1
|
Imelio JA, Trajtenberg F, Mondino S, Zarantonelli L, Vitrenko I, Lemée L, Cokelaer T, Picardeau M, Buschiazzo A. Signal-sensing triggers the shutdown of HemKR, regulating heme and iron metabolism in the spirochete Leptospira biflexa. PLoS One 2024; 19:e0311040. [PMID: 39325783 PMCID: PMC11426443 DOI: 10.1371/journal.pone.0311040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Heme and iron metabolic pathways are highly intertwined, both compounds being essential for key biological processes, yet becoming toxic if overabundant. Their concentrations are exquisitely regulated, including via dedicated two-component systems (TCSs) that sense signals and regulate adaptive responses. HemKR is a TCS present in both saprophytic and pathogenic Leptospira species, involved in the control of heme metabolism. However, the molecular means by which HemKR is switched on/off in a signal-dependent way, are still unknown. Moreover, a comprehensive list of HemKR-regulated genes, potentially overlapped with iron-responsive targets, is also missing. Using the saprophytic species Leptospira biflexa as a model, we now show that 5-aminolevulinic acid (ALA) triggers the shutdown of the HemKR pathway in live cells, and does so by stimulating the phosphatase activity of HemK towards phosphorylated HemR. Phospho~HemR dephosphorylation leads to differential expression of multiple genes, including of heme metabolism and transport systems. Besides the heme-biosynthetic genes hemA and the catabolic hmuO, which we had previously reported as phospho~HemR targets, we now extend the regulon identifying additional genes. Finally, we discover that HemR inactivation brings about an iron-deficit tolerant phenotype, synergistically with iron-responsive signaling systems. Future studies with pathogenic Leptospira will be able to confirm whether such tolerance to iron deprivation is conserved among Leptospira spp., in which case HemKR could play a vital role during infection where available iron is scarce. In sum, HemKR responds to abundance of porphyrin metabolites by shutting down and controlling heme homeostasis, while also contributing to integrate the regulation of heme and iron metabolism in the L. biflexa spirochete model.
Collapse
Affiliation(s)
- Juan Andrés Imelio
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Felipe Trajtenberg
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sonia Mondino
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Iakov Vitrenko
- Plateforme Technologique Biomics, C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Laure Lemée
- Plateforme Technologique Biomics, C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Thomas Cokelaer
- Plateforme Technologique Biomics, C2RT, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Paris, France
| | - Mathieu Picardeau
- Biology of Spirochetes Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Alejandro Buschiazzo
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Dept of Microbiology, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Paredes A, Iheacho C, Smith AT. Metal Messengers: Communication in the Bacterial World through Transition-Metal-Sensing Two-Component Systems. Biochemistry 2023; 62:2339-2357. [PMID: 37539997 PMCID: PMC10530140 DOI: 10.1021/acs.biochem.3c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria survive in highly dynamic and complex environments due, in part, to the presence of systems that allow the rapid control of gene expression in the presence of changing environmental stimuli. The crosstalk between intra- and extracellular bacterial environments is often facilitated by two-component signal transduction systems that are typically composed of a transmembrane histidine kinase and a cytosolic response regulator. Sensor histidine kinases and response regulators work in tandem with their modular domains containing highly conserved structural features to control a diverse array of genes that respond to changing environments. Bacterial two-component systems are widespread and play crucial roles in many important processes, such as motility, virulence, chemotaxis, and even transition metal homeostasis. Transition metals are essential for normal prokaryotic physiological processes, and the presence of these metal ions may also influence pathogenic virulence if their levels are appropriately controlled. To do so, bacteria use transition-metal-sensing two-component systems that bind and respond to rapid fluctuations in extracytosolic concentrations of transition metals. This perspective summarizes the structural and metal-binding features of bacterial transition-metal-sensing two-component systems and places a special emphasis on understanding how these systems are used by pathogens to establish infection in host cells and how these systems may be targeted for future therapeutic developments.
Collapse
Affiliation(s)
- Alexander Paredes
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Chioma Iheacho
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
3
|
Euba B, Gil-Campillo C, Asensio-López J, López-López N, Sen-Kilic E, Díez-Martínez R, Burgui S, Barbier M, Garmendia J. In Vivo Genome-Wide Gene Expression Profiling Reveals That Haemophilus influenzae Purine Synthesis Pathway Benefits Its Infectivity within the Airways. Microbiol Spectr 2023; 11:e0082323. [PMID: 37195232 PMCID: PMC10269889 DOI: 10.1128/spectrum.00823-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
Haemophilus influenzae is a human-adapted bacterial pathogen that causes airway infections. Bacterial and host elements associated with the fitness of H. influenzae within the host lung are not well understood. Here, we exploited the strength of in vivo-omic analyses to study host-microbe interactions during infection. We used in vivo transcriptome sequencing (RNA-seq) for genome-wide profiling of both host and bacterial gene expression during mouse lung infection. Profiling of murine lung gene expression upon infection showed upregulation of lung inflammatory response and ribosomal organization genes, and downregulation of cell adhesion and cytoskeleton genes. Transcriptomic analysis of bacteria recovered from bronchoalveolar lavage fluid samples from infected mice showed a significant metabolic rewiring during infection, which was highly different from that obtained upon bacterial in vitro growth in an artificial sputum medium suitable for H. influenzae. In vivo RNA-seq revealed upregulation of bacterial de novo purine biosynthesis, genes involved in non-aromatic amino acid biosynthesis, and part of the natural competence machinery. In contrast, the expression of genes involved in fatty acid and cell wall synthesis and lipooligosaccharide decoration was downregulated. Correlations between upregulated gene expression and mutant attenuation in vivo were established, as observed upon purH gene inactivation leading to purine auxotrophy. Likewise, the purine analogs 6-thioguanine and 6-mercaptopurine reduced H. influenzae viability in a dose-dependent manner. These data expand our understanding of H. influenzae requirements during infection. In particular, H. influenzae exploits purine nucleotide synthesis as a fitness determinant, raising the possibility of purine synthesis as an anti-H. influenzae target. IMPORTANCE In vivo-omic strategies offer great opportunities for increased understanding of host-pathogen interplay and for identification of therapeutic targets. Here, using transcriptome sequencing, we profiled host and pathogen gene expression during H. influenzae infection within the murine airways. Lung pro-inflammatory gene expression reprogramming was observed. Moreover, we uncovered bacterial metabolic requirements during infection. In particular, we identified purine synthesis as a key player, highlighting that H. influenzae may face restrictions in purine nucleotide availability within the host airways. Therefore, blocking this biosynthetic process may have therapeutic potential, as supported by the observed inhibitory effect of 6-thioguanine and 6-mercaptopurine on H. influenzae growth. Together, we present key outcomes and challenges for implementing in vivo-omics in bacterial airway pathogenesis. Our findings provide metabolic insights into H. influenzae infection biology, raising the possibility of purine synthesis as an anti-H. influenzae target and of purine analog repurposing as an antimicrobial strategy against this pathogen.
Collapse
Affiliation(s)
- Begoña Euba
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Celia Gil-Campillo
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Javier Asensio-López
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Asociación de la Industria Navarra (AIN)-Gobierno de Navarra, Cordovilla, Spain
| | - Nahikari López-López
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Emel Sen-Kilic
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | - Saioa Burgui
- Asociación de la Industria Navarra (AIN)-Gobierno de Navarra, Cordovilla, Spain
| | - Mariette Barbier
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Junkal Garmendia
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Conexión Nanomedicina-CSIC, Madrid, Spain
| |
Collapse
|
4
|
Zhu Y, Dou Q, Du L, Wang Y. QseB/QseC: a two-component system globally regulating bacterial behaviors. Trends Microbiol 2023:S0966-842X(23)00046-X. [PMID: 36849330 DOI: 10.1016/j.tim.2023.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
QseB/QseC is a two-component system that is involved in the regulation of multiple bacterial behaviors by regulating quorum sensing, bacterial pathogenicity, and antibiotic resistance. Thus, QseB/QseC could provide a target for new antibiotic development. Recently, QseB/QseC has been found to confer survival advantages to environmental bacteria under stress conditions. The molecular mechanistic understanding of QseB/QseC has become an active area of research and revealed some emerging themes, including a deeper understanding of QseB/QseC regulation in different pathogens and environmental bacteria, the functional difference of QseB/QseC among species, and the possibility of analyzing QseB/QseC evolution. Here, we discuss the progression of QseB/QseC studies and describe several unresolved issues and future directions. Resolving these issues is among the challenges of future QseB/QseC studies.
Collapse
Affiliation(s)
- Yuxiang Zhu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Qin Dou
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yan Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
5
|
Wu CM, Li LH, Lin YL, Wu CJ, Lin YT, Yang TC. The sbiTRS Operon Contributes to Stenobactin-Mediated Iron Utilization in Stenotrophomonas maltophilia. Microbiol Spectr 2022; 10:e0267322. [PMID: 36453931 PMCID: PMC9769818 DOI: 10.1128/spectrum.02673-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Iron is an essential micronutrient for various bacterial cellular processes. Fur is a global transcriptional regulator participating in iron homeostasis. Stenotrophomonas maltophilia is a ubiquitous environmental bacterium that has emerged as an opportunistic pathogen. To elucidate the novel regulatory mechanism behind iron homeostasis in S. maltophilia, wild-type KJ and KJΔFur, a fur mutant, were subjected to transcriptome assay. A five-gene cluster, sbiBA-sbiTRS, was significantly upregulated in KJΔFur. SbiAB is an ATP type efflux pump, SbiT is an inner membrane protein, and SbiSR is a two-component regulatory system (TCS). The sbiTRS operon organization was verified by reverse transcription-PCR (RT-PCR). Localization prediction and bacterial two-hybrid studies revealed that SbiT resided in the inner membrane and had an intramembrane interaction with SbiS. In iron-replete conditions, SbiT interacted with SbiS and maintained SbiSR TCS in a resting state. In response to iron depletion stress, SbiT no longer interacted with SbiS, leading to SbiSR TCS activation. The iron source utilization assay demonstrated the contribution of SbiSR TCS to stenobactin-mediated ferric iron utilization but notto the utilization of hemin and ferric citrate. Furthermore, SmeDEF and SbiAB pumps, known stenobactin secretion outlets, were members of the SbiSR regulon. Collectively, in an iron-depleted condition, SbiSR activation is regulated by Fur at the transcriptional level and by SbiT at the posttranslational level. Activated SbiSR contributes to stenobactin-mediated ferric iron utilization by upregulating the smeDEF and sbiAB operons. SbiSR is the first TCS found to be involved in iron homeostasis in S. maltophilia. IMPORTANCE Therapeutic options for Stenotrophomonas maltophilia infections are limited because S. maltophilia is intrinsically resistant to several antibiotics. Iron is an essential element for viability, but iron overload is a lethal threat to bacteria. Therefore, disruption of iron homeostasis can be an alternative strategy to cope with S. maltophilia infection. The intricate regulatory networks involved in iron hemostasis have been reported in various pathogens; however, little is known about S. maltophilia. Herein, a novel sbiTRS operon, a member of Fur regulon, was characterized. SbiT, an inner membrane protein, negatively modulated the SbiSR two-component regulatory system by intramembrane protein-protein interaction with SbiS. In response to iron-depleted stress, SbiSR was activated via the regulation of Fur and SbiT. Activated SbiSR upregulated smeDEF and sbiAB, which contributed to stenobactin-mediated ferric iron utilization. A novel fur-sbiT-sbiSR-smeDEF/sbiAB regulatory circuit in S. maltophilia was revealed.
Collapse
Affiliation(s)
- Cheng-Mu Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Ling Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chao-Jung Wu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
6
|
Janoušková M, Straw ML, Su YC, Riesbeck K. Gene Expression Regulation in Airway Pathogens: Importance for Otitis Media. Front Cell Infect Microbiol 2022; 12:826018. [PMID: 35252035 PMCID: PMC8895709 DOI: 10.3389/fcimb.2022.826018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Otitis media (OM) is an inflammatory disorder in the middle ear. It is mainly caused by viruses or bacteria associated with the airways. Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are the three main pathogens in infection-related OM, especially in younger children. In this review, we will focus upon the multifaceted gene regulation mechanisms that are well-orchestrated in S. pneumoniae, H. influenzae, and M. catarrhalis during the course of infection in the middle ear either in experimental OM or in clinical settings. The sophisticated findings from the past 10 years on how the othopathogens govern their virulence phenotypes for survival and host adaptation via phase variation- and quorum sensing-dependent gene regulation, will be systematically discussed. Comprehensive understanding of gene expression regulation mechanisms employed by pathogens during the onset of OM may provide new insights for the design of a new generation of antimicrobial agents in the fight against bacterial pathogens while combating the serious emergence of antimicrobial resistance.
Collapse
|
7
|
Hamed A, Pullinger G, Stevens M, Farveen F, Freestone P. Characterisation of the E. coli and Salmonella qseC and qseE mutants reveals a metabolic rather than adrenergic receptor role. FEMS Microbiol Lett 2022; 369:6524176. [PMID: 35137015 PMCID: PMC8897314 DOI: 10.1093/femsle/fnac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/31/2021] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
Catecholamine stress hormones (norepinephrine, epinephrine, and dopamine) are signals that have been shown to be used as environmental cues, which affect the growth and virulence of normal microbiota as well as pathogenic bacteria. It has been reported that Escherichia coli and Salmonella use the two-component system proteins QseC and QseE to recognise catecholamines and so act as bacterial adrenergic receptors. In this study, we mutated the E. coli O157:H7 and Salmonella enterica serovar Typhimurium genes encoding QseC and QseE and found that this did not block stress hormone responsiveness in either species. Motility, biofilm formation, and analysis of virulence of the mutants using two infection models were similar to the wild-type strains. The main differences in phenotypes of the qseC and qseE mutants were responses to changes in temperature and growth in different media particularly with respect to salt, carbon, and nitrogen salt sources. In this physiological respect, it was also found that the phenotypes of the qseC and qseE mutants differed between E. coli and Salmonella. These findings collectively suggest that QseC and QseE are not essential for E. coli and Salmonella to respond to stress hormones and that the proteins may be playing a role in regulating metabolism.
Collapse
Affiliation(s)
- Abdalla Hamed
- Department of Microbiology and Immunology, Faculty of Medicine, University of Zawia, Zawiya QP7X+536, Libya
| | - Gillian Pullinger
- Division of Microbiology, Institute for Animal Health, Compton, Newbury RG20 7NN, United Kingdom
| | - Mark Stevens
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Fathima Farveen
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Primrose Freestone
- Corresponding author: Department of Respiratory Sciences, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom. Tel: +44 (0)116 2525656; Fax: +44 (0)116 2525030; E-mail:
| |
Collapse
|
8
|
Fernández P, Díaz AR, Ré MF, Porrini L, de Mendoza D, Albanesi D, Mansilla MC. Identification of Novel Thermosensors in Gram-Positive Pathogens. Front Mol Biosci 2020; 7:592747. [PMID: 33324680 PMCID: PMC7726353 DOI: 10.3389/fmolb.2020.592747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
Temperature is a crucial variable that every living organism, from bacteria to humans, need to sense and respond to in order to adapt and survive. In particular, pathogenic bacteria exploit host-temperature sensing as a cue for triggering virulence gene expression. Here, we have identified and characterized two integral membrane thermosensor histidine kinases (HKs) from Gram-positive pathogens that exhibit high similarity to DesK, the extensively characterized cold sensor histidine kinase from Bacillus subtilis. Through in vivo experiments, we demonstrate that SA1313 from Staphylococcus aureus and BA5598 from Bacillus anthracis, which likely control the expression of putative ATP binding cassette (ABC) transporters, are regulated by environmental temperature. We show here that these HKs can phosphorylate the non-cognate response regulator DesR, partner of DesK, both in vitro and in vivo, inducing in B. subtilis the expression of the des gene upon a cold shock. In addition, we report the characterization of another DesK homolog from B. subtilis, YvfT, also closely associated to an ABC transporter. Although YvfT phosphorylates DesR in vitro, this sensor kinase can only induce des expression in B. subtilis when overexpressed together with its cognate response regulator YvfU. This finding evidences a physiological mechanism to avoid cross talk with DesK after a temperature downshift. Finally, we present data suggesting that the HKs studied in this work appear to monitor different ranges of membrane lipid properties variations to mount adaptive responses upon cooling. Overall, our findings point out that bacteria have evolved sophisticated mechanisms to assure specificity in the response to environmental stimuli. These findings pave the way to understand thermosensing mediated by membrane proteins that could have important roles upon host invasion by bacterial pathogens.
Collapse
Affiliation(s)
- Pilar Fernández
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Alejandra Raquel Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Centro de Recursos Naturales Renovables de la Zona Semi-árida (CERZOS-CONICET), Bahía Blanca, Argentina
| | - María Florencia Ré
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Lucía Porrini
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Daniela Albanesi
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Cecilia Mansilla
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
9
|
Liu S, Ma Y, Zheng Y, Zhao W, Zhao X, Luo T, Zhang J, Yang Z. Cold-Stress Response of Probiotic Lactobacillus plantarum K25 by iTRAQ Proteomic Analysis. J Microbiol Biotechnol 2020; 30:187-195. [PMID: 31752066 PMCID: PMC9728241 DOI: 10.4014/jmb.1909.09021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To understand the molecular mechanism involved in the survivability of cold-tolerant lactic acid bacteria was of great significance in food processing, since these bacteria play a key role in a variety of low-temperature fermented foods. In this study, the cold-stress response of probiotic Lactobacillus plantarum K25 isolated from Tibetan kefir grains was analyzed by iTRAQ proteomic method. By comparing differentially expressed (DE) protein profiles of the strain incubated at 10°C and 37°C, 506 DE proteins were identified. The DE proteins involved in carbohydrate, amino acid and fatty acid biosynthesis and metabolism were significantly down-regulated, leading to a specific energy conservation survival mode. The DE proteins related to DNA repair, transcription and translation were up-regulated, implicating change of gene expression and more protein biosynthesis needed in response to cold stress. In addition, two-component system, quorum sensing and ABC (ATP-binding cassette) transporters also participated in cell cold-adaptation process. These findings provide novel insight into the cold-resistance mechanism in L. plantarum with potential application in low temperature fermented or preserved foods.
Collapse
Affiliation(s)
- Shaoli Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing, P.R. China,Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Yimiao Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing, P.R. China,Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Yi Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing, P.R. China,Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Wen Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing, P.R. China,Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Xiao Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing, P.R. China,Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Tianqi Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing, P.R. China,Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Jian Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing, P.R. China,Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing, P.R. China,Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China,Corresponding author Phone: +86-10-68984870 Fax: +86-10-68984870 E-mail:
| |
Collapse
|
10
|
Quorum Sensing as Antivirulence Target in Cystic Fibrosis Pathogens. Int J Mol Sci 2019; 20:ijms20081838. [PMID: 31013936 PMCID: PMC6515091 DOI: 10.3390/ijms20081838] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder which leads to the secretion of a viscous mucus layer on the respiratory epithelium that facilitates colonization by various bacterial pathogens. The problem of drug resistance has been reported for all the species able to colonize the lung of CF patients, so alternative treatments are urgently needed. In this context, a valid approach is to investigate new natural and synthetic molecules for their ability to counteract alternative pathways, such as virulence regulating quorum sensing (QS). In this review we describe the pathogens most commonly associated with CF lung infections: Staphylococcus aureus, Pseudomonas aeruginosa, species of the Burkholderia cepacia complex and the emerging pathogens Stenotrophomonas maltophilia, Haemophilus influenzae and non-tuberculous Mycobacteria. For each bacterium, the QS system(s) and the molecules targeting the different components of this pathway are described. The amount of investigations published in the last five years clearly indicate the interest and the expectations on antivirulence therapy as an alternative to classical antibiotics.
Collapse
|
11
|
Prevention of Surface-Associated Calcium Phosphate by the Pseudomonas syringae Two-Component System CvsSR. J Bacteriol 2019; 201:JB.00584-18. [PMID: 30617243 DOI: 10.1128/jb.00584-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022] Open
Abstract
CvsSR is a Ca2+-induced two-component system (TCS) in the plant pathogen Pseudomonas syringae pv. tomato DC3000. Here, we discovered that CvsSR is induced by Fe3+, Zn2+, and Cd2+ However, only supplementation of Ca2+ to medium resulted in rugose, opaque colonies in ΔcvsS and ΔcvsR strains. This phenotype corresponded to formation of calcium phosphate precipitation on the surface of ΔcvsS and ΔcvsR colonies. CvsSR regulated swarming motility in P. syringae pv. tomato in a Ca2+-dependent manner, but swarming behavior was not influenced by Fe3+, Zn2+, or Cd2+ We hypothesized that reduced swarming displayed by ΔcvsS and ΔcvsR strains was due to precipitation of calcium phosphate on the surface of ΔcvsS and ΔcvsR cells grown on agar medium supplemented with Ca2+ By reducing the initial pH or adding glucose to the medium, calcium precipitation was inhibited, and swarming was restored to ΔcvsS and ΔcvsR strains, suggesting that calcium precipitation influences swarming ability. Constitutive expression of a CvsSR-regulated carbonic anhydrase and a CvsSR-regulated putative sulfate major facilitator superfamily transporter in ΔcvsS and ΔcvsR strains inhibited formation of calcium precipitates and restored the ability of ΔcvsS and ΔcvsR bacteria to swarm. Lastly, we found that glucose inhibited Ca2+-based induction of CvsSR. Hence, CvsSR is a key regulator that controls calcium precipitation on the surface of bacterial cells.IMPORTANCE Bacteria are capable of precipitating and dissolving minerals. We previously reported the characterization of the two-component system CvsSR in the plant-pathogenic bacterium Pseudomonas syringae CvsSR responds to the presence of calcium and is important for causing disease. Here, we show that CvsSR controls the ability of the bacterium to prevent calcium phosphate precipitation on the surface of cells. We also identified a carbonic anhydrase and transporter that modulate formation of surface-associated calcium precipitates. Furthermore, our results demonstrate that the ability of the bacterium to swarm is controlled by the formation and dissolution of calcium precipitates on the surface of cells. Our study describes new mechanisms for microbially induced mineralization and provides insights into the role of mineral deposits on bacterial physiology. The discoveries may lead to new technological and environmental applications.
Collapse
|
12
|
MITE Aba12 , a Novel Mobile Miniature Inverted-Repeat Transposable Element Identified in Acinetobacter baumannii ATCC 17978 and Its Prevalence across the Moraxellaceae Family. mSphere 2019; 4:4/1/e00028-19. [PMID: 30787115 PMCID: PMC6382973 DOI: 10.1128/mspheredirect.00028-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
One of the most important weapons in the armory of Acinetobacter is its impressive genetic plasticity, facilitating rapid genetic mutations and rearrangements as well as integration of foreign determinants carried by mobile genetic elements. Of these, IS are considered one of the key forces shaping bacterial genomes and ultimately evolution. We report the identification of a novel nonautonomous IS-derived element present in multiple bacterial species from the Moraxellaceae family and its recent translocation into the hns locus in the A. baumannii ATCC 17978 genome. The latter finding adds new knowledge to only a limited number of documented examples of MITEs in the literature and underscores the plastic nature of the hns locus in A. baumannii. MITEAba12, and its predicted parent(s), may be a source of substantial adaptive evolution within environmental and clinically relevant bacterial pathogens and, thus, have broad implications for niche-specific adaptation. Insertion sequences (IS) are fundamental mediators of genome plasticity with the potential to generate phenotypic variation with significant evolutionary outcomes. Here, a recently active miniature inverted-repeat transposon element (MITE) was identified in a derivative of Acinetobacter baumannii ATCC 17978 after being subjected to stress conditions. Transposition of the novel element led to the disruption of the hns gene, resulting in a characteristic hypermotile phenotype. DNA identity shared between the terminal inverted repeats of this MITE and coresident ISAba12 elements, together with the generation of 9-bp target site duplications, provides strong evidence that ISAba12 elements were responsible for mobilization of the MITE (designated MITEAba12) within this strain. A wider genome-level survey identified MITEAba12 in 30 additional Acinetobacter genomes at various frequencies and one Moraxella osloensis genome. Ninety MITEAba12 copies could be identified, of which 40% had target site duplications, indicating recent transposition events. Elements ranged between 111 and 114 bp; 90% were 113 bp in length. Using the MITEAba12 consensus sequence, putative outward-facing Escherichia coli σ70 promoter sequences in both orientations were identified. The identification of transcripts originating from the promoter in one direction supports the proposal that the element can influence neighboring host gene transcription. The location of MITEAba12 varied significantly between and within genomes, preferentially integrating into AT-rich regions. Additionally, a copy of MITEAba12 was identified in a novel 8.5-kb composite transposon, Tn6645, in the M. osloensis CCUG 350 chromosome. Overall, this study shows that MITEAba12 is the most abundant nonautonomous element currently found in Acinetobacter. IMPORTANCE One of the most important weapons in the armory of Acinetobacter is its impressive genetic plasticity, facilitating rapid genetic mutations and rearrangements as well as integration of foreign determinants carried by mobile genetic elements. Of these, IS are considered one of the key forces shaping bacterial genomes and ultimately evolution. We report the identification of a novel nonautonomous IS-derived element present in multiple bacterial species from the Moraxellaceae family and its recent translocation into the hns locus in the A. baumannii ATCC 17978 genome. The latter finding adds new knowledge to only a limited number of documented examples of MITEs in the literature and underscores the plastic nature of the hns locus in A. baumannii. MITEAba12, and its predicted parent(s), may be a source of substantial adaptive evolution within environmental and clinically relevant bacterial pathogens and, thus, have broad implications for niche-specific adaptation.
Collapse
|
13
|
Oral pathogenesis of Aggregatibacter actinomycetemcomitans. Microb Pathog 2017; 113:303-311. [DOI: 10.1016/j.micpath.2017.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022]
|
14
|
Sgheiza V, Novick B, Stanton S, Pierce J, Kalmeta B, Holmquist MF, Grimaldi K, Bren KL, Michel LV. Covalent bonding of heme to protein prevents heme capture by nontypeable Haemophilus influenzae. FEBS Open Bio 2017; 7:1778-1783. [PMID: 29123985 PMCID: PMC5666386 DOI: 10.1002/2211-5463.12324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) are Gram‐negative pathogens that contribute to a variety of diseases, including acute otitis media and chronic obstructive pulmonary disease. As NTHi have an absolute requirement for heme during aerobic growth, these bacteria have to scavenge heme from their human hosts. These heme sources can range from free heme to heme bound to proteins, such as hemoglobin. To test the impact of heme structural factors on heme acquisition by NTHi, we prepared a series of heme sources that systematically vary in heme exposure and covalent binding of heme to peptide/protein and tested the ability of NTHi to use these sources to support growth. Results from this study suggest that NTHi can utilize protein‐associated heme only if it is noncovalently attached to the protein.
Collapse
Affiliation(s)
- Valerie Sgheiza
- School of Chemistry and Materials Science Rochester Institute of Technology NY USA
| | - Bethany Novick
- School of Chemistry and Materials Science Rochester Institute of Technology NY USA
| | - Sarah Stanton
- School of Chemistry and Materials Science Rochester Institute of Technology NY USA
| | - Jeanetta Pierce
- School of Chemistry and Materials Science Rochester Institute of Technology NY USA
| | - Breanne Kalmeta
- School of Chemistry and Materials Science Rochester Institute of Technology NY USA
| | | | - Kyle Grimaldi
- School of Chemistry and Materials Science Rochester Institute of Technology NY USA
| | - Kara L Bren
- Department of Chemistry University of Rochester NY USA
| | - Lea Vacca Michel
- School of Chemistry and Materials Science Rochester Institute of Technology NY USA
| |
Collapse
|
15
|
Transcriptomic Analysis of Laribacter hongkongensis Reveals Adaptive Response Coupled with Temperature. PLoS One 2017; 12:e0169998. [PMID: 28085929 PMCID: PMC5234827 DOI: 10.1371/journal.pone.0169998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/27/2016] [Indexed: 12/17/2022] Open
Abstract
Bacterial adaptation to different hosts requires transcriptomic alteration in response to the environmental conditions. Laribacter hongkongensis is a gram-negative, facultative anaerobic, urease-positive bacillus caused infections in liver cirrhosis patients and community-acquired gastroenteritis. It was also found in intestine from commonly consumed freshwater fishes and drinking water reservoirs. Since L. hongkongensis could survive as either fish or human pathogens, their survival mechanisms in two different habitats should be temperature-regulated and highly complex. Therefore, we performed transcriptomic analysis of L. hongkongensis at body temperatures of fish and human in order to elucidate the versatile adaptation mechanisms coupled with the temperatures. We identified numerous novel temperature-induced pathways involved in host pathogenesis, in addition to the shift of metabolic equilibriums and overexpression of stress-related proteins. Moreover, these pathways form a network that can be activated at a particular temperature, and change the physiology of the bacteria to adapt to the environments. In summary, the dynamic of transcriptomes in L. hongkongensis provides versatile strategies for the bacterial survival at different habitats and this alteration prepares the bacterium for the challenge of host immunity.
Collapse
|
16
|
Wang L, Pan Y, Yuan ZH, Zhang H, Peng BY, Wang FF, Qian W. Two-Component Signaling System VgrRS Directly Senses Extracytoplasmic and Intracellular Iron to Control Bacterial Adaptation under Iron Depleted Stress. PLoS Pathog 2016; 12:e1006133. [PMID: 28036380 PMCID: PMC5231390 DOI: 10.1371/journal.ppat.1006133] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/12/2017] [Accepted: 12/16/2016] [Indexed: 12/02/2022] Open
Abstract
Both iron starvation and excess are detrimental to cellular life, especially for animal and plant pathogens since they always live in iron-limited environments produced by host immune responses. However, how organisms sense and respond to iron is incompletely understood. Herein, we reveal that in the phytopathogenic bacterium Xanthomonas campestris pv. campestris, VgrS (also named ColS) is a membrane-bound receptor histidine kinase that senses extracytoplasmic iron limitation in the periplasm, while its cognate response regulator, VgrR (ColR), detects intracellular iron excess. Under iron-depleted conditions, dissociation of Fe3+ from the periplasmic sensor region of VgrS activates the VgrS autophosphorylation and subsequent phosphotransfer to VgrR, an OmpR-family transcription factor that regulates bacterial responses to take up iron. VgrR-VgrS regulon and the consensus DNA binding motif of the transcription factor VgrR were dissected by comparative proteomic and ChIP-seq analyses, which revealed that in reacting to iron-depleted environments, VgrR directly or indirectly controls the expressions of hundreds of genes that are involved in various physiological cascades, especially those associated with iron-uptake. Among them, we demonstrated that the phosphorylated VgrR tightly represses the transcription of a special TonB-dependent receptor gene, tdvA. This regulation is a critical prerequisite for efficient iron uptake and bacterial virulence since activation of tdvA transcription is detrimental to these processes. When the intracellular iron accumulates, the VgrR-Fe2+ interaction dissociates not only the binding between VgrR and the tdvA promoter, but also the interaction between VgrR and VgrS. This relieves the repression in tdvA transcription to impede continuous iron uptake and avoids possible toxic effects of excessive iron accumulation. Our results revealed a signaling system that directly senses both extracytoplasmic and intracellular iron to modulate bacterial iron homeostasis. The biological function of iron is like a “double-edge sword” to all cellular life since iron starvation or iron excess leads to cell death. For animal and plant pathogens, they have to compete for iron with their hosts since iron-limitation generally is an immune response against microbial infection. However, how pathogens detect extracellular and intracellular iron concentrations remains unclear. Here we show that a plant bacterial pathogen employs a membrane-bound sensor histidine kinase, VgrS, to directly detect extracytoplasmic iron starvation and activate iron uptake accordingly. As a prerequisite, VgrS phosphorylates cognate VgrR to shut down the transcription of a downstream gene, tdvA, whose expression is harmful to absorb iron and bacterial virulence. However, as intracellular iron concentration increases, the ferrous iron binds to VgrR to release its repression on the tdvA transcription, which results in the block of continuous iron uptake to avoid toxic effect of the metal. Therefore, VgrS and VgrR detect extracytoplasmic and intracellular iron, respectively, and systematically modulate cellular homeostasis to promote bacterial survival in iron-depleted environments, such as in host plant.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue Pan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Hui Yuan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bao-Yu Peng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang-Fang Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
17
|
Pang X, Liu C, Lyu P, Zhang S, Liu L, Lu J, Ma C, Lv J. Identification of Quorum Sensing Signal Molecule of Lactobacillus delbrueckii subsp. bulgaricus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9421-9427. [PMID: 27960296 DOI: 10.1021/acs.jafc.6b04016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Many bacteria in nature use quorum sensing (QS) to regulate gene expression. The quorum sensing system plays critical roles in the adaptation of bacteria to the surrounding environment. Previous studies have shown that during high-density fermentation, the autolysis of lactic acid bacteria was regulated by the QS system, and the two-component system (TCS, LBUL_RS00115/LBUL_RS00110) is involved in the autolysis of Lactobacillus delbrueckii subsp. bulgaricus. However, the QS signal molecule, which regulates this pathway, has not been identified. In this study, we compared the genome of Lactobacillus bulgaricus ATCC BAA-365 with the locus of seven lactobacillus QS systems; the position of the QS signal molecule of Lactobacillus bulgaricus ATCC BAA-365 was predicted by bioinformatics tool. Its function was identified by in vitro experiments. Construction of TCS mutant by gene knockout of LBUL_RS00115 confirmed that the signal molecule regulates the density of the flora by the TCS (LBUL_RS00115/LBUL_RS00110). This study indicated that quorum quenching and inhibition based on the signal molecule might serve as an approach to reduce the rate of autolysis of LAB and increase the number of live bacteria in fermentation.
Collapse
Affiliation(s)
- Xiaoyang Pang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy Company Ltd. , Shanghai 200436, People's Republic of China
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Science , Beijing 100193, People's Republic of China
| | - Cuiping Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy Company Ltd. , Shanghai 200436, People's Republic of China
| | - Pengcheng Lyu
- College of Life Science and Bioengineering, Beijing University of Technology , Beijing 100124, People's Republic of China
| | - Shuwen Zhang
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Science , Beijing 100193, People's Republic of China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU) , Beijing 100048, People's Republic of China
| | - Lu Liu
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Science , Beijing 100193, People's Republic of China
| | - Jing Lu
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Science , Beijing 100193, People's Republic of China
| | - Changlu Ma
- Beijing Vocational College of Agriculture , Beijing 102442, People's Republic of China
| | - Jiaping Lv
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Science , Beijing 100193, People's Republic of China
| |
Collapse
|
18
|
Earl CS, Keong TW, An SQ, Murdoch S, McCarthy Y, Garmendia J, Ward J, Dow JM, Yang L, O'Toole GA, Ryan RP. Haemophilus influenzae responds to glucocorticoids used in asthma therapy by modulation of biofilm formation and antibiotic resistance. EMBO Mol Med 2016; 7:1018-33. [PMID: 25995336 PMCID: PMC4551341 DOI: 10.15252/emmm.201505088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Glucocorticosteroids are used as a main treatment to reduce airway inflammation in people with asthma who suffer from neutrophilic airway inflammation, a condition frequently associated with Haemophilus influenzae colonization. Here we show that glucocorticosteroids have a direct influence on the behavior of H. influenzae that may account for associated difficulties with therapy. Using a mouse model of infection, we show that corticosteroid treatment promotes H. influenzae persistence. Transcriptomic analysis of bacteria either isolated from infected mouse airway or grown in laboratory medium identified a number of genes encoding regulatory factors whose expression responded to the presence of glucocorticosteroids. Importantly, a number of these corticosteroid-responsive genes also showed elevated expression in H. influenzae within sputum from asthma patients undergoing steroid treatment. Addition of corticosteroid to H. influenzae led to alteration in biofilm formation and enhanced resistance to azithromycin, and promoted azithromycin resistance in an animal model of respiratory infection. Taken together, these data strongly suggest that H. influenzae can respond directly to corticosteroid treatment in the airway potentially influencing biofilm formation, persistence and the efficacy of antibiotic treatment.
Collapse
Affiliation(s)
- Chris S Earl
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK
| | - Teh Wooi Keong
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shi-qi An
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK
| | - Sarah Murdoch
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK
| | - Yvonne McCarthy
- School of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Joseph Ward
- Division of Molecular Medicine, College of Life Sciences, University of Dundee, Dundee, UK
| | - J Maxwell Dow
- School of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Liang Yang
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Robert P Ryan
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
19
|
Characterization of a temperature-responsive two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii. Sci Rep 2016; 6:24278. [PMID: 27052690 PMCID: PMC4823666 DOI: 10.1038/srep24278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/23/2016] [Indexed: 01/18/2023] Open
Abstract
Cold environments dominate the Earth’s biosphere and the resident microorganisms play critical roles in fulfilling global biogeochemical cycles. However, only few studies have examined the molecular basis of thermosensing; an ability that microorganisms must possess in order to respond to environmental temperature and regulate cellular processes. Two component regulatory systems have been inferred to function in thermal regulation of gene expression, but biochemical studies assessing these systems in Bacteria are rare, and none have been performed in Archaea or psychrophiles. Here we examined the LtrK/LtrR two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii, assessing kinase and phosphatase activities of wild-type and mutant proteins. LtrK was thermally unstable and had optimal phosphorylation activity at 10 °C (the lowest optimum activity for any psychrophilic enzyme), high activity at 0 °C and was rapidly thermally inactivated at 30 °C. These biochemical properties match well with normal environmental temperatures of M. burtonii (0–4 °C) and the temperature this psychrophile is capable of growing at in the laboratory (−2 to 28 °C). Our findings are consistent with a role for LtrK in performing phosphotransfer reactions with LtrR that could lead to temperature-dependent gene regulation.
Collapse
|
20
|
Weigel WA, Demuth DR. QseBC, a two-component bacterial adrenergic receptor and global regulator of virulence in Enterobacteriaceae and Pasteurellaceae. Mol Oral Microbiol 2015; 31:379-97. [PMID: 26426681 PMCID: PMC5053249 DOI: 10.1111/omi.12138] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 12/11/2022]
Abstract
The QseBC two-component system (TCS) is associated with quorum sensing and functions as a global regulator of virulence. Based on sequence similarity within the sensor domain and conservation of an acidic motif essential for signal recognition, QseBC is primarily distributed in the Enterobacteriaceae and Pasteurellaceae. In Escherichia coli, QseC responds to autoinducer-3 and/or epinephrine/norepinephrine. Binding of epinephrine/norepinephrine is inhibited by adrenergic antagonists; hence QseC functions as a bacterial adrenergic receptor. Aggregatibacter actinomycetemcomitans QseC is activated by a combination of epinephrine/norepinephrine and iron, whereas only iron activates the Haemophilus influenzae sensor. QseC phosphorylates QseB but there is growing evidence that QseB is activated by non-cognate sensors and regulated by dephosphorylation via QseC. Interestingly, the QseBC signaling cascades and regulons differ significantly. In enterohemorrhagic E. coli, QseC induces expression of a second adrenergic TCS and phosphorylates two non-cognate response regulators, each of which induces specific sets of virulence genes. This signaling pathway integrates with other regulatory mechanisms mediated by transcriptional regulators QseA and QseD and a fucose-sensing TCS and likely controls the level and timing of virulence gene expression. In contrast, A. actinomycetemcomitans QseC signals through QseB to regulate genes involved in anaerobic metabolism and energy production, which may prime cellular metabolism for growth in an anaerobic host niche. QseC represents a novel target for therapeutic intervention and small molecule inhibitors already show promise as broad-spectrum antimicrobials. Further characterization of QseBC signaling may identify additional differences in QseBC function and inform further development of new therapeutics to control microbial infections.
Collapse
Affiliation(s)
- W A Weigel
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - D R Demuth
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, KY, USA
| |
Collapse
|
21
|
Ramírez MS, Müller GL, Pérez JF, Golic AE, Mussi MA. More Than Just Light: Clinical Relevance of Light Perception in the Nosocomial PathogenAcinetobacter baumanniiand Other Members of the GenusAcinetobacter. Photochem Photobiol 2015; 91:1291-301. [DOI: 10.1111/php.12523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/21/2015] [Indexed: 12/31/2022]
Affiliation(s)
- María Soledad Ramírez
- Facultad de Ciencias Médicas; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-CONICET); Universidad de Buenos Aires; Buenos Aires Argentina
- Department of Biological Science; Center for Applied Biotechnology Studies; California State University Fullerton; Fullerton CA
| | - Gabriela Leticia Müller
- Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Rosario Argentina
| | - Jorgelina Fernanda Pérez
- Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
| | | | - María Alejandra Mussi
- Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Rosario Argentina
| |
Collapse
|
22
|
Jiang D, Tikhomirova A, Kidd SP. Haemophilus influenzae strains possess variations in the global transcriptional profile in response to oxygen levels and this influences sensitivity to environmental stresses. Res Microbiol 2015; 167:13-9. [PMID: 26362945 DOI: 10.1016/j.resmic.2015.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/05/2015] [Accepted: 08/27/2015] [Indexed: 01/22/2023]
Abstract
An alcohol dehydrogenase, AdhC, is required for Haemophilus influenzae Rd KW20 growth with high oxygen. AdhC protects against both exogenous and metabolically generated, endogenous reactive aldehydes. However, adhC in the strain 86-028NP is a pseudogene. Unlike the Rd KW20 adhC mutant, 86-028NP does grow with high oxygen. This suggests the differences between Rd KW20 and 86-028NP include broader pathways, such as for the maintenance of redox and metabolism that avoids the toxicity related to oxygen. We hypothesized that these differences affect their resistance to relevant toxic chemicals, including reactive aldehydes. Across a range of oxygen concentrations, despite the growth profiles of Rd KW20 and 86-028NP being similar, there was a significant variation in their sensitivity to reactive aldehydes. 86-028NP is more sensitive to methylglyoxal, formaldehyde and glycolaldehyde under high oxygen than low oxygen as well as compared to Rd KW20. Also, as oxygen levels changed the whole genome gene expression profiles of Rd KW20 and 86-028NP revealed distinctions in their transcriptomes (the iron, FNR and ArcAB regulons). These were indicative of a difference in their intracellular redox properties and we show it is this that underpins their survival against reactive aldehydes.
Collapse
Affiliation(s)
- Donald Jiang
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Sciences, The University of Adelaide, North Terrace Campus, Adelaide, South Australia, 5005, Australia
| | - Alexandra Tikhomirova
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Sciences, The University of Adelaide, North Terrace Campus, Adelaide, South Australia, 5005, Australia
| | - Stephen P Kidd
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Sciences, The University of Adelaide, North Terrace Campus, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
23
|
Weigel WA, Demuth DR, Torres-Escobar A, Juárez-Rodríguez MD. Aggregatibacter actinomycetemcomitans QseBC is activated by catecholamines and iron and regulates genes encoding proteins associated with anaerobic respiration and metabolism. Mol Oral Microbiol 2015; 30:384-98. [PMID: 25923132 PMCID: PMC4660874 DOI: 10.1111/omi.12101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 01/09/2023]
Abstract
Aggregatibacter actinomycetemcomitans QseBC regulates its own expression and is essential for biofilm growth and virulence. However, the signal that activates the QseC sensor has not been identified and the qseBC regulon has not been defined. In this study, we show that QseC is activated by catecholamine hormones and iron but not by either component alone. Activation of QseC requires an EYRDD motif in the periplasmic domain of the sensor and site-specific mutations in EYRDD or the deletion of the periplasmic domain inhibits catecholamine/iron-dependent induction of the ygiW-qseBC operon. Catecholamine/iron-dependent induction of transcription also requires interaction of the QseB response regulator with its binding site in the ygiW-qseBC promoter. Whole genome microarrays were used to compare gene expression profiles of A. actinomycetemcomitans grown in a chemically defined medium with and without catecholamine and iron supplementation. Approximately 11.5% of the A. actinomycetemcomitans genome was differentially expressed by at least two-fold upon exposure to catecholamines and iron. The expression of ferritin was strongly induced, suggesting that intracellular iron storage capacity is increased upon QseBC activation. Consistent with this, genes encoding iron binding and transport proteins were down-regulated by QseBC. Strikingly, 57% of the QseBC up-regulated genes (56/99) encode proteins associated with anaerobic metabolism and respiration. Most of these up-regulated genes were recently reported to be induced during in vivo growth of A. actinomycetemcomitans. These results suggest that detection of catecholamines and iron by QseBC may alter the cellular metabolism of A. actinomycetemcomitans for increased fitness and growth in an anaerobic host environment.
Collapse
Affiliation(s)
- W A Weigel
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - D R Demuth
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - A Torres-Escobar
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - M D Juárez-Rodríguez
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| |
Collapse
|
24
|
Mitchell SL, Ismail AM, Kenrick SA, Camilli A. The VieB auxiliary protein negatively regulates the VieSA signal transduction system in Vibrio cholerae. BMC Microbiol 2015; 15:59. [PMID: 25887601 PMCID: PMC4352251 DOI: 10.1186/s12866-015-0387-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vibrio cholerae is a facultative pathogen that lives in the aquatic environment and the human host. The ability of V. cholerae to monitor environmental changes as it transitions between these diverse environments is vital to its pathogenic lifestyle. One way V. cholerae senses changing external stimuli is through the three-component signal transduction system, VieSAB, which is encoded by the vieSAB operon. The VieSAB system plays a role in the inverse regulation of biofilm and virulence genes by controlling the concentration of the secondary messenger, cyclic-di-GMP. While the sensor kinase, VieS, and the response regulator, VieA, behave similar to typical two-component phosphorelay systems, the role of the auxiliary protein, VieB, is unclear. RESULTS Here we show that VieB binds to VieS and inhibits its autophosphorylation and phosphotransfer activity thus preventing phosphorylation of VieA. Additionally, we show that phosphorylation of the highly conserved Asp residue in the receiver domain of VieB regulates the inhibitory activity of VieB. CONCLUSION Taken together, these data point to an inhibitory role of VieB on the VieSA phosphorelay, allowing for additional control over the signal output. Insight into the function and regulatory mechanism of the VieSAB system improves our understanding of how V. cholerae controls gene expression as it transitions between the aquatic environment and human host.
Collapse
Affiliation(s)
- Stephanie L Mitchell
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, USA.
| | - Ayman M Ismail
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, USA.
| | | | - Andrew Camilli
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, USA.
| |
Collapse
|
25
|
The ferrous iron-responsive BqsRS two-component system activates genes that promote cationic stress tolerance. mBio 2015; 6:e02549. [PMID: 25714721 PMCID: PMC4358008 DOI: 10.1128/mbio.02549-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED The physiological resistance of pathogens to antimicrobial treatment is a severe problem in the context of chronic infections. For example, the mucus-filled lungs of cystic fibrosis (CF) patients are readily colonized by diverse antibiotic-resistant microorganisms, including Pseudomonas aeruginosa. Previously, we showed that bioavailable ferrous iron [Fe(II)] is present in CF sputum at all stages of infection and constitutes a significant portion of the iron pool at advanced stages of lung function decline [R. C. Hunter et al., mBio 4(4):e00557-13, 2013]. P. aeruginosa, a dominant CF pathogen, senses Fe(II) using a two-component signal transduction system, BqsRS, which is transcriptionally active in CF sputum [R. C. Hunter et al., mBio 4(4):e00557-13, 2013; N. N. Kreamer, J. C. Wilks, J. J. Marlow, M. L. Coleman, and D. K. Newman, J Bacteriol 194:1195-1204, 2012]. Here, we show that an RExxE motif in BqsS is required for BqsRS activation. Once Fe(II) is sensed, BqsR binds a tandem repeat DNA sequence, activating transcription. The BqsR regulon--defined through iterative bioinformatic predictions and experimental validation--includes several genes whose products are known to drive antibiotic resistance to aminoglycosides and polymyxins. Among them are genes encoding predicted determinants of polyamine transport and biosynthesis. Compared to the wild type, bqsS and bqsR deletion mutants are sensitive to high levels of Fe(II), produce less spermidine in high Fe(II), and are more sensitive to tobramycin and polymyxin B but not arsenate, chromate, or cefsulodin. BqsRS thus mediates a physiological response to Fe(II) that guards the cell against positively charged molecules but not negatively charged stressors. These results suggest Fe(II) is an important environmental signal that, via BqsRS, bolsters tolerance of a variety of cationic stressors, including clinically important antimicrobial agents. IMPORTANCE Clearing chronic infections is challenging due to the physiological resistance of opportunistic pathogens to antibiotics. Effective treatments are hindered by a lack of understanding of how these organisms survive in situ. Fe(II) is typically present at micromolar levels in soils and sedimentary habitats, as well as in CF sputum. All P. aeruginosa strains possess a two-component system, BqsRS, that specifically senses extracellular Fe(II) at low micromolar concentrations. Our work shows that BqsRS protects the cell against cationic perturbations to the cell envelope as well as low pH and reduction potential (Eh), conditions under which Fe(2+) is stable. Fe(II) can thus be understood as a proxy for a broader environmental state; the cellular response to its detection may help rationalize the resistance of P. aeruginosa to clinically important cationic antibiotics. This finding demonstrates the importance of considering environmental chemistry when exploring mechanisms of microbial survival in habitats that include the human body.
Collapse
|
26
|
Haemophilus influenzae: recent advances in the understanding of molecular pathogenesis and polymicrobial infections. Curr Opin Infect Dis 2015; 27:268-74. [PMID: 24699388 DOI: 10.1097/qco.0000000000000056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Non-typeable Haemophilus influenzae (NTHi) is a human-specific mucosal pathogen and one of the most common causes of bacterial infections in children and patients with chronic obstructive pulmonary disease. It is also frequently found in polymicrobial superinfections. Great strides have recently been made in the understanding of the molecular mechanisms underlying NTHi pathogenesis. RECENT FINDINGS By using new methodology, such as experimental human colonization models and whole-genome approaches, investigators have shed light upon the various strategies of NTHi that are involved in pathogenesis. These include the escape of the mucociliary elevator, evasion of host immunity, survival in environments with scarce nutrients, and finally participation in polymicrobial infections. Lipooligosaccharide branching, proteinous adhesins, metabolic adaption to nutrient availability and many scavenging systems are implicated in these processes. Interestingly, genome-based studies comparing virulent and commensal strains have identified many hypothetical proteins as virulence determinants, suggesting that much regarding the molecular pathogenesis of NTHi remains to be solved. SUMMARY NTHi is an opportunistic pathogen and highly specialized colonizer of the human respiratory tract that has developed intricate mechanisms to establish growth and survival in the human host. Continued research is needed to further elucidate NTHi host-pathogen and pathogen-pathogen interactions.
Collapse
|
27
|
Juárez-Rodríguez MD, Torres-Escobar A, Demuth DR. Transcriptional regulation of the Aggregatibacter actinomycetemcomitans ygiW-qseBC operon by QseB and integration host factor proteins. MICROBIOLOGY-SGM 2014; 160:2583-2594. [PMID: 25223341 DOI: 10.1099/mic.0.083501-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The QseBC two-component system plays a pivotal role in regulating virulence and biofilm growth of the oral pathogen Aggregatibacter actinomycetemcomitans. We previously showed that QseBC autoregulates the ygiW-qseBC operon. In this study, we characterized the promoter that drives ygiW-qseBC expression. Using lacZ transcriptional fusion constructs and 5'-rapid amplification of cDNA ends, we showed that ygiW-qseBC expression is driven by a promoter that initiates transcription 53 bases upstream of ygiW and identified putative cis-acting promoter elements, whose function was confirmed using site-specific mutagenesis. Using electrophoretic mobility shift assays, two trans-acting proteins were shown to interact with the ygiW-qseBC promoter. The QseB response regulator bound to probes containing the direct repeat sequence CTTAA-N6-CTTAA, where the CTTAA repeats flank the -35 element of the promoter. The ygiW-qseBC expression could not be detected in A. actinomycetemcomitans ΔqseB or ΔqseBC strains, but was restored to WT levels in the ΔqseBC mutant when complemented by single copy chromosomal insertion of qseBC. Interestingly, qseB partially complemented the ΔqseBC strain, suggesting that QseB could be activated in the absence of QseC. QseB activation required its phosphorylation since complementation did not occur using qseB(pho-), encoding a protein with the active site aspartate substituted with alanine. These results suggest that QseB is a strong positive regulator of ygiW-qseBC expression. In addition, integration host factor (IHF) bound to two sites in the promoter region and an additional site near the 5' end of the ygiW ORF. The expression of ygiW-qseBC was increased by twofold in ΔihfA and ΔihfB strains of A. actinomycetemcomitans, suggesting that IHF is a negative regulator of the ygiW-qseBC operon.
Collapse
Affiliation(s)
- María Dolores Juárez-Rodríguez
- Research Group in Oral Health and Systemic Disease, University of Louisville School of Dentistry, 501 S. Preston Street, Louisville, KY 40202, USA
| | - Ascención Torres-Escobar
- Research Group in Oral Health and Systemic Disease, University of Louisville School of Dentistry, 501 S. Preston Street, Louisville, KY 40202, USA
| | - Donald R Demuth
- Research Group in Oral Health and Systemic Disease, University of Louisville School of Dentistry, 501 S. Preston Street, Louisville, KY 40202, USA
| |
Collapse
|
28
|
Ainsaar K, Mumm K, Ilves H, Hõrak R. The ColRS signal transduction system responds to the excess of external zinc, iron, manganese, and cadmium. BMC Microbiol 2014; 14:162. [PMID: 24946800 PMCID: PMC4074579 DOI: 10.1186/1471-2180-14-162] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/17/2014] [Indexed: 11/26/2022] Open
Abstract
Background The ColRS two-component system has been shown to contribute to the membrane functionality and stress tolerance of Pseudomonas putida as well as to the virulence of Pseudomonas aeruginosa and plant pathogenic Xanthomonas species. However, the conditions activating the ColRS pathway and the signal(s) sensed by ColS have remained unknown. Here we aimed to analyze the role of the ColRS system in metal tolerance of P. putida and to test whether ColS can respond to metal excess. Results We show that the ColRS system is necessary for P. putida to tolerate the excess of iron and zinc, and that it also contributes to manganese and cadmium tolerance. Excess of iron, zinc, manganese or cadmium activates ColRS signaling and as a result modifies the expression of ColR-regulated genes. Our data suggest that the genes in the ColR regulon are functionally redundant, as several loci have to be deleted to observe a significant decrease in metal tolerance. Site-directed mutagenesis of ColS revealed that excess of iron and, surprisingly, also zinc are sensed by a conserved ExxE motif in ColS’s periplasmic domain. While ColS is able to sense different metals, it still discriminates between the two oxidation states of iron, specifically responding to ferric and not ferrous iron. We propose a signal perception model involving a dimeric ColS, where each monomer donates one ExxE motif for metal binding. Conclusions Several transition metals are essential for living organisms in certain amounts, but toxic in excess. We show that ColRS is a sensor system which detects and responds to the excess of physiologically important metals such as zinc, iron and manganese. Thus, the ColRS system is an important factor for metal homeostasis and tolerance in P. putida.
Collapse
Affiliation(s)
| | | | | | - Rita Hõrak
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia.
| |
Collapse
|
29
|
The cold-induced two-component system CBO0366/CBO0365 regulates metabolic pathways with novel roles in group I Clostridium botulinum ATCC 3502 cold tolerance. Appl Environ Microbiol 2013; 80:306-19. [PMID: 24162575 DOI: 10.1128/aem.03173-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The two-component system CBO0366/CBO0365 was recently demonstrated to have a role in cold tolerance of group I Clostridium botulinum ATCC 3502. The mechanisms under its control, ultimately resulting in increased sensitivity to low temperature, are unknown. A transcriptomic analysis with DNA microarrays was performed to identify the differences in global gene expression patterns of the wild-type ATCC 3502 and a derivative mutant with insertionally inactivated cbo0365 at 37 and 15°C. Altogether, 150 or 141 chromosomal coding sequences (CDSs) were found to be differently expressed in the cbo0365 mutant at 37 or 15°C, respectively, and thus considered to be under the direct or indirect transcriptional control of the response regulator CBO0365. Of the differentially expressed CDSs, expression of 141 CDSs was similarly affected at both temperatures investigated, suggesting that the putative CBO0365 regulon was practically not affected by temperature. The regulon involved genes related to acetone-butanol-ethanol (ABE) fermentation, motility, arsenic resistance, and phosphate uptake and transport. Deteriorated growth at 17°C was observed for mutants with disrupted ABE fermentation pathway components (crt, bcd, bdh, and ctfA), arsenic detoxifying machinery components (arsC and arsR), or phosphate uptake mechanism components (phoT), suggesting roles for these mechanisms in cold tolerance of group I C. botulinum. Electrophoretic mobility shift assays showed recombinant CBO0365 to bind to the promoter regions of crt, arsR, and phoT, as well as to the promoter region of its own operon, suggesting direct DNA-binding transcriptional activation or repression as a means for CBO0365 in regulating these operons. The results provide insight to the mechanisms group I C. botulinum utilizes in coping with cold.
Collapse
|
30
|
Genome-wide fitness profiling reveals adaptations required by Haemophilus in coinfection with influenza A virus in the murine lung. Proc Natl Acad Sci U S A 2013; 110:15413-8. [PMID: 24003154 DOI: 10.1073/pnas.1311217110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial coinfection represents a major cause of morbidity and mortality in epidemics of influenza A virus (IAV). The bacterium Haemophilus influenzae typically colonizes the human upper respiratory tract without causing disease, and yet in individuals infected with IAV, it can cause debilitating or lethal secondary pneumonia. Studies in murine models have detected immune components involved in susceptibility and pathology, and yet few studies have examined bacterial factors contributing to coinfection. We conducted genome-wide profiling of the H. influenzae genes that promote its fitness in a murine model of coinfection with IAV. Application of direct, high-throughput sequencing of transposon insertion sites revealed fitness phenotypes of a bank of H. influenzae mutants in viral coinfection in comparison with bacterial infection alone. One set of virulence genes was required in nonvirally infected mice but not in coinfection, consistent with a defect in anti-bacterial defenses during coinfection. Nevertheless, a core set of genes required in both in vivo conditions indicated that many bacterial countermeasures against host defenses remain critical for coinfection. The results also revealed a subset of genes required in coinfection but not in bacterial infection alone, including the iron-sulfur cluster regulator gene, iscR, which was required for oxidative stress resistance. Overexpression of the antioxidant protein Dps in the iscR mutant restored oxidative stress resistance and ability to colonize in coinfection. The results identify bacterial stress and metabolic adaptations required in an IAV coinfection model, revealing potential targets for treatment or prevention of secondary bacterial pneumonia after viral infection.
Collapse
|
31
|
Juárez-Rodríguez MD, Torres-Escobar A, Demuth DR. ygiW and qseBC are co-expressed in Aggregatibacter actinomycetemcomitans and regulate biofilm growth. MICROBIOLOGY-SGM 2013; 159:989-1001. [PMID: 23519160 DOI: 10.1099/mic.0.066183-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The quorum-sensing Escherichia coli regulators B and C (QseBC) two-component system were previously shown to regulate biofilm growth of the oral pathogen Aggregatibacter actinomycetemcomitans and to be essential for virulence. In this study, we use RT-PCR to show that an open reading frame, ygiW, residing upstream of qseBC and encoding a hypothetical protein is co-expressed with qseBC. In addition, using a series of lacZ transcriptional fusion constructs and 5'-rapid amplification of cDNA Ends (RACE), the promoter that drives expression of the ygiW-qseBC operon and the transcriptional start site was mapped to the 372 bp intergenic region upstream from ygiW. No internal promoters drive qseBC expression independently from ygiW. However, qseBC expression is attenuated by approximately ninefold by a putative attenuator stem-loop (ΔG = -77.0 KJ/mol) that resides in the 137 bp intergenic region between ygiW and qseB. The QseB response regulator activates expression of the ygiW-qseBC operon and transcription from the ygiW promoter is drastically reduced in ΔqseB and ΔqseBC mutants of A. actinomycetemcomitans. In addition, transcriptional activity of the ygiW promoter is significantly reduced in a mutant expressing an in-frame deletion of qseC that lacks the sensor domain of QseC, suggesting that a periplasmic signal is required for QseB activation. Finally, a non-polar in-frame deletion in ygiW had little effect on biofilm depth but caused a significant increase in surface coverage relative to wild-type. Complementation of the mutant with a plasmid-borne copy of ygiW reduced surface coverage back to wild-type levels. Interestingly, deletion of the sensor domain of QseC or of the entire qseC open reading frame resulted in significant reductions in biofilm depth, biomass and surface coverage, indicating that the sensor domain is essential for optimal biofilm formation by A. actinomycetemcomitans. Thus, although ygiW and qseBC are co-expressed, they regulate biofilm growth by distinct mechanisms.
Collapse
Affiliation(s)
- María Dolores Juárez-Rodríguez
- Research Group in Oral Health and Systemic Disease, University of Louisville School of Dentistry, 501 S. Preston Street, Louisville, KY 40202, USA
| | - Ascención Torres-Escobar
- Research Group in Oral Health and Systemic Disease, University of Louisville School of Dentistry, 501 S. Preston Street, Louisville, KY 40202, USA
| | - Donald R Demuth
- Research Group in Oral Health and Systemic Disease, University of Louisville School of Dentistry, 501 S. Preston Street, Louisville, KY 40202, USA
| |
Collapse
|
32
|
Zappa S, Bauer CE. Iron homeostasis in the Rhodobacter genus. ADVANCES IN BOTANICAL RESEARCH 2013; 66:10.1016/B978-0-12-397923-0.00010-2. [PMID: 24382933 PMCID: PMC3875232 DOI: 10.1016/b978-0-12-397923-0.00010-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Metals are utilized for a variety of critical cellular functions and are essential for survival. However cells are faced with the conundrum of needing metals coupled with e fact that some metals, iron in particular are toxic if present in excess. Maintaining metal homeostasis is therefore of critical importance to cells. In this review we have systematically analyzed sequenced genomes of three members of the Rhodobacter genus, R. capsulatus SB1003, R. sphaeroides 2.4.1 and R. ferroxidans SW2 to determine how these species undertake iron homeostasis. We focused our analysis on elemental ferrous and ferric iron uptake genes as well as genes involved in the utilization of iron from heme. We also discuss how Rhodobacter species manage iron toxicity through export and sequestration of iron. Finally we discuss the various putative strategies set up by these Rhodobacter species to regulate iron homeostasis and the potential novel means of regulation. Overall, this genomic analysis highlights surprisingly diverse features involved in iron homeostasis in the Rhodobacter genus.
Collapse
Affiliation(s)
- Sébastien Zappa
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| | - Carl E. Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| |
Collapse
|