication incompatibility determinants similar to those of prophage P1, respectively. In the L15 derivatives cured of the largest plasmid, P1 with Tn9 could not replace the smallest plasmid even if selected. However, it could replace the smallest and the largest plasmid of L15 if its Tn9 IS1L sequence driving the Tn9 mobility was inactivated or if it was enriched with an immobile kanamycin resistance marker. Moreover, it could develop lytically in the L15 derivatives cured of both these plasmids. Clearly, under conditions of selection for P1, the mobility of the P1 selective marker determines whether or not the incoming P1 can outcompete the incompatible L15 resident plasmids. Our results demonstrate that P. agglomerans can serve as a host for bacteriophage P1 and can be engineered with the help of this phage. They also provide an example of how antibiotics can modify the outcome of horizontal gene transfer in natural environments. Numerous plasmids of Pantoea strains appear to contain determinants of replication or partition incompatibility with P1. Therefore, P1 with an immobile selective marker may be a tool of choice in curing these strains from the respective plasmids to facilitate their functional analysis.
Collapse
Affiliation(s)
- Katarzyna Giermasińska-Buczek
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW-WULS), Warsaw, Poland
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Jan Gawor
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Emil Stefańczyk
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Gągała
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW-WULS), Warsaw, Poland
| | - Karolina Żuchniewicz
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Hanna Rekosz-Burlaga
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW-WULS), Warsaw, Poland
| | - Robert Gromadka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Catalan-Moreno A, Caballero CJ, Irurzun N, Cuesta S, López-Sagaseta J, Toledo-Arana A. One evolutionarily selected amino acid variation is sufficient to provide functional specificity in the cold shock protein paralogs of Staphylococcus aureus. Mol Microbiol 2020; 113:826-840. [PMID: 31876031 PMCID: PMC7216892 DOI: 10.1111/mmi.14446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 01/12/2023]
Abstract
Bacterial genomes encode several families of protein paralogs. Discrimination between functional divergence and redundancy among paralogs is challenging due to their sequence conservation. Here, we investigated whether the amino acid differences present in the cold shock protein (CSP) paralogs of Staphylococcus aureus were responsible for functional specificity. Since deletion of cspA reduces the synthesis of staphyloxanthin (STX), we used it as an in vivo reporter of CSP functionality. Complementation of a ΔcspA strain with the different S. aureus CSP variants showed that only CspA could specifically restore STX production by controlling the activity of the stress‐associated sigma B factor (σB). To determine the amino acid residues responsible for CspA specificity, we created several chimeric CSPs that interchanged the amino acid differences between CspA and CspC, which shared the highest identity. We demonstrated that CspA Pro58 was responsible for the specific control of σB activity and its associated phenotypes. Interestingly, CspC gained the biological function of CspA when the E58P substitution was introduced. This study highlights how just one evolutionarily selected amino acid change may be sufficient to modify the specific functionality of CSP paralogs.
