1
|
Keenan T, Cowan AR, Flack EKP, Hatton NE, Walklett AJ, Thomas GH, Hemsworth GR, Fascione MA. Structural dissection of the CMP-pseudaminic acid synthetase, PseF. Structure 2024; 32:2399-2409.e4. [PMID: 39393361 DOI: 10.1016/j.str.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Pseudaminic acid is a non-mammalian sugar found in the surface glycoconjugates of many bacteria, including several human pathogens, and is a virulence factor thought to facilitate immune evasion. The final step in the biosynthesis of the nucleotide activated form of the sugar, CMP-Pse5Ac7Ac is performed by a CMP-Pse5Ac7Ac synthetase (PseF). Here we present the biochemical and structural characterization of PseF from Aeromonas caviae (AcPseF), with AcPseF displaying metal-dependent activity over a broad pH and temperature range. Upon binding to CMP-Pse5Ac7Ac, AcPseF undergoes dynamic movements akin to other CMP-ulosonic acid synthetases. The enzyme clearly discriminates Pse5Ac7Ac from other ulosonic acids, through active site interactions with side-chain functional groups and by positioning the molecule in a hydrophobic pocket. Finally, we show that AcPseF binds the CMP-Pse5Ac7Ac side chain in the lowest energy conformation, a trend that we observed in the structures of other enzymes of this class.
Collapse
Affiliation(s)
- Tessa Keenan
- Department of Chemistry, University of York, York YO10 5DD, UK
| | - Andrew R Cowan
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Emily K P Flack
- Department of Biology, University of York, York YO10 5DD, UK
| | | | | | - Gavin H Thomas
- Department of Biology, University of York, York YO10 5DD, UK
| | - Glyn R Hemsworth
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
2
|
Sunsunwal S, Khairnar A, Subramanian S, Ramya TNC. Harnessing the acceptor substrate promiscuity of Clostridium botulinum Maf glycosyltransferase to glyco-engineer mini-flagellin protein chimeras. Commun Biol 2024; 7:1029. [PMID: 39169227 PMCID: PMC11339370 DOI: 10.1038/s42003-024-06736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
Several bacterial flagellins are O-glycosylated with nonulosonic acids on surface-exposed Serine/Threonine residues by Maf glycosyltransferases. The Clostridium botulinum Maf glycosyltransferase (CbMaf) displays considerable donor substrate promiscuity, enabling flagellin O-glycosylation with N-acetyl neuraminic acid (Neu5Ac) and 3-deoxy-D-manno-octulosonic acid in the absence of the native nonulosonic acid, a legionaminic acid derivative. Here, we have explored the sequence/structure attributes of the acceptor substrate, flagellin, required by CbMaf glycosyltransferase for glycosylation with Neu5Ac and KDO, by co-expressing C. botulinum flagellin constructs with CbMaf glycosyltransferase in an E. coli strain producing cytidine-5'-monophosphate (CMP)-activated Neu5Ac, and employing intact mass spectrometry analysis and sialic acid-specific flagellin biotinylation as readouts. We found that CbMaf was able to glycosylate mini-flagellin constructs containing shortened alpha-helical secondary structural scaffolds and reduced surface-accessible loop regions, but not non-cognate flagellin. Our experiments indicated that CbMaf glycosyltransferase recognizes individual Ser/Thr residues in their local surface-accessible conformations, in turn, supported in place by the secondary structural scaffold. Further, CbMaf glycosyltransferase also robustly glycosylated chimeric proteins constructed by grafting cognate mini-flagellin sequences onto an unrelated beta-sandwich protein. Our recombinant engineering experiments highlight the potential of CbMaf glycosyltransferase in future glycoengineering applications, especially for the neo-O-sialylation of proteins, employing E. coli strains expressing CMP-Neu5Ac (and not CMP-KDO).
Collapse
Affiliation(s)
- Sonali Sunsunwal
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Aasawari Khairnar
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | | | - T N C Ramya
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India.
| |
Collapse
|
3
|
Walklett AJ, Flack EKP, Chidwick HS, Hatton NE, Keenan T, Budhadev D, Walton J, Thomas GH, Fascione MA. The Retaining Pse5Ac7Ac Pseudaminyltransferase KpsS1 Defines a Previously Unreported glycosyltransferase family (GT118). Angew Chem Int Ed Engl 2024; 63:e202318523. [PMID: 38224120 DOI: 10.1002/anie.202318523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Cell surface sugar 5,7-diacetyl pseudaminic acid (Pse5Ac7Ac) is a bacterial analogue of the ubiquitous sialic acid, Neu5Ac, and contributes to the virulence of a number of multidrug resistant bacteria, including ESKAPE pathogens Pseudomonas aeruginosa, and Acinetobacter baumannii. Despite its discovery in the surface glycans of bacteria over thirty years ago, to date no glycosyltransferase enzymes (GTs) dedicated to the synthesis of a pseudaminic acid glycosidic linkage have been unequivocally characterised in vitro. Herein we demonstrate that A. baumannii KpsS1 is a dedicated pseudaminyltransferase enzyme (PseT) which constructs a Pse5Ac7Ac-α(2,6)-Glcp linkage, and proceeds with retention of anomeric configuration. We utilise this PseT activity in tandem with the biosynthetic enzymes required for CMP-Pse5Ac7Ac assembly, in a two-pot, seven enzyme synthesis of an α-linked Pse5Ac7Ac glycoside. Due to its unique activity and protein sequence, we also assign KpsS1 as the prototypical member of a previously unreported GT family (GT118).
Collapse
Affiliation(s)
| | - Emily K P Flack
- Department of Chemistry, University of York, York, YO10 5DD, UK
- Department of Biology, University of York, York, YO10 5DD, UK
| | | | | | - Tessa Keenan
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | - Julia Walton
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, York, YO10 5DD, UK
| | | |
Collapse
|
4
|
Keenan T, Chidwick HS, Best M, Flack EKP, Yates NDJ, Hatton NE, Warnes ME, Fascione MA. Co-factor prosthesis facilitates biosynthesis of azido-pseudaminic acid probes for use as glycosyltransferase reporters. Chem Commun (Camb) 2024; 60:1428-1431. [PMID: 38205715 DOI: 10.1039/d3cc05924c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Truncated thioester N,S-diacetylcysteamine (SNAc) was utilised as a co-factor mimic for PseH, an acetyl-coA dependent aminoglycoside N-acetyltransferase, in the biosynthesis of the bacterial sugar, pseudaminic acid. Additionally, an azido-SNAc analogue was used to smuggle N7-azide functionality into the pseudaminic acid backbone, facilitating its use as a reporter of pseudaminyltransferase activity.
Collapse
Affiliation(s)
- Tessa Keenan
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Harriet S Chidwick
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Matthew Best
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Emily K P Flack
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Nicholas D J Yates
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Natasha E Hatton
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Matthew E Warnes
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Martin A Fascione
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
5
|
Dong Y, Xu M, Wan X, Zhao D, Geng J, Huang H, Jiang M, Lu C, Liu Y. TonB systems are required for Aeromonas hydrophila motility by controlling the secretion of flagellin. Microbes Infect 2023; 25:105038. [PMID: 35963567 DOI: 10.1016/j.micinf.2022.105038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023]
Abstract
The TonB system is required for the active transport of iron compounds across the outer membrane in Gram-negative bacteria. Our previous data indicated that three TonB systems act coordinately to contribute to the motility of Aeromonas hydrophila NJ-35. In this study, we found that flagellum biogenesis was defective in the ΔtonB123 mutant. Subcellular localization indicated that the flagellin subunits FlaA and FlaB were trapped in the cytoplasm of ΔtonB123 mutant with reduced molecular mass. Overexpression of FlaA or FlaB in the ΔtonB123 mutant was unable to restore the secretion of flagellin subunits. Further investigation demonstrated that flagellins in the ΔtonB123 mutant showed a weak affinity for the flagellin-specific chaperone FliS, which is necessary for the export of flagellins. Deglycosylation analysis indicated that flagellins in the cytoplasm of the ΔtonB123 mutant were almost nonglycosylated. Our data suggested that disruption of tonB123 impairs the formation of flagella by inhibiting flagellin glycosylation and decreasing the binding affinity of flagellin for the chaperone FliS. Taken together, our findings indicate a new role of the TonB system in flagellar biogenesis in A. hydrophila.
Collapse
Affiliation(s)
- Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Meng Xu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xihe Wan
- Institute of Oceanology and Marine Fisheries, Nantong, 226007, Jiangsu, China
| | - Dan Zhao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jinzhu Geng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hao Huang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, 530008, Guangxi, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
6
|
Lowry RC, Allihaybi L, Parker JL, Couto NAS, Stafford GP, Shaw JG. Heterogeneous glycosylation and methylation of the Aeromonas caviae flagellin. Microbiologyopen 2022; 11:e1306. [PMID: 36031959 PMCID: PMC9290775 DOI: 10.1002/mbo3.1306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/06/2022] Open
Abstract
Bacterial swimming is mediated by the rotation of a flagellar filament. Many bacteria are now known to be able to O-glycosylate their flagellins, the proteins that make up the flagellar filament. For bacteria that use nonulosonic acid sugars such as pseudaminic acid, this glycosylation process is essential for the formation of a functional flagellum. However, the specific role of glycosylation remains elusive. Aeromonas caviae is a model for this process as it has a genetically simple glycosylation system. Here, we investigated the localization of the glycans on the A. caviae flagellum filament. Using mass spectrometry it was revealed that pseudaminic acid O-glycosylation was heterogeneous with no serine or threonine sites that were constantly glycosylated. Site-directed mutagenesis of particular glycosylation sites in most cases resulted in strains that had reduced motility and produced less detectable flagellin on Western blots. For flagellin O-linked glycosylation, there is no known consensus sequence, although hydrophobic amino acids have been suggested to play a role. We, therefore, performed site-directed mutagenesis of isoleucine or leucine residues flanking the sites of glycosylation and demonstrated a reduction in motility and the amount of flagellin present in the cells, indicating a role for these hydrophobic amino acids in the flagellin glycosylation process.
