1
|
Mallikaarachchi KS, Huang JL, Madras S, Cuellar RA, Huang Z, Gega A, Rathnayaka-Mudiyanselage IW, Al-Husini N, Saldaña-Rivera N, Ma LH, Ng E, Chen JC, Schrader JM. Sinorhizobium meliloti BR-bodies promote fitness during host colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588320. [PMID: 38617242 PMCID: PMC11014517 DOI: 10.1101/2024.04.05.588320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Biomolecular condensates, such as the nucleoli or P-bodies, are non-membrane-bound assemblies of proteins and nucleic acids that facilitate specific cellular processes. Like eukaryotic P-bodies, the recently discovered bacterial ribonucleoprotein bodies (BR-bodies) organize the mRNA decay machinery, yet the similarities in molecular and cellular functions across species have been poorly explored. Here, we examine the functions of BR-bodies in the nitrogen-fixing endosymbiont Sinorhizobium meliloti, which colonizes the roots of compatible legume plants. Assembly of BR-bodies into visible foci in S. meliloti cells requires the C-terminal intrinsically disordered region (IDR) of RNase E, and foci fusion is readily observed in vivo, suggesting they are liquid-like condensates that form via mRNA sequestration. Using Rif-seq to measure mRNA lifetimes, we found a global slowdown in mRNA decay in a mutant deficient in BR-bodies, indicating that compartmentalization of the degradation machinery promotes efficient mRNA turnover. While BR-bodies are constitutively present during exponential growth, the abundance of BR-bodies increases upon cell stress, whereby they promote stress resistance. Finally, using Medicago truncatula as host, we show that BR-bodies enhance competitiveness during colonization and appear to be required for effective symbiosis, as mutants without BR-bodies failed to stimulate plant growth. These results suggest that BR-bodies provide a fitness advantage for bacteria during infection, perhaps by enabling better resistance against the host immune response.
Collapse
Affiliation(s)
| | | | | | - Rodrigo A. Cuellar
- Department of Biology, San Francisco State University
- Current affiliation: University of Wisconsin, Madison
| | | | - Alisa Gega
- Department of Biological Sciences, Wayne State University
- Current affiliation: University of Toledo Medical School, Toledo
| | | | | | | | - Loi H. Ma
- Department of Biology, San Francisco State University
| | - Eric Ng
- Department of Biology, San Francisco State University
| | | | | |
Collapse
|
2
|
Scheuer R, Kothe J, Wähling J, Evguenieva-Hackenberg E. Analysis of sRNAs and Their mRNA Targets in Sinorhizobium meliloti: Focus on Half-Life Determination. Methods Mol Biol 2024; 2741:239-254. [PMID: 38217657 DOI: 10.1007/978-1-0716-3565-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Regulation of gene expression at the level of RNA and/or by regulatory RNA is an integral part of the regulatory circuits in all living cells. In bacteria, transcription and translation can be coupled, enabling regulation by transcriptional attenuation, a mechanism based on mutually exclusive structures in nascent mRNA. Transcriptional attenuation gives rise to small RNAs that are well suited to act in trans by either base pairing or ligand binding. Examples of 5'-UTR-derived sRNAs in the alpha-proteobacterium Sinorhizobium meliloti are the sRNA rnTrpL of the tryptophan attenuator and SAM-II riboswitch sRNAs. Analyses addressing RNA-based gene regulation often include measurements of steady-state levels and of half-lives of specific sRNAs and mRNAs. Using such measurements, recently we have shown that the tryptophan attenuator responds to translation inhibition by tetracycline and that SAM-II riboswitches stabilize RNA. Here we discuss our experience in using alternative RNA purification methods for analysis of sRNA and mRNA of S. meliloti. Additionally, we show that other translational inhibitors (besides tetracycline) also cause attenuation giving rise to the rnTrpL sRNA. Furthermore, we discuss the importance of considering RNA stability changes under different conditions and describe in detail a robust and fast method for mRNA half-life determination. The latter includes rifampicin treatment, RNA isolation using commercially available columns, and mRNA analysis by reverse transcription followed by quantitative PCR (RT-qPCR). The latter can be performed as a one-step procedure or in a strand-specific manner using the same commercial kit and a spike-in transcript as a reference.