Collapse
Affiliation(s)
| | - Carlos J Caballero
- Instituto de Agrobiotecnología (IDAB), CSIC-UPNA-Gobierno de Navarra, Mutilva, Spain
| | - Naiara Irurzun
- Instituto de Agrobiotecnología (IDAB), CSIC-UPNA-Gobierno de Navarra, Mutilva, Spain
| | - Sergio Cuesta
- Instituto de Agrobiotecnología (IDAB), CSIC-UPNA-Gobierno de Navarra, Mutilva, Spain
| | - Jacinto López-Sagaseta
- Laboratory of Protein Crystallography, Navarrabiomed, Complejo Hospitalario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | | |
Collapse
|
3
|
Bengtsson-Palme J, Larsson DGJ, Kristiansson E. Using metagenomics to investigate human and environmental resistomes. J Antimicrob Chemother 2018; 72:2690-2703. [PMID: 28673041 DOI: 10.1093/jac/dkx199] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is a global health concern declared by the WHO as one of the largest threats to modern healthcare. In recent years, metagenomic DNA sequencing has started to be applied as a tool to study antibiotic resistance in different environments, including the human microbiota. However, a multitude of methods exist for metagenomic data analysis, and not all methods are suitable for the investigation of resistance genes, particularly if the desired outcome is an assessment of risks to human health. In this review, we outline the current state of methods for sequence handling, mapping to databases of resistance genes, statistical analysis and metagenomic assembly. In addition, we provide an overview of important considerations related to the analysis of resistance genes, and recommend some of the currently used tools and methods that are best equipped to inform research and clinical practice related to antibiotic resistance.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-41346, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-41346, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| |
Collapse
|
4
|
Bengtsson-Palme J, Boulund F, Edström R, Feizi A, Johnning A, Jonsson VA, Karlsson FH, Pal C, Pereira MB, Rehammar A, Sanchez J, Sanli K, Thorell K. Strategies to improve usability and preserve accuracy in biological sequence databases. Proteomics 2017; 16:2454-60. [PMID: 27528420 DOI: 10.1002/pmic.201600034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/25/2016] [Accepted: 08/11/2016] [Indexed: 01/12/2023]
Abstract
Biology is increasingly dependent on large-scale analysis, such as proteomics, creating a requirement for efficient bioinformatics. Bioinformatic predictions of biological functions rely upon correctly annotated database sequences, and the presence of inaccurately annotated or otherwise poorly described sequences introduces noise and bias to biological analyses. Accurate annotations are, for example, pivotal for correct identification of polypeptide fragments. However, standards for how sequence databases are organized and presented are currently insufficient. Here, we propose five strategies to address fundamental issues in the annotation of sequence databases: (i) to clearly separate experimentally verified and unverified sequence entries; (ii) to enable a system for tracing the origins of annotations; (iii) to separate entries with high-quality, informative annotation from less useful ones; (iv) to integrate automated quality-control software whenever such tools exist; and (v) to facilitate postsubmission editing of annotations and metadata associated with sequences. We believe that implementation of these strategies, for example as requirements for publication of database papers, would enable biology to better take advantage of large-scale data.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.
| | - Fredrik Boulund
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Edström
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden.,Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Amir Feizi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Johnning
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Viktor A Jonsson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Fredrik H Karlsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Chandan Pal
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Mariana Buongermino Pereira
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Anna Rehammar
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - José Sanchez
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden.,Bioinformatics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Kemal Sanli
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Kaisa Thorell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
A model for the evolution of biological specificity: a cross-reacting DNA-binding protein causes plasmid incompatibility. J Bacteriol 2014; 196:3002-11. [PMID: 24914185 DOI: 10.1128/jb.01811-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Few biological systems permit rigorous testing of how changes in DNA sequence give rise to adaptive phenotypes. In this study, we sought a simplified experimental system with a detailed understanding of the genotype-to-phenotype relationship that could be altered by environmental perturbations. We focused on plasmid fitness, i.e., the ability of plasmids to be stably maintained in a bacterial population, which is dictated by the plasmid's replication and segregation machinery. Although plasmid replication depends on host proteins, the type II plasmid partitioning (Par) machinery is entirely plasmid encoded and relies solely on three components: parC, a centromere-like DNA sequence, ParR, a DNA-binding protein that interacts with parC, and ParM, which forms actin-like filaments that push two plasmids away from each other at cell division. Interactions between the Par operons of two related plasmids can cause incompatibility and the reduced transmission of one or both plasmids. We have identified segregation-dependent plasmid incompatibility between the highly divergent Par operons of plasmids pB171 and pCP301. Genetic and biochemical studies revealed that the incompatibility is due to the functional promiscuity of the DNA-binding protein ParRpB171, which interacts with both parC DNA sequences to direct plasmid segregation, indicating that the lack of DNA binding specificity is detrimental to plasmid fitness in this environment. This study therefore successfully utilized plasmid segregation to dissect the molecular interactions between genotype, phenotype, and fitness.