Collapse
Affiliation(s)
- Rebecca C. Lowry
- Department of Infection Immunity and Cardiovascular DiseaseUniversity of Sheffield Medical SchoolSheffieldUK
| | - Laila Allihaybi
- Department of Infection Immunity and Cardiovascular DiseaseUniversity of Sheffield Medical SchoolSheffieldUK
| | - Jennifer L. Parker
- Department of Infection Immunity and Cardiovascular DiseaseUniversity of Sheffield Medical SchoolSheffieldUK
| | | | - Graham P. Stafford
- School of Clinical Dentistry, Claremont CrescentUniversity of SheffieldSheffieldUK
| | - Jonathan G. Shaw
- Department of Infection Immunity and Cardiovascular DiseaseUniversity of Sheffield Medical SchoolSheffieldUK
| |
Collapse
|
7
|
da Silva Filho AC, Marchaukoski JN, Raittz RT, De Pierri CR, de Jesus Soares Machado D, Fadel-Picheth CMT, Picheth G. Prediction and Analysis in silico of Genomic Islands in Aeromonas hydrophila. Front Microbiol 2021; 12:769380. [PMID: 34912316 PMCID: PMC8667584 DOI: 10.3389/fmicb.2021.769380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Aeromonas are Gram-negative rods widely distributed in the environment. They can cause severe infections in fish related to financial losses in the fish industry, and are considered opportunistic pathogens of humans causing infections ranging from diarrhea to septicemia. The objective of this study was to determine in silico the contribution of genomic islands to A. hydrophila. The complete genomes of 17 A. hydrophila isolates, which were separated into two phylogenetic groups, were analyzed using a genomic island (GI) predictor. The number of predicted GIs and their characteristics varied among strains. Strains from group 1, which contains mainly fish pathogens, generally have a higher number of predicted GIs, and with larger size, than strains from group 2 constituted by strains recovered from distinct sources. Only a few predicted GIs were shared among them and contained mostly genes from the core genome. Features related to virulence, metabolism, and resistance were found in the predicted GIs, but strains varied in relation to their gene content. In strains from group 1, O Ag biosynthesis clusters OX1 and OX6 were identified, while strains from group 2 each had unique clusters. Metabolic pathways for myo-inositol, L-fucose, sialic acid, and a cluster encoding QueDEC, tgtA5, and proteins related to DNA metabolism were identified in strains of group 1, which share a high number of predicted GIs. No distinctive features of group 2 strains were identified in their predicted GIs, which are more diverse and possibly better represent GIs in this species. However, some strains have several resistance attributes encoded by their predicted GIs. Several predicted GIs encode hypothetical proteins and phage proteins whose functions have not been identified but may contribute to Aeromonas fitness. In summary, features with functions identified on predicted GIs may confer advantages to host colonization and competitiveness in the environment.
Collapse
Affiliation(s)
| | - Jeroniza Nunes Marchaukoski
- Department of Bioinformatics, Professional and Technical Education Sector, Federal University of Parana, Curitiba, Brazil
| | - Roberto Tadeu Raittz
- Department of Bioinformatics, Professional and Technical Education Sector, Federal University of Parana, Curitiba, Brazil
| | | | - Diogo de Jesus Soares Machado
- Department of Bioinformatics, Professional and Technical Education Sector, Federal University of Parana, Curitiba, Brazil
| | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Parana, Curitiba, Brazil
| |
Collapse
|
8
|
Surface Glucan Structures in Aeromonas spp. Mar Drugs 2021; 19:md19110649. [PMID: 34822520 PMCID: PMC8625153 DOI: 10.3390/md19110649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/24/2023] Open
Abstract
Aeromonas spp. are generally found in aquatic environments, although they have also been isolated from both fresh and processed food. These Gram-negative, rod-shaped bacteria are mostly infective to poikilothermic animals, although they are also considered opportunistic pathogens of both aquatic and terrestrial homeotherms, and some species have been associated with gastrointestinal and extraintestinal septicemic infections in humans. Among the different pathogenic factors associated with virulence, several cell-surface glucans have been shown to contribute to colonization and survival of Aeromonas pathogenic strains, in different hosts. Lipopolysaccharide (LPS), capsule and α-glucan structures, for instance, have been shown to play important roles in bacterial–host interactions related to pathogenesis, such as adherence, biofilm formation, or immune evasion. In addition, glycosylation of both polar and lateral flagella has been shown to be mandatory for flagella production and motility in different Aeromonas strains, and has also been associated with increased bacterial adhesion, biofilm formation, and induction of the host proinflammatory response. The main aspects of these structures are covered in this review.
Collapse
|
9
|
Yang K, Kao C, Su MS, Wang S, Chen Y, Hu S, Chen J, Teng C, Tsai P, Wu J. Glycosyltransferase Jhp0106 (PseE) contributes to flagellin maturation in Helicobacter pylori. Helicobacter 2021; 26:e12787. [PMID: 33586844 PMCID: PMC7988653 DOI: 10.1111/hel.12787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Flagella-mediated motility is both a crucial virulence determinant of Helicobacter pylori and a factor associated with gastrointestinal diseases. Flagellar formation requires flagellins to be glycosylated with pseudaminic acid (Pse), a process that has been extensively studied. However, the transfer of Pse to flagellins remains poorly understood. Therefore, the aim of this study is to characterize a putative glycosyltransferase jhp0106 in flagellar formation. MATERIALS AND METHODS Western blotting and chemical deglycosylation were performed to examine FlaA glycosylation. Protein structural analyses were executed to identify the active site residues of Jhp0106, while the Jhp0106-FlaA interaction was examined using a bacterial two-hybrid assay. Lastly, site-directed mutants with mutated active site residues in the jhp0106 gene were generated and investigated using a motility assay, Western blotting, cDNA-qPCR analysis, and electron microscopic examination. RESULTS Loss of flagellar formation in the Δjhp0106 mutant was confirmed to be associated with non-glycosylated FlaA. Furthermore, three active site residues of Jhp0106 (S350, F376, and E415) were identified within a potential substrate-binding region. The interaction between FlaA and Jhp0106, Jhp0106::S350A, Jhp0106::F376A, or Jhp0106::E415A was determined to be significant. As well, the substitution of S350A, F376A, or E415A in the site-directed Δjhp0106 mutants resulted in impaired motility, deficient FlaA glycosylation, and lacking flagella. However, these phenotypic changes were regardless of flaA expression, implying an indefinite proteolytic degradation of FlaA occurred. CONCLUSIONS This study demonstrated that Jhp0106 (PseE) binds to FlaA mediating FlaA glycosylation and flagellar formation. Our discovery of PseE has revealed a new glycosyltransferase family responsible for flagellin glycosylation in pathogens.
Collapse
Affiliation(s)
- Kai‐Yuan Yang
- Institute of Microbiology and ImmunologySchool of Life ScienceNational Yang‐Ming UniversityTaipeiTaiwan
| | - Cheng‐Yen Kao
- Institute of Microbiology and ImmunologySchool of Life ScienceNational Yang‐Ming UniversityTaipeiTaiwan,Department of Biotechnology and Laboratory Science in MedicineSchool of Biomedical Science and EngineeringNational Yang‐Ming UniversityTaipeiTaiwan
| | - Marcia Shu‐Wei Su
- Department of Biotechnology and Laboratory Science in MedicineSchool of Biomedical Science and EngineeringNational Yang‐Ming UniversityTaipeiTaiwan
| | - Shuying Wang
- Department of Microbiology and ImmunologyCollege of MedicineNational Cheng‐Kung UniversityTainanTaiwan
| | - Yueh‐Lin Chen
- Department of Biotechnology and Laboratory Science in MedicineSchool of Biomedical Science and EngineeringNational Yang‐Ming UniversityTaipeiTaiwan
| | - Shiau‐Ting Hu
- Institute of Microbiology and ImmunologySchool of Life ScienceNational Yang‐Ming UniversityTaipeiTaiwan
| | - Jenn‐Wei Chen
- Department of Microbiology and ImmunologyCollege of MedicineNational Cheng‐Kung UniversityTainanTaiwan
| | - Ching‐Hao Teng
- Institute of Molecular MedicineCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Pei‐Jane Tsai
- Department of Medical Laboratory Science and BiotechnologyCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Jiunn‐Jong Wu
- Department of Biotechnology and Laboratory Science in MedicineSchool of Biomedical Science and EngineeringNational Yang‐Ming UniversityTaipeiTaiwan
| |
Collapse
|
10
|
Chidwick HS, Flack EKP, Keenan T, Walton J, Thomas GH, Fascione MA. Reconstitution and optimisation of the biosynthesis of bacterial sugar pseudaminic acid (Pse5Ac7Ac) enables preparative enzymatic synthesis of CMP-Pse5Ac7Ac. Sci Rep 2021; 11:4756. [PMID: 33637817 PMCID: PMC7910423 DOI: 10.1038/s41598-021-83707-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 02/05/2021] [Indexed: 11/23/2022] Open
Abstract
Pseudaminic acids present on the surface of pathogenic bacteria, including gut pathogens Campylobacter jejuni and Helicobacter pylori, are postulated to play influential roles in the etiology of associated infectious diseases through modulating flagella assembly and recognition of bacteria by the human immune system. Yet they are underexplored compared to other areas of glycoscience, in particular enzymes responsible for the glycosyltransfer of these sugars in bacteria are still to be unambiguously characterised. This can be largely attributed to a lack of access to nucleotide-activated pseudaminic acid glycosyl donors, such as CMP-Pse5Ac7Ac. Herein we reconstitute the biosynthesis of Pse5Ac7Ac in vitro using enzymes from C. jejuni (PseBCHGI) in the process optimising coupled turnover with PseBC using deuterium wash in experiments, and establishing a method for co-factor regeneration in PseH tunover. Furthermore we establish conditions for purification of a soluble CMP-Pse5Ac7Ac synthetase enzyme PseF from Aeromonas caviae and utilise it in combination with the C. jejuni enzymes to achieve practical preparative synthesis of CMP-Pse5Ac7Ac in vitro, facilitating future biological studies.