Collapse
Affiliation(s)
- Robina Scheuer
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Jennifer Kothe
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Jan Wähling
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | | |
Collapse
|
3
|
Börner J, Friedrich T, Klug G. RNase III participates in control of quorum sensing, pigmentation and oxidative stress resistance in Rhodobacter sphaeroides. Mol Microbiol 2023; 120:874-892. [PMID: 37823424 DOI: 10.1111/mmi.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
RNase III is a dsRNA-specific endoribonuclease, highly conserved in bacteria and eukarya. In this study, we analysed the effects of inactivation of RNase III on the transcriptome and the phenotype of the facultative phototrophic α-proteobacterium Rhodobacter sphaeroides. RNA-seq revealed an unexpectedly high amount of genes with increased expression located directly downstream to the rRNA operons. Chromosomal insertion of additional transcription terminators restored wild type-like expression of the downstream genes, indicating that RNase III may modulate the rRNA transcription termination in R. sphaeroides. Furthermore, we identified RNase III as a major regulator of quorum-sensing autoinducer synthesis in R. sphaeroides. It negatively controls the expression of the autoinducer synthase CerI by reducing cerI mRNA stability. In addition, RNase III inactivation caused altered resistance against oxidative stress and impaired formation of photosynthetically active pigment-protein complexes. We also observed an increase in the CcsR small RNAs that were previously shown to promote resistance to oxidative stress. Taken together, our data present interesting insights into RNase III-mediated regulation and expand the knowledge on the function of this important enzyme in bacteria.
Collapse
Affiliation(s)
- Janek Börner
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tobias Friedrich
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Condinho M, Carvalho B, Cruz A, Pinto SN, Arraiano CM, Pobre V. The role of RNA regulators, quorum sensing and c-di-GMP in bacterial biofilm formation. FEBS Open Bio 2023; 13:975-991. [PMID: 35234364 PMCID: PMC10240345 DOI: 10.1002/2211-5463.13389] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Biofilms provide an ecological advantage against many environmental stressors, such as pH and temperature, making it the most common life-cycle stage for many bacteria. These protective characteristics make eradication of bacterial biofilms challenging. This is especially true in the health sector where biofilm formation on hospital or patient equipment, such as respirators, or catheters, can quickly become a source of anti-microbial resistant strains. Biofilms are complex structures encased in a self-produced polymeric matrix containing numerous components such as polysaccharides, proteins, signalling molecules, extracellular DNA and extracellular RNA. Biofilm formation is tightly controlled by several regulators, including quorum sensing (QS), cyclic diguanylate (c-di-GMP) and small non-coding RNAs (sRNAs). These three regulators in particular are fundamental in all stages of biofilm formation; in addition, their pathways overlap, and the significance of their role is strain-dependent. Currently, ribonucleases are also of interest for their potential role as biofilm regulators, and their relationships with QS, c-di-GMP and sRNAs have been investigated. This review article will focus on these four biofilm regulators (ribonucleases, QS, c-di-GMP and sRNAs) and the relationships between them.
Collapse
Affiliation(s)
- Manuel Condinho
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Beatriz Carvalho
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Adriana Cruz
- iBB‐Institute for Bioengineering and Biosciences (IBB)Instituto Superior TécnicoLisboaPortugal
- i4HB‐Institute for Health and BioeconomyInstituto Superior TécnicoLisboaPortugal
| | - Sandra N. Pinto
- iBB‐Institute for Bioengineering and Biosciences (IBB)Instituto Superior TécnicoLisboaPortugal
- i4HB‐Institute for Health and BioeconomyInstituto Superior TécnicoLisboaPortugal
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
5
|
Cruz A, Condinho M, Carvalho B, Arraiano CM, Pobre V, Pinto SN. The Two Weapons against Bacterial Biofilms: Detection and Treatment. Antibiotics (Basel) 2021; 10:1482. [PMID: 34943694 PMCID: PMC8698905 DOI: 10.3390/antibiotics10121482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial biofilms are defined as complex aggregates