Collapse
|
6
|
Venkova-Canova T, Baek JH, FitzGerald PC, Blokesch M, Chattoraj DK. Evidence for two different regulatory mechanisms linking replication and segregation of vibrio cholerae chromosome II. PLoS Genet 2013; 9:e1003579. [PMID: 23818869 PMCID: PMC3688505 DOI: 10.1371/journal.pgen.1003579] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 05/06/2013] [Indexed: 11/27/2022] Open
Abstract
Understanding the mechanisms that coordinate replication initiation with subsequent segregation of chromosomes is an important biological problem. Here we report two replication-control mechanisms mediated by a chromosome segregation protein, ParB2, encoded by chromosome II of the model multichromosome bacterium, Vibrio cholerae. We find by the ChIP-chip assay that ParB2, a centromere binding protein, spreads beyond the centromere and covers a replication inhibitory site (a 39-mer). Unexpectedly, without nucleation at the centromere, ParB2 could also bind directly to a related 39-mer. The 39-mers are the strongest inhibitors of chromosome II replication and they mediate inhibition by binding the replication initiator protein. ParB2 thus appears to promote replication by out-competing initiator binding to the 39-mers using two mechanisms: spreading into one and direct binding to the other. We suggest that both these are novel mechanisms to coordinate replication initiation with segregation of chromosomes. Replication and segregation are the two main processes that maintain chromosomes in growing cells. In eukaryotes, the two processes are restricted to distinct phases of the cell cycle. In bacteria, segregation follows replication initiation with a modest lag. Influences of one process on the other have been postulated. The act of replication has been suggested to provide a motive force in chromosome segregation. Moreover, segregation proteins (ParA) have been found to interact with and control the replication initiator, DnaA. Here we show that in V. cholerae chromosome II, which is believed to have originated from a plasmid, a centromere binding protein (ParB) could control replication by two distinct mechanisms: spreading from a centromeric site into the replication-control region, and direct binding to the primary replication-control site, which has limited homology to the centromeric site. These studies establish that Par proteins can influence replication by at least three mechanisms. Homologous Par proteins participate in plasmid segregation but they are not known to influence plasmid replication. The expanded role of Par proteins appears likely to have been warranted to coordinate chromosomal replication and segregation with the cell cycle, which appears less of an issue in plasmid maintenance.
Collapse
Affiliation(s)
- Tatiana Venkova-Canova
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jong Hwan Baek
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter C. FitzGerald
- Genome Analysis Unit, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melanie Blokesch
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dhruba K. Chattoraj
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Dam B. A type Ib plasmid segregation machinery of the Advenella kashmirensis plasmid pBTK445. Plasmid 2010; 65:185-91. [PMID: 21192970 DOI: 10.1016/j.plasmid.2010.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/17/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
pBTK445 is a newly described large (∼60Kb), low-copy number, conjugative plasmid indigenous to the sulfur-chemolithoautotroph Advenella kashmirensis. Based on its minimal replication region, a shuttle vector, pBTKS was constructed which can be used for diverse Alcaligenaceae members. The construct was found to be stably maintained both in the native host as well as in Escherichia coli in the absence of selective pressure which indicated that pBTKS harbors the stabilizing system of pBTK445, that are commonly coded by low-copy-number plasmids. Deletion analyzes of pBTKS confirmed the essentiality of parA (encoding a Walker-type ATPase of 214 amino acids) and the downstream located small parB (encoding an 85 amino acid protein having no sequence homolog in the database) in the faithful partitioning of pBTK445. A 1075bp PCR product, containing parA, parB and an upstream sequence having nine 11bp direct repeats (parS site) was found to comprise the partition functions of pBTK445, stabilizing both low-copy or high-copy number homologous and heterologous replicons in diverse hosts. The incompatibility determinant and the par promoter, P(par) were both found to be present within a 191bp iterated sequence present upstream of parA. ParB was found to regulate the expression of the Par proteins from P(par). The presence of a typical Walker-type ATPase motif in ParA, a short phylogenetically unrelated ParB, that acts as a repressor of P(par), and location of the iterated parS site upstream of parA, confirm that the active partition system of pBTK445 belongs to the type Ib.
Collapse
Affiliation(s)
- Bomba Dam
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl Von Frisch Strasse 10, D-35043 Marburg, Germany.
| |
Collapse
|