Collapse
Affiliation(s)
- Harriet S Chidwick
- Department of Chemistry, University of York, Heslington Road, York, YO10 5DD, UK
| | - Emily K P Flack
- Department of Chemistry, University of York, Heslington Road, York, YO10 5DD, UK
| | - Tessa Keenan
- Department of Chemistry, University of York, Heslington Road, York, YO10 5DD, UK
| | - Julia Walton
- Department of Chemistry, University of York, Heslington Road, York, YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, Heslington Road, York, YO10 5DD, UK
| | - Martin A Fascione
- Department of Chemistry, University of York, Heslington Road, York, YO10 5DD, UK.
| |
Collapse
|
11
|
Forn-Cuní G, Fulton KM, Smith JC, Twine SM, Mendoza-Barberà E, Tomás JM, Merino S. Polar Flagella Glycosylation in Aeromonas: Genomic Characterization and Involvement of a Specific Glycosyltransferase (Fgi-1) in Heterogeneous Flagella Glycosylation. Front Microbiol 2021; 11:595697. [PMID: 33584564 PMCID: PMC7874193 DOI: 10.3389/fmicb.2020.595697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/21/2020] [Indexed: 01/27/2023] Open
Abstract
Polar flagella from mesophilic Aeromonas strains have previously been shown to be modified with a range of glycans. Mass spectrometry studies of purified polar flagellins suggested the glycan typically includes a putative pseudaminic acid like derivative; while some strains are modified with this single monosaccharide, others modified with a heterologous glycan. In the current study, we demonstrate that genes involved in polar flagella glycosylation are clustered in highly polymorphic genomic islands flanked by pseudaminic acid biosynthetic genes (pse). Bioinformatic analysis of mesophilic Aeromonas genomes identified three types of polar flagella glycosylation islands (FGIs), denoted Group I, II and III. FGI Groups I and III are small genomic islands present in Aeromonas strains with flagellins modified with a single monosaccharide pseudaminic acid derivative. Group II were large genomic islands, present in strains found to modify polar flagellins with heterogeneous glycan moieties. Group II, in addition to pse genes, contained numerous glycosyltransferases and other biosynthetic enzymes. All Group II strains shared a common glycosyltransferase downstream of luxC that we named flagella glycosylation island 1, fgi-1, in A. piscicola AH-3. We demonstrate that Fgi-1 transfers the first sugar of the heterogeneous glycan to the pseudaminic acid derivative linked to polar flagellins and could be used as marker for polysaccharidic glycosylation of Aeromonas polar flagella.
Collapse
Affiliation(s)
- Gabriel Forn-Cuní
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Kelly M. Fulton
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, ON, Canada
- Faculty of Science, Carleton University, Ottawa, ON, Canada
| | | | - Susan M. Twine
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, ON, Canada
- Faculty of Science, Carleton University, Ottawa, ON, Canada
| | - Elena Mendoza-Barberà
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Juan M. Tomás
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Susana Merino
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Moulton KD, Adewale AP, Carol HA, Mikami SA, Dube DH. Metabolic Glycan Labeling-Based Screen to Identify Bacterial Glycosylation Genes. ACS Infect Dis 2020; 6:3247-3259. [PMID: 33186014 PMCID: PMC7808405 DOI: 10.1021/acsinfecdis.0c00612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacterial cell surface glycans are quintessential drug targets due to their critical role in colonization of the host, pathogen survival, and immune evasion. The dense cell envelope glycocalyx contains distinctive monosaccharides that are stitched together into higher order glycans to yield exclusively bacterial structures that are critical for strain fitness and pathogenesis. However, the systematic study and inhibition of bacterial glycosylation enzymes remains challenging. Bacteria produce glycans containing rare sugars refractory to traditional glycan analysis, complicating the study of bacterial glycans and the identification of their biosynthesis machinery. To ease the study of bacterial glycans in the absence of detailed structural information, we used metabolic glycan labeling to detect changes in glycan biosynthesis. Here, we screened wild-type versus mutant strains of the gastric pathogen Helicobacter pylori, ultimately permitting the identification of genes involved in glycoprotein and lipopolysaccharide biosynthesis. Our findings provide the first evidence that H. pylori protein glycosylation proceeds via a lipid carrier-mediated pathway that overlaps with lipopolysaccharide biosynthesis. Protein glycosylation mutants displayed fitness defects consistent with those induced by small molecule glycosylation inhibitors. Broadly, our results suggest a facile approach to screen for bacterial glycosylation genes and gain insight into their biosynthesis and functional importance, even in the absence of glycan structural information.
Collapse
Affiliation(s)
- Karen D. Moulton
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Adedunmola P. Adewale
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Hallie A. Carol
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Sage A. Mikami
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Danielle H. Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| |
Collapse
|
13
|
Ardissone S, Kint N, Viollier PH. Specificity in glycosylation of multiple flagellins by the modular and cell cycle regulated glycosyltransferase FlmG. eLife 2020; 9:e60488. [PMID: 33108275 PMCID: PMC7591256 DOI: 10.7554/elife.60488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
How specificity is programmed into post-translational modification of proteins by glycosylation is poorly understood, especially for O-linked glycosylation systems. Here we reconstitute and dissect the substrate specificity underpinning the cytoplasmic O-glycosylation pathway that modifies all six flagellins, five structural and one regulatory paralog, in Caulobacter crescentus, a monopolarly flagellated alpha-proteobacterium. We characterize the biosynthetic pathway for the sialic acid-like sugar pseudaminic acid and show its requirement for flagellation, flagellin modification and efficient export. The cognate NeuB enzyme that condenses phosphoenolpyruvate with a hexose into pseudaminic acid is functionally interchangeable with other pseudaminic acid synthases. The previously unknown and cell cycle-regulated FlmG protein, a defining member of a new class of cytoplasmic O-glycosyltransferases, is required and sufficient for flagellin modification. The substrate specificity of FlmG is conferred by its N-terminal flagellin-binding domain. FlmG accumulates before the FlaF secretion chaperone, potentially timing flagellin modification, export, and assembly during the cell division cycle.
Collapse
Affiliation(s)
- Silvia Ardissone
- Department of Microbiology & Molecular Medicine, Faculty of Medicine / CMU, University of GenevaGenèveSwitzerland
| | - Nicolas Kint
- Department of Microbiology & Molecular Medicine, Faculty of Medicine / CMU, University of GenevaGenèveSwitzerland
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine, Faculty of Medicine / CMU, University of GenevaGenèveSwitzerland
| |
Collapse
|
14
|
Flack EKP, Chidwick HS, Guchhait G, Keenan T, Budhadev D, Huang K, Both P, Mas Pons J, Ledru H, Rui S, Stafford GP, Shaw JG, Galan MC, Flitsch S, Thomas GH, Fascione MA. Biocatalytic Transfer of Pseudaminic Acid (Pse5Ac7Ac) Using Promiscuous Sialyltransferases in a Chemoenzymatic Approach to Pse5Ac7Ac-Containing Glycosides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Emily K. P. Flack
- Department of Chemistry, University of York, York YO10 5DD, United Kindgom
| | | | - Goutam Guchhait
- Department of Chemistry, University of York, York YO10 5DD, United Kindgom
| | - Tessa Keenan
- Department of Chemistry, University of York, York YO10 5DD, United Kindgom
| | - Darshita Budhadev
- Department of Chemistry, University of York, York YO10 5DD, United Kindgom
| | - Kun Huang
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kindgom
| | - Peter Both
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kindgom
| | - Jordi Mas Pons
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kindgom
| | - Helene Ledru
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kindgom
| | - Shengtao Rui
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, United Kindgom
| | - Graham P. Stafford
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kindgom
| | - Jonathan G. Shaw
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, United Kindgom
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kindgom
| | - Sabine Flitsch
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kindgom
| | - Gavin H. Thomas
- Department of Biology, University of York, York YO10 5DD, United Kindgom
| | - Martin A. Fascione
- Department of Chemistry, University of York, York YO10 5DD, United Kindgom
| |
Collapse
|
15
|
Flack EKP, Chidwick HS, Best M, Thomas GH, Fascione MA. Synthetic Approaches for Accessing Pseudaminic Acid (Pse) Bacterial Glycans. Chembiochem 2020; 21:1397-1407. [PMID: 31944494 DOI: 10.1002/cbic.202000019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 12/18/2022]
Abstract
Pseudaminic acids (Pses) are a group of non-mammalian nonulosonic acids (nulOs) that have been shown to be an important virulence factor for a number of pathogenic bacteria, including emerging multidrug-resistant ESKAPE pathogens. Despite their discovery over 30 years ago, relatively little is known about the biological significance of Pse glycans compared with their sialic acid analogues, primarily due to a lack of access to the synthetically challenging Pse architecture. Recently, however, the Pse backbone has been subjected to increasing synthetic exploration by carbohydrate (bio)chemists, and the total synthesis of complex Pse glycans achieved with inspiration from the biosynthesis and subsequent detailed study of chemical glycosylation by using Pse donors. Herein, context is provided for these efforts by summarising recent synthetic approaches pioneered for accessing Pse glycans, which are set to open up this underexplored area of glycoscience to the wider scientific community.
Collapse
Affiliation(s)
- Emily K P Flack
- Department of Chemistry, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| | - Harriet S Chidwick
- Department of Chemistry, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| | - Matthew Best
- Department of Chemistry, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| | - Martin A Fascione
- Department of Chemistry, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| |
Collapse
|
16
|
Chidwick HS, Fascione MA. Mechanistic and structural studies into the biosynthesis of the bacterial sugar pseudaminic acid (Pse5Ac7Ac). Org Biomol Chem 2020; 18:799-809. [PMID: 31913385 DOI: 10.1039/c9ob02433f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The non-mammalian nonulosonic acid sugar pseudaminic acid (Pse) is present on the surface of a number of human pathogens including Campylobacter jejuni and Helicobacter pylori and other bacteria such as multidrug resistant Acinetobacter baumannii. It is likely important for evasion of the host immune sysyem, and also plays a role in bacterial motility through flagellin glycosylation. Herein we review the mechanistic and structural characterisation of the enzymes responsible for the biosynthesis of the Pse parent structure, Pse5Ac7Ac in bacteria.
Collapse
|
17
|
Draft Whole-Genome Sequences of 10 Aeromonas Strains from Clinical and Environmental Sources. Microbiol Resour Announc 2019; 8:8/30/e00170-19. [PMID: 31346007 PMCID: PMC6658677 DOI: 10.1128/mra.00170-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aeromonas bacteria are able to cause disease in a wide range of animals from humans to fish. In this article, we report the draft whole-genome sequences of 10 Aeromonas strains from clinical and environmental sources. These genome sequences will provide a repository of information for further investigations into the pathogenicity of this enigmatic pathogen. Aeromonas bacteria are able to cause disease in a wide range of animals from humans to fish. In this article, we report the draft whole-genome sequences of 10 Aeromonas strains from clinical and environmental sources. These genome sequences will provide a repository of information for further investigations into the pathogenicity of this enigmatic pathogen.
Collapse
|
18
|
Huang X, Chen C, Ren C, Li Y, Deng Y, Yang Y, Ding X. Identification and characterization of a locus putatively involved in colanic acid biosynthesis in Vibrio alginolyticus ZJ-51. BIOFOULING 2018; 34:1-14. [PMID: 29210309 DOI: 10.1080/08927014.2017.1400020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Colanic acid (CA) is a group I extracellular polysaccharide (EPS) that contributes to resistance against adverse environments in many members of the Enterobacteriaceae. In the present study, a genetic locus EPSC putatively involved in CA biosynthesis was identified in Vibrio alginolyticus ZJ-51, which undergoes colony morphology variation between translucent/smooth (ZJ-T) and opaque/rugose (ZJ-O). EPSC in ZJ-T carries 21 ORFs and resembles the CA cluster of Escherichia coli K-12. The deletion of EPSC led to decreased EPS and biofilm formation in both genetic backgrounds but no alternation of lipopolysaccharide. The loss of this locus also changed the colony morphology of ZJ-O on the 2216E plate and reduced the motility of ZJ-T. Compared with ZJ-T, ZJ-O lacks a 10-kb fragment (epsT) in EPSC containing homologs of wecA, wzx and wzy that are essential for O-antigen synthesis. However, the deletion or overexpression of epsT resulted in no change of colony morphology, biofilm formation or EPS production. This study reported at the first time a genetic locus EPSC that may be involved in colanic acid synthesis in V. alginolyticus ZJ-51, and found that it was related to EPS biosynthesis, biofilm formation, colony morphology and motility, which may shed light on the environmental adaptation of the vibrios.
Collapse
Affiliation(s)
- Xiaochun Huang
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
- b Guangdong Provincial Key Laboratory of Applied Marine Biology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , China
- d University of Chinese Academy of Sciences , Beijing , PR China
| | - Chang Chen
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
- b Guangdong Provincial Key Laboratory of Applied Marine Biology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , China
- c Xisha Deep Sea Marine Environment Observation and Research Station , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
| | - Chunhua Ren
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
| | - Yingying Li
- e College of Life Science and Technology , Jinan University , Guangzhou , PR China
| | - Yiqin Deng
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
- b Guangdong Provincial Key Laboratory of Applied Marine Biology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , China
- d University of Chinese Academy of Sciences , Beijing , PR China
| | - Yiying Yang
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
- b Guangdong Provincial Key Laboratory of Applied Marine Biology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , China
- d University of Chinese Academy of Sciences , Beijing , PR China
| | - Xiongqi Ding
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
- b Guangdong Provincial Key Laboratory of Applied Marine Biology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , China
- d University of Chinese Academy of Sciences , Beijing , PR China
| |
Collapse
|
19
|
Hao H, Fang X, Han J, Foley SL, Wang Y, Cheng G, Wang X, Huang L, Dai M, Liu Z, Yuan Z. Cj0440c Affects Flagella Formation and In Vivo Colonization of Erythromycin-Susceptible and -Resistant Campylobacter jejuni. Front Microbiol 2017; 8:729. [PMID: 28487689 PMCID: PMC5403827 DOI: 10.3389/fmicb.2017.00729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 04/07/2017] [Indexed: 12/11/2022] Open
Abstract
Campylobacter jejuni is one of the most common foodborne pathogen worldwide. A putative transcriptional regulator, Cj0440c, was up-regulated in the erythromycin-resistant C. jejuni, however, the precise role of Cj0440c is yet to be determined. The aim of this study was to determine the biological functions of Cj0440c. The Cj0440c isogenic mutants were constructed from erythromycin-susceptible C. jejuni NCTC 11168 (S) and -resistant C. jejuni 68-ER (R), designating as SM and RM, respectively. The isogenic Cj0440c mutants (SM and RM) and parental strains (S and R) were subjected to microarray and qRT-PCR analysis to examine the transcriptional profile changes contributed by Cj0440c. The antimicrobial susceptibility, flagellar morphology, in vitro growth and in vivo colonization in chickens were carried out to analyze the biological function of Cj0440c. The results showed that 17 genes were down-regulated in SM compared to S, while 9 genes were down-regulated in RM compared to R. The genes with transcriptional change were mainly involved in flagella biosynthesis and assembly. Using transmission electron microscopy, we found that the filaments were impaired in SM and lost in RM. The chicken colonization experiments showed that Cj0440c mutants (SM and RM) had reduced colonization ability in chickens when compared with corresponding parental strains (S and R). In conclusion, Cj0440c regulates flagella biosynthesis and assembly, and consequently affect the in vivo colonization of erythromycin-susceptible and -resistant C. jejuni.
Collapse
Affiliation(s)
- Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Xia Fang
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Jing Han
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, JeffersonAR, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, JeffersonAR, USA
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Menghong Dai
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
20
|
Zhao YH, Shaw JG. Cross-Talk between the Aeromonas hydrophila Type III Secretion System and Lateral Flagella System. Front Microbiol 2016; 7:1434. [PMID: 27656180 PMCID: PMC5013049 DOI: 10.3389/fmicb.2016.01434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/29/2016] [Indexed: 01/09/2023] Open
Abstract
Aeromonas hydrophila is responsible for aeromonad septicaemia in fish, and gastroenteritis and wound infections in humans. The type III secretion system (T3SS) is utilized by aeromonads to inject protein effectors directly into host cells. One of the major genetic regulators of the T3SS in several bacterial species is the AraC-like protein ExsA. Previous studies have suggested a link between T3SS regulation and lateral flagella expression. The aim of this study was to determine the genetic regulation of the T3SS and its potential interaction with the lateral flagella system in A. hydrophila. To investigate the genes encoding the T3SS regulatory components exsA, exsD, exsC, and exsE were mutated and the activities of the T3SS promoters were measured in wild type and mutant backgrounds demonstrating a regulatory network. The Exs proteins were shown to interact with each other by BACTH assay and Far-Western Blot. The findings suggested a regulatory cascade in which ExsE was bound to the chaperone protein ExsC. When ExsC was free it sequestered the anti-activator ExsD thus stopping the inhibition of the T3SS master regulator ExsA allowing T3SS expression. The T3SS regulatory components were also shown to affect the expression of the lateral flagella system. The activities of the lateral flagella promoters were shown to be repressed by the absence of ExsD and ExsE, suggesting that the T3SS master regulator ExsA was a negative regulator of the lateral flagella system.
Collapse
Affiliation(s)
- Yu-Hang Zhao
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Sheffield, UK
| | - Jonathan G Shaw
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Sheffield, UK
| |
Collapse
|
21
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
22
|
Rossi FA, Medeot DB, Liaudat JP, Pistorio M, Jofré E. In Azospirillum brasilense, mutations in flmA or flmB genes affect polar flagellum assembly, surface polysaccharides, and attachment to maize roots. Microbiol Res 2016; 190:55-62. [PMID: 27393999 DOI: 10.1016/j.micres.2016.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 04/02/2016] [Accepted: 05/13/2016] [Indexed: 11/28/2022]
Abstract
Azospirillum brasilense is a soil bacterium capable of promoting plant growth. Several surface components were previously reported to be involved in the attachment of A. brasilense to root plants. Among these components are the exopolysaccharide (EPS), lipopolysaccharide (LPS) and the polar flagellum. Flagellin from polar flagellum is glycosylated and it was suggested that genes involved in such a posttranslational modification are the same ones involved in the biosynthesis of sugars present in the O-antigen of the LPS. In this work, we report on the characterization of two homologs present in A. brasilense Cd, to the well characterized flagellin modification genes, flmA and flmB, from Aeromonas caviae. We show that mutations in either flmA or flmB genes of A. brasilense resulted in non-motile cells due to alterations in the polar flagellum assembly. Moreover, these mutations also affected the capability of A. brasilense cells to adsorb to maize roots and to produce LPS and EPS. By generating a mutant containing the polar flagellum affected in their rotation, we show the importance of the bacterial motility for the early colonization of maize roots.
Collapse
Affiliation(s)
- Fernando Ariel Rossi
- Departmento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, 5800 Río Cuarto, Argentina
| | - Daniela Beatriz Medeot
- Departmento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, 5800 Río Cuarto, Argentina
| | - Juan Pablo Liaudat
- Departmento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, 5800 Río Cuarto, Argentina
| | - Mariano Pistorio
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata CONICET-, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, 1900 La Plata, Argentina
| | - Edgardo Jofré
- Departmento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, 5800 Río Cuarto, Argentina.
| |
Collapse
|
23
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
24
|
Lowry RC, Parker JL, Kumbhar R, Mesnage S, Shaw JG, Stafford GP. The Aeromonas caviae AHA0618 gene modulates cell length and influences swimming and swarming motility. Microbiologyopen 2014; 4:220-234. [PMID: 25515520 PMCID: PMC4398505 DOI: 10.1002/mbo3.233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 01/12/2023] Open
Abstract
Aeromonas caviae is motile via a polar flagellum in liquid culture, with a lateral flagella system used for swarming on solid surfaces. The polar flagellum also has a role in cellular adherence and biofilm formation. The two subunits of the polar flagellum, FlaA and FlaB, are posttranslationally modified by O-linked glycosylation with pseudaminic acid on 6–8 serine and threonine residues within the central region of these proteins. This modification is essential for the formation of the flagellum. Aeromonas caviae possesses the simplest set of genes required for bacterial glycosylation currently known, with the putative glycosyltransferase, Maf1, being described recently. Here, we investigated the role of the AHA0618 gene, which shares homology (37% at the amino acid level) with the central region of a putative deglycosylation enzyme (HP0518) from the human pathogen Helicobacter pylori, which also glycosylates its flagellin and is proposed to be part of a flagellin deglycosylation pathway. Phenotypic analysis of an AHA0618 A. caviae mutant revealed increased swimming and swarming motility compared to the wild-type strain but without any detectable effects on the glycosylation status of the polar flagellins when analyzed by western blot analysis or mass spectroscopy. Bioinformatic analysis of the protein AHA0618, demonstrated homology to a family of l,d-transpeptidases involved in cell wall biology and peptidoglycan cross-linking (YkuD-like). Scanning electron microscopy (SEM) and fluorescence microscopy analysis of the wild-type and AHA0618-mutant A. caviae strains revealed the mutant to be subtly but significantly shorter than wild-type cells; a phenomenon that could be recovered when either AHA0618 or H. pylori HP0518 were introduced. We can therefore conclude that AHA0618 does not affect A. caviae behavior by altering polar flagellin glycosylation levels but is likely to have a role in peptidoglycan processing at the bacterial cell wall, consequently altering cell length and hence influencing motility.
Collapse
Affiliation(s)
- Rebecca C Lowry
- Department of Infection and Immunity, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Jennifer L Parker
- Department of Infection and Immunity, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Ramhari Kumbhar
- Department of Infection and Immunity, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Stephane Mesnage
- Department of Molecular Biology and Biotechnology, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Jonathan G Shaw
- Department of Infection and Immunity, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Graham P Stafford
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, Sheffield, S10 2TA, UK
| |
Collapse
|
25
|
Chaze T, Guillot A, Valot B, Langella O, Chamot-Rooke J, Di Guilmi AM, Trieu-Cuot P, Dramsi S, Mistou MY. O-Glycosylation of the N-terminal region of the serine-rich adhesin Srr1 of Streptococcus agalactiae explored by mass spectrometry. Mol Cell Proteomics 2014; 13:2168-82. [PMID: 24797265 DOI: 10.1074/mcp.m114.038075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine-rich (Srr) proteins exposed at the surface of Gram-positive bacteria are a family of adhesins that contribute to the virulence of pathogenic staphylococci and streptococci. Lectin-binding experiments have previously shown that Srr proteins are heavily glycosylated. We report here the first mass-spectrometry analysis of the glycosylation of Streptococcus agalactiae Srr1. After Srr1 enrichment and trypsin digestion, potential glycopeptides were identified in collision induced dissociation spectra using X! Tandem. The approach was then refined using higher energy collisional dissociation fragmentation which led to the simultaneous loss of sugar residues, production of diagnostic oxonium ions and backbone fragmentation for glycopeptides. This feature was exploited in a new open source software tool (SpectrumFinder) developed for this work. By combining these approaches, 27 glycopeptides corresponding to six different segments of the N-terminal region of Srr1 [93-639] were identified. Our data unambiguously indicate that the same protein residue can be modified with different glycan combinations including N-acetylhexosamine, hexose, and a novel modification that was identified as O-acetylated-N-acetylhexosamine. Lectin binding and monosaccharide composition analysis strongly suggested that HexNAc and Hex correspond to N-acetylglucosamine and glucose, respectively. The same protein segment can be modified with a variety of glycans generating a wide structural diversity of Srr1. Electron transfer dissociation was used to assign glycosylation sites leading to the unambiguous identification of six serines and one threonine residues. Analysis of purified Srr1 produced in mutant strains lacking accessory glycosyltransferase encoding genes demonstrates that O-GlcNAcylation is an initial step in Srr1 glycosylation that is likely required for subsequent decoration with Hex. In summary, our data obtained by a combination of fragmentation mass spectrometry techniques associated to a new software tool, demonstrate glycosylation heterogeneity of Srr1, characterize a new protein modification, and identify six glycosylation sites located in the N-terminal region of the protein.
Collapse
Affiliation(s)
- Thibault Chaze
- From the ‡INRA, MICALIS UMR-1319, 78352 Jouy-en-Josas cedex, France; §AgroParisTech, MICALIS UMR-1319, 78352 Jouy-en-Josas cedex, France; ¶¶Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, 28 rue du Dr Roux, 75015 Paris, France
| | - Alain Guillot
- ¶INRA, PAPPSO, MICALIS UMR-1319, 78352 Jouy en Josas cedex, France
| | - Benoît Valot
- ‖INRA, PAPPSO, Génétique végétale UMR-320, Ferme du Moulon, 91190 Gif sur Yvette, France
| | - Olivier Langella
- ‖INRA, PAPPSO, Génétique végétale UMR-320, Ferme du Moulon, 91190 Gif sur Yvette, France
| | - Julia Chamot-Rooke
- ¶¶Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, 28 rue du Dr Roux, 75015 Paris, France; ‖‖CNRS UMR 3528, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Anne-Marie Di Guilmi
- **CEA, Institut de Biologie Structurale Jean-Pierre Ebel, F-38027 Grenoble, France
| | - Patrick Trieu-Cuot
- ‡‡Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram+, 28, rue du Dr Roux, 75015 Paris, France; §§Centre National de la Recherche Scientifique, CNRS ERL3526, Paris, France
| | - Shaynoor Dramsi
- ‡‡Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram+, 28, rue du Dr Roux, 75015 Paris, France; §§Centre National de la Recherche Scientifique, CNRS ERL3526, Paris, France
| | - Michel-Yves Mistou
- From the ‡INRA, MICALIS UMR-1319, 78352 Jouy-en-Josas cedex, France; §AgroParisTech, MICALIS UMR-1319, 78352 Jouy-en-Josas cedex, France;
| |
Collapse
|
26
|
Parker JL, Lowry RC, Couto NAS, Wright PC, Stafford GP, Shaw JG. Maf-dependent bacterial flagellin glycosylation occurs before chaperone binding and flagellar T3SS export. Mol Microbiol 2014; 92:258-72. [PMID: 24527847 PMCID: PMC4065374 DOI: 10.1111/mmi.12549] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2014] [Indexed: 02/06/2023]
Abstract
Bacterial swimming is mediated by rotation of a filament that is assembled via polymerization of flagellin monomers after secretion via a dedicated flagellar Type III secretion system. Several bacteria decorate their flagellin with sialic acid related sugars that is essential for motility. Aeromonas caviae is a model organism for this process as it contains a genetically simple glycosylation system and decorates its flagellin with pseudaminic acid (Pse). The link between flagellin glycosylation and export has yet to be fully determined. We examined the role of glycosylation in the export and assembly process in a strain lacking Maf1, a protein involved in the transfer of Pse onto flagellin at the later stages of the glycosylation pathway. Immunoblotting, established that glycosylation is not required for flagellin export but is essential for filament assembly since non-glycosylated flagellin is still secreted. Maf1 interacts directly with its flagellin substrate in vivo, even in the absence of pseudaminic acid. Flagellin glycosylation in a flagellin chaperone mutant (flaJ) indicated that glycosylation occurs in the cytoplasm before chaperone binding and protein secretion. Preferential chaperone binding to glycosylated flagellin revealed its crucial role, indicating that this system has evolved to favour secretion of the polymerization competent glycosylated form.
Collapse
Affiliation(s)
- Jennifer L Parker
- Department of Infection and Immunity, University of Sheffield, Sheffield, S10 2RX, UK
| | | | | | | | | | | |
Collapse
|
27
|
Gram-negative flagella glycosylation. Int J Mol Sci 2014; 15:2840-57. [PMID: 24557579 PMCID: PMC3958885 DOI: 10.3390/ijms15022840] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 01/11/2023] Open
Abstract
Protein glycosylation had been considered as an eccentricity of a few bacteria. However, through advances in analytical methods and genome sequencing, it is now established that bacteria possess both N-linked and O-linked glycosylation pathways. Both glycosylation pathways can modify multiple proteins, flagellins from Archaea and Eubacteria being one of these. Flagella O-glycosylation has been demonstrated in many polar flagellins from Gram-negative bacteria and in only the Gram-positive genera Clostridium and Listeria. Furthermore, O-glycosylation has also been demonstrated in a limited number of lateral flagellins. In this work, we revised the current advances in flagellar glycosylation from Gram-negative bacteria, focusing on the structural diversity of glycans, the O-linked pathway and the biological function of flagella glycosylation.
Collapse
|
28
|
Abstract
Aeromonas species are inhabitants of aquatic environments and are able to cause disease in humans and fish among other animals. In aquaculture, they are responsible for the economically important diseases of furunculosis and motile Aeromonas septicaemia (MAS). Whereas gastroenteritis and wound infections are the major human diseases associated with the genus. As they inhabit and survive in diverse environments, aeromonads possess a wide range of colonisation factors. The motile species are able to swim in liquid environments through the action of a single polar flagellum, the flagellin subunits of which are glycosylated; although essential for function the biological role of glycan addition is yet to be determined. Approximately 60% of aeromonads possess a second lateral flagella system that is expressed in viscous environments for swarming over surfaces; both flagellar systems have been shown to be important in the initial colonisation of surfaces. Subsequently, other non-flagellar colonisation factors are employed; these can be both filamentous and non-filamentous. The aeromonads possess a number of fimbrial systems with the bundle-forming MSHA type IV pilus system, having a major role in human cell adherence. Furthermore, a series of outer-membrane proteins have also been implicated in the aeromonad adhesion process. A number of strains are also capable of cell invasion and that maybe linked with the more invasive diseases of bacteraemia or wound infections. These strains employ cell surface factors that allow the colonisation of these niches that protect them from the host's immune system such as S-layers, capsules or particular lipopolysaccharides.
Collapse
Affiliation(s)
- Rebecca Lowry
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Sabela Balboa
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom; Departamento de Microbiología y Parasitología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jennifer L Parker
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
29
|
Sigida EN, Fedonenko YP, Shashkov AS, Zdorovenko EL, Konnova SA, Ignatov VV, Knirel YA. Structural studies of the O-specific polysaccharide(s) from the lipopolysaccharide of Azospirillum brasilense type strain Sp7. Carbohydr Res 2013; 380:76-80. [DOI: 10.1016/j.carres.2013.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/25/2013] [Accepted: 07/27/2013] [Indexed: 12/20/2022]
|
30
|
Iwashkiw JA, Vozza NF, Kinsella RL, Feldman MF. Pour some sugar on it: the expanding world of bacterial proteinO-linked glycosylation. Mol Microbiol 2013; 89:14-28. [DOI: 10.1111/mmi.12265] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Jeremy A. Iwashkiw
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| | - Nicolas F. Vozza
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| | - Rachel L. Kinsella
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| | - Mario F. Feldman
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| |
Collapse
|
31
|
Abstract
Shewanella oneidensis is a highly motile organism by virtue of a polar, glycosylated flagellum composed of flagellins FlaA and FlaB. In this study, the functional flagellin FlaB was isolated and analyzed with nano-liquid chromatography-mass spectrometry (MS) and tandem MS. In combination with the mutational analysis, we propose that the FlaB flagellin protein from S. oneidensis is modified at five serine residues with a series of novel O-linked posttranslational modifications (PTMs) that differ from each other by 14 Da. These PTMs are composed in part of a 274-Da sugar residue that bears a resemblance to the nonulosonic acids. The remainder appears to be composed of a second residue whose mass varies by 14 Da depending on the PTM. Further investigation revealed that synthesis of the glycans initiates with PseB and PseC, the first two enzymes of the Pse pathway. In addition, a number of lysine residues are found to be methylated by SO4160, an analogue of the lysine methyltransferase of Salmonella enterica serovar Typhimurium.
Collapse
|
32
|
Settem RP, Honma K, Nakajima T, Phansopa C, Roy S, Stafford GP, Sharma A. A bacterial glycan core linked to surface (S)-layer proteins modulates host immunity through Th17 suppression. Mucosal Immunol 2013; 6:415-26. [PMID: 22968422 PMCID: PMC4049606 DOI: 10.1038/mi.2012.85] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tannerella forsythia is a pathogen implicated in periodontitis, an inflammatory disease of the tooth-supporting tissues often leading to tooth loss. This key periodontal pathogen is decorated with a unique glycan core O-glycosidically linked to the bacterium's proteinaceous surface (S)-layer lattice and other glycoproteins. Herein, we show that the terminal motif of this glycan core acts to modulate dendritic cell effector functions to suppress T-helper (Th)17 responses. In contrast to the wild-type bacterial strain, infection with a mutant strain lacking the complete S-layer glycan core induced robust Th17 and reduced periodontal bone loss in mice. Our findings demonstrate that surface glycosylation of this pathogen may act to ensure its persistence in the host likely through suppression of Th17 responses. In addition, our data suggest that the bacterium then induces the Toll-like receptor 2-Th2 inflammatory axis that has previously been shown to cause bone destruction. Our study provides a biological basis for pathogenesis and opens opportunities in exploiting bacterial glycans as therapeutic targets against periodontitis and a range of other infectious diseases.
Collapse
Affiliation(s)
- Rajendra P. Settem
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Kiyonobu Honma
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Takuma Nakajima
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Chatchawal Phansopa
- Oral and Maxillofacial Pathology, School of Clinical Dentistry, Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| | - Sumita Roy
- Oral and Maxillofacial Pathology, School of Clinical Dentistry, Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| | - Graham P. Stafford
- Oral and Maxillofacial Pathology, School of Clinical Dentistry, Claremont Crescent, University of Sheffield, Sheffield S10 2TA, UK
| | - Ashu Sharma
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
,Correspondence: Tel: (716) 829-2759; Fax: (716) 829-3942
| |
Collapse
|
33
|
Islam ST, Lam JS. Wzx flippase-mediated membrane translocation of sugar polymer precursors in bacteria. Environ Microbiol 2012; 15:1001-15. [PMID: 23016929 DOI: 10.1111/j.1462-2920.2012.02890.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/13/2012] [Accepted: 08/18/2012] [Indexed: 11/29/2022]
Abstract
Bacterial cell surface polysaccharides confer resistance to external stress and promote survival in biotic and abiotic environments. Glycan assembly often occurs at the periplasmic leaflet of the inner membrane (IM) from undecaprenyl pyrophosphate (UndPP)-linked polysaccharide units via the Wzx/Wzy-dependent pathway. Wzx is an integral IM protein found in Gram-negative and Gram-positive bacteria that mediates IM translocation of UndPP-linked sugar repeats from the cytoplasmic to the periplasmic leaflet; interaction of Wzx with other assembly proteins is indirectly supported by genetic evidence. Topological mapping has indicated 12 α-helical transmembrane segments (TMS), with the number of charged TMS residues fluctuating based on the mapping method used. A novel Wzx tertiary structure model has been built, allowing for substrate-binding or energy-coupling roles to be proposed for functionally important charged and aromatic TMS residues. It has also led to a proposed antiport-like mechanism of Wzx function. Exquisite substrate specificity of Wzx proteins was recently revealed in distinguishing between UndPP-linked substrates with identical main-chain sugar repeats, but differing in the chemical composition of a terminal sugar side-branch cap. The objective of this review is to synthesize the most up-to-date knowledge concerning Wzx flippases and to provide perspective for future investigations in this burgeoning field.
Collapse
Affiliation(s)
- Salim T Islam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | | |
Collapse
|
34
|
Parker JL, Day-Williams MJ, Tomas JM, Stafford GP, Shaw JG. Identification of a putative glycosyltransferase responsible for the transfer of pseudaminic acid onto the polar flagellin of Aeromonas caviae Sch3N. Microbiologyopen 2012; 1:149-60. [PMID: 22950021 PMCID: PMC3426422 DOI: 10.1002/mbo3.19] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 12/04/2022] Open
Abstract
Motility in Aeromonas caviae, in a liquid environment (in broth culture), is mediated by a single polar flagellum encoded by the fla genes. The polar flagellum filament of A. caviae is composed of two flagellin subunits, FlaA and FlaB, which undergo O-linked glycosylation with six to eight pseudaminic acid glycans linked to serine and threonine residues in their central region. The flm genetic locus in A. caviae is required for flagellin glycosylation and the addition of pseudaminic acid (Pse) onto the lipopolysaccharide (LPS) O-antigen. However, none of the flm genes appear to encode a candidate glycotransferase that might add the Pse moiety to FlaA/B. The motility-associated factors (Maf proteins) are considered as candidate transferase enzymes, largely due to their conserved proximity to flagellar biosynthesis loci in a number of pathogens. Bioinformatic analysis performed in this study indicated that the genome of A. caviae encodes a single maf gene homologue (maf1). A maf mutant was generated and phenotypic analysis showed it is both nonmotile and lacks polar flagella. In contrast to flm mutants, it had no effect on the LPS O-antigen pattern and has the ability to swarm. Analysis of flaA transcription by reverse transcriptase PCR (RT-PCR) showed that its transcription was unaltered in the maf mutant while a His-tagged version of the FlaA flagellin protein produced from a plasmid was detected in an unglycosylated intracellular form in the maf strain. Complementation of the maf strain in trans partially restored motility, but increased levels of glycosylated flagellin to above wild-type levels. Overexpression of maf inhibited motility, indicating a dominant negative effect, possibly caused by high amounts of glycosylated flagellin inhibiting assembly of the flagellum. These data provide evidence that maf1, a pseudaminyl transferase, is responsible for glycosylation of flagellin and suggest that this event occurs prior to secretion through the flagellar Type III secretion system.
Collapse
|
35
|
Twine SM, Vinogradov E, Lindgren H, Sjostedt A, Conlan JW. Roles for wbtC, wbtI, and kdtA Genes in Lipopolysaccharide Biosynthesis, Protein Glycosylation, Virulence, and Immunogenicity in Francisella tularensis2 Strain SCHU S4. Pathogens 2012; 1:12-29. [PMID: 25152813 PMCID: PMC4141488 DOI: 10.3390/pathogens1010012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Using a strategy of gene deletion mutagenesis, we have examined the roles of genes putatively involved in lipopolysaccharide biosynthesis in the virulent facultative intracellular bacterial pathogen, Francisella tularensis subspecies tularensis, strain SCHU S4 in LPS biosynthesis, protein glycosylation, virulence and immunogenicity. One mutant, ΔwbtI, did not elaborate a long chain O-polysaccharide (OPS), was completely avirulent for mice, and failed to induce a protective immune response against challenge with wild type bacteria. Another mutant, ΔwbtC, produced a long chain OPS with altered chemical and electrophoretic characteristics. This mutant showed markedly reduced glycosylation of several known glycoproteins. Additionally this mutant was highly attenuated, and elicited a protective immune response against systemic, but not respiratory challenge with wild type SCHU S4. A third mutant, ΔkdtA, produced an unconjugated long chain OPS, lacking a detectable core structure, and which was not obviously expressed at the surface. It was avirulent and elicited partial protection against systemic challenge only.
Collapse
Affiliation(s)
- Susan. M. Twine
- National Research Council Canada, Institute for Biological Sciences, 100 Sussex Drive, Ottawa, ON K1A 1L1, Canada; E-Mails: (E.V.); (J.W.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-613-993-8829; Fax: +1-613-952-9092
| | - Evguenii Vinogradov
- National Research Council Canada, Institute for Biological Sciences, 100 Sussex Drive, Ottawa, ON K1A 1L1, Canada; E-Mails: (E.V.); (J.W.C.)
| | - Helena Lindgren
- Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå SE-90185, Sweden; E-Mails: (H.L.); (A.S.)
| | - Anders Sjostedt
- Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå SE-90185, Sweden; E-Mails: (H.L.); (A.S.)
| | - J. Wayne Conlan
- National Research Council Canada, Institute for Biological Sciences, 100 Sussex Drive, Ottawa, ON K1A 1L1, Canada; E-Mails: (E.V.); (J.W.C.)
| |
Collapse
|
36
|
Belyakov AY, Burygin GL, Arbatsky NP, Shashkov AS, Selivanov NY, Matora LY, Knirel YA, Shchyogolev SY. Identification of an O-linked repetitive glycan chain of the polar flagellum flagellin of Azospirillum brasilense Sp7. Carbohydr Res 2012; 361:127-32. [PMID: 23017779 DOI: 10.1016/j.carres.2012.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 08/25/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
This is the first report to have identified an O-linked repetitive glycan in bacterial flagellin, a structural protein of the flagellum. Studies by sugar analysis, Smith degradation, (1)H and (13)C NMR spectroscopy, and mass spectrometry showed that the glycan chains of the polar flagellum flagellin of the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp7 are represented by a polysaccharide with a molecular mass of 7.7 kDa, which has a branched tetrasaccharide repeating unit of the following structure:
Collapse
Affiliation(s)
- Alexei Ye Belyakov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tomás JM. The main Aeromonas pathogenic factors. ISRN MICROBIOLOGY 2012; 2012:256261. [PMID: 23724321 PMCID: PMC3658858 DOI: 10.5402/2012/256261] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/19/2012] [Indexed: 12/27/2022]
Abstract
The members of the Aeromonas genus are ubiquitous, water-borne bacteria. They have been isolated from marine waters, rivers, lakes, swamps, sediments, chlorine water, water distribution systems, drinking water and residual waters; different types of food, such as meat, fish, seafood, vegetables, and processed foods. Aeromonas strains are predominantly pathogenic to poikilothermic animals, and the mesophilic strains are emerging as important pathogens in humans, causing a variety of extraintestinal and systemic infections as well as gastrointestinal infections. The most commonly described disease caused by Aeromonas is the gastroenteritis; however, no adequate animal model is available to reproduce this illness caused by Aeromonas. The main pathogenic factors associated with Aeromonas are: surface polysaccharides (capsule, lipopolysaccharide, and glucan), S-layers, iron-binding systems, exotoxins and extracellular enzymes, secretion systems, fimbriae and other nonfilamentous adhesins, motility and flagella.
Collapse
Affiliation(s)
- J M Tomás
- Departamento Microbiología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain
| |
Collapse
|
38
|
Ishii K, Adachi T, Imamura K, Takano S, Usui K, Suzuki K, Hamamoto H, Watanabe T, Sekimizu K. Serratia marcescens induces apoptotic cell death in host immune cells via a lipopolysaccharide- and flagella-dependent mechanism. J Biol Chem 2012; 287:36582-92. [PMID: 22859304 DOI: 10.1074/jbc.m112.399667] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH(2)-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity.
Collapse
Affiliation(s)
- Kenichi Ishii
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wilhelms M, Fulton KM, Twine SM, Tomás JM, Merino S. Differential glycosylation of polar and lateral flagellins in Aeromonas hydrophila AH-3. J Biol Chem 2012; 287:27851-62. [PMID: 22733809 DOI: 10.1074/jbc.m112.376525] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polar and lateral flagellin proteins from Aeromonas hydrophila strain AH-3 (serotype O34) were found to be glycosylated with different carbohydrate moieties. The lateral flagellin was modified at three sites in O-linkage, with a single monosaccharide of 376 Da, which we show to be a pseudaminic acid derivative. The polar flagellin was modified with a heterogeneous glycan, comprised of a heptasaccharide, linked through the same 376-Da sugar to the protein backbone, also in O-linkage. In-frame deletion mutants of pseudaminic acid biosynthetic genes pseB and pseF homologues resulted in abolition of polar and lateral flagellar formation by posttranscriptional regulation of the flagellins, which was restored by complementation with wild type pseB or F homologues or Campylobacter pseB and F.
Collapse
Affiliation(s)
- Markus Wilhelms
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | |
Collapse
|
40
|
O-polysaccharide glycosylation is required for stability and function of the collagen adhesin EmaA of Aggregatibacter actinomycetemcomitans. Infect Immun 2012; 80:2868-77. [PMID: 22689812 DOI: 10.1128/iai.00372-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is hypothesized to colonize through the interaction with collagen and establish a reservoir for further dissemination. The trimeric adhesin EmaA of A. actinomycetemcomitans binds to collagen and is modified with sugars mediated by an O-antigen polysaccharide ligase (WaaL) that is associated with lipopolysaccharide (LPS) biosynthesis (G. Tang and K. Mintz, J. Bacteriol. 192:1395-1404, 2010). This investigation characterized the function and cellular localization of EmaA glycosylation. The interruption of LPS biogenesis by using genetic and pharmacological methods changed the amount and biophysical properties of EmaA molecules in the outer membrane. In rmlC and waaL mutant strains, the membrane-associated EmaA was reduced by 50% compared with the wild-type strain, without changes in mRNA levels. The membrane-associated EmaA protein levels were recovered by complementation with the corresponding O-polysaccharide (O-PS) biosynthetic genes. In contrast, another trimeric autotransporter, epithelial adhesin ApiA, was not affected in the same mutant background. The inhibition of undecaprenyl pyrophosphate recycling by bacitracin resulted in a similar decrease in the membrane-associated EmaA protein. This effect was reversed by removal of the compound. A significant decrease in collagen binding activity was observed in strains expressing the nonglycosylated form of EmaA. Furthermore, the electrophoretic mobility shifts of the EmaA monomers found in the O-PS mutant strains were associated only with the membrane-associated protein and not with the cytoplasmic pre-EmaA protein, suggesting that this modification does not occur in the cytoplasm. The glycan modification of EmaA appears to be required for collagen binding activity and protection of the protein against degradation by proteolytic enzymes.
Collapse
|
41
|
Margaret I, Crespo-Rivas JC, Acosta-Jurado S, Buendía-Clavería AM, Cubo MT, Gil-Serrano A, Moreno J, Murdoch PS, Rodríguez-Carvajal MA, Rodríguez-Navarro DN, Ruiz-Sainz JE, Sanjuán J, Soto MJ, Vinardell JM. Sinorhizobium fredii HH103 rkp-3 genes are required for K-antigen polysaccharide biosynthesis, affect lipopolysaccharide structure and are essential for infection of legumes forming determinate nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:825-38. [PMID: 22397406 DOI: 10.1094/mpmi-10-11-0262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Sinorhizobium fredii HH103 rkp-3 region has been isolated and sequenced. Based on the similarities between the S. fredii HH103 rkpL, rkpM, rkpN, rkpO, rkpP, and rkpQ genes and their corresponding orthologues in Helicobacter pylori, we propose a possible pathway for the biosynthesis of the S. fredii HH103 K-antigen polysaccharide (KPS) repeating unit. Three rkp-3 genes (rkpM, rkpP, and rkpQ) involved in the biosynthesis of the HH103 KPS repeating unit (a derivative of the pseudaminic acid) have been mutated and analyzed. All the rkp-3 mutants failed to produce KPS and their lipopolysaccharide (LPS) profiles were altered. These mutants showed reduced motility and auto-agglutinated when early-stationary cultures were further incubated under static conditions. Glycine max, Vigna unguiculata (determinate nodule-forming legumes), and Cajanus cajan (indeterminate nodules) plants inoculated with mutants in rkpM, rkpQ, or rkpP only formed pseudonodules that did not fix nitrogen and were devoid of bacteria. In contrast, another indeterminate nodule-forming legume, Glycyrrhiza uralensis, was still able to form some nitrogen-fixing nodules with the three S. fredii HH103 rifampicin-resistant rkp-3 mutants tested. Our results suggest that the severe symbiotic impairment of the S. fredii rkp-3 mutants with soybean, V. unguiculata, and C. cajan is mainly due to the LPS alterations rather than to the incapacity to produce KPS.
Collapse
Affiliation(s)
- Isabel Margaret
- Departamento de Microbiología, Faculdad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Impact of QseBC system in c-di-GMP-dependent quorum sensing regulatory network in a clinical isolate SSU of Aeromonas hydrophila. Microb Pathog 2012; 53:115-24. [PMID: 22664750 DOI: 10.1016/j.micpath.2012.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 05/12/2012] [Accepted: 05/16/2012] [Indexed: 11/20/2022]
Abstract
Our earlier studies showed that AhyRI- (AI-1) and LuxS-based (AI-2) quorum sensing (QS) systems were positive and negative regulators of virulence, respectively, in a diarrheal isolate SSU of Aeromonas hydrophila. Recently, we demonstrated that deletion of the QseBC two-component signal transduction system (AI-3 QS in enterohemorrhagic Escherichia coli) also led to an attenuation of A. hydrophila in a septicemic mouse model of infection, and that interplay exists between AI-1, AI-2, and the second-messenger cyclic-di-guanosine monophosphate (c-di-GMP) in modulating bacterial virulence. To further explore a network connection between all of the three QS systems in A. hydrophila SSU and their cross talk with c-di-GMP, we overproduced a protein with a GGDEF domain, which increases c-di-GMP levels in bacteria, and studied phenotypes and transcriptional profiling of genes involved in biofilm formation and motility of the wild-type (WT) A. hydrophila and its ΔqseB mutant. Over-expression of the GGDEF domain-encoding gene (aha0701h) resulted in a significantly reduced motility of the WT A. hydrophila similar to that of the ΔqseB mutant. While enhanced protease production was noted in WT A. hydrophila that had increased c-di-GMP, no enzymatic activity was detected in the ΔqseB mutant overexpressing the aha0701h gene. Likewise, denser biofilm formation was noted for WT bacteria when c-di-GMP was overproduced compared to its respective control; however, overproduction of c-di-GMP in the ΔqseB mutant led to reduced biofilm formation, a finding similar to that noted for the parental A. hydrophila strain. These effects on bacterial motility and biofilm formation in the ΔqseB mutant or the mutant with increased c-di-GMP were correlated with altered levels of fleN and vpsT genes. While we noted transcript levels of qseB and qseC genes to be increased in the ahyRI mutant, down-regulation of the ahyR and ahyI genes was observed in the ΔqseB mutant, which correlated with decreased protease activity. Finally, an enhanced virulence of WT A. hydrophila with increased c-di-GMP was noted in a mouse model when compared to findings in the parental strain with vector alone. Overall, we conclude that cross talk between AI-1 and QseBC systems exists in A. hydrophila SSU, and c-di-GMP modulation on QseBC system is dependent on the expression of the AI-1 system.
Collapse
|
43
|
Abstract
Little is known about the colonization mechanisms of Aeromonas spp. Previous work has suggested that the type IV bundle-forming pilus (Bfp) is an aeromonad intestinal colonization factor. This study provides the first genetic characterization of this structure. To define the role of Bfp in Aeromonas veronii bv. Sobria adherence, a 22-kb locus encoding the bundle-forming pilus was isolated; this contained 17 pilus-related genes similar to the mannose-sensitive hemagglutinin (MSHA) of Vibrio cholerae. Reverse transcriptase PCR (RT-PCR) demonstrated that the locus had two major transcriptional units, mshI to mshF and mshB to mshQ. Transcriptional fusion experiments demonstrated the presence of two strong promoters upstream of mshI and mshB. The locus encoded four putative prepilin proteins, one of which (MshA) corresponded to the N-terminal sequence of the previously isolated major pilin protein. All the pilin genes were inactivated, mutation of each minor or major pilin gene greatly reduced the bacterium's ability to adhere and form biofilms, and complementation of each mutant in trans rescued this phenotype. Mutation of the major pilin MshA and MshB, a minor pilin, resulted in their loss. The position of the mshH gene is conserved within a number of bacteria, and we have shown it is not transcriptionally linked to the other msh genes; moreover, its mutation did not have a dramatic effect on either adhesion or biofilm formation. We conclude that the bundle-forming pilus is required for A. veronii bv. Sobria adherence and biofilm formation; furthermore, both the major and minor pilin proteins are essential for this process.
Collapse
|
44
|
Post DMB, Yu L, Krasity BC, Choudhury B, Mandel MJ, Brennan CA, Ruby EG, McFall-Ngai MJ, Gibson BW, Apicella MA. O-antigen and core carbohydrate of Vibrio fischeri lipopolysaccharide: composition and analysis of their role in Euprymna scolopes light organ colonization. J Biol Chem 2012; 287:8515-30. [PMID: 22247546 DOI: 10.1074/jbc.m111.324012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vibrio fischeri exists in a symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, where the squid provides a home for the bacteria, and the bacteria in turn provide camouflage that helps protect the squid from night-time predators. Like other gram-negative organisms, V. fischeri expresses lipopolysaccharide (LPS) on its cell surface. The structure of the O-antigen and the core components of the LPS and their possible role in colonization of the squid have not previously been determined. In these studies, an O-antigen ligase mutant, waaL, was utilized to determine the structures of these LPS components and their roles in colonization of the squid. WaaL ligates the O-antigen to the core of the LPS; thus, LPS from waaL mutants lacks O-antigen. Our results show that the V. fischeri waaL mutant has a motility defect, is significantly delayed in colonization, and is unable to compete with the wild-type strain in co-colonization assays. Comparative analyses of the LPS from the wild-type and waaL strains showed that the V. fischeri LPS has a single O-antigen repeat composed of yersiniose, 8-epi-legionaminic acid, and N-acetylfucosamine. In addition, the LPS from the waaL strain showed that the core structure consists of L-glycero-D-manno-heptose, D-glycero-D-manno-heptose, glucose, 3-deoxy-D-manno-octulosonic acid, N-acetylgalactosamine, 8-epi-legionaminic acid, phosphate, and phosphoethanolamine. These studies indicate that the unusual V. fischeri O-antigen sugars play a role in the early phases of bacterial colonization of the squid.
Collapse
Affiliation(s)
- Deborah M B Post
- Buck Institute for Research on Aging, Novato, California 94945, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Radhakrishnan SK, Viollier P. Two-in-one: bifunctional regulators synchronizing developmental events in bacteria. Trends Cell Biol 2012; 22:14-21. [DOI: 10.1016/j.tcb.2011.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 10/16/2022]
|
46
|
Hopf PS, Ford RS, Zebian N, Merkx-Jacques A, Vijayakumar S, Ratnayake D, Hayworth J, Creuzenet C. Protein glycosylation in Helicobacter pylori: beyond the flagellins? PLoS One 2011; 6:e25722. [PMID: 21984942 PMCID: PMC3184161 DOI: 10.1371/journal.pone.0025722] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/09/2011] [Indexed: 12/13/2022] Open
Abstract
Glycosylation of flagellins by pseudaminic acid is required for virulence in Helicobacter pylori. We demonstrate that, in H. pylori, glycosylation extends to proteins other than flagellins and to sugars other than pseudaminic acid. Several candidate glycoproteins distinct from the flagellins were detected via ProQ-emerald staining and DIG- or biotin- hydrazide labeling of the soluble and outer membrane fractions of wild-type H. pylori, suggesting that protein glycosylation is not limited to the flagellins. DIG-hydrazide labeling of proteins from pseudaminic acid biosynthesis pathway mutants showed that the glycosylation of some glycoproteins is not dependent on the pseudaminic acid glycosylation pathway, indicating the existence of a novel glycosylation pathway. Fractions enriched in glycoprotein candidates by ion exchange chromatography were used to extract the sugars by acid hydrolysis. High performance anion exchange chromatography with pulsed amperometric detection revealed characteristic monosaccharide peaks in these extracts. The monosaccharides were then identified by LC-ESI-MS/MS. The spectra are consistent with sugars such as 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Ac7Ac) previously described on flagellins, 5-acetamidino-7-acetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Am7Ac), bacillosamine derivatives and a potential legionaminic acid derivative (Leg5AmNMe7Ac) which were not previously identified in H. pylori. These data open the way to the study of the mechanism and role of protein glycosylation on protein function and virulence in H. pylori.
Collapse
Affiliation(s)
- Patrick S. Hopf
- Infectious Diseases Research Group, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Rachel S. Ford
- Infectious Diseases Research Group, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Najwa Zebian
- Infectious Diseases Research Group, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Alexandra Merkx-Jacques
- Infectious Diseases Research Group, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Somalinga Vijayakumar
- Infectious Diseases Research Group, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Dinath Ratnayake
- Infectious Diseases Research Group, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Jacqueline Hayworth
- Infectious Diseases Research Group, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Carole Creuzenet
- Infectious Diseases Research Group, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
47
|
Glycoproteomics: a powerful tool for characterizing the diverse glycoforms of bacterial pilins and flagellins. Biochem Soc Trans 2010; 38:1307-13. [DOI: 10.1042/bst0381307] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With glycosylation now firmly established across both Archaeal and bacterial proteins, a wide array of glycan diversity has become evident from structural analysis and genomic data. These discoveries have been built in part on the development and application of mass spectrometric technologies to the bacterial glycoproteome. This review highlights recent findings using high sensitivity MS of the large variation of glycans that have been reported on flagellin and pilin proteins of bacteria, using both ‘top down’ and ‘bottom up’ approaches to the characterization of these glycoproteins. We summarize current knowledge of the sugar modifications that have been observed on flagellins and pilins, in terms of both the diverse repertoire of monosaccharides observed, and the assemblage of moieties that decorate many of these sugars.
Collapse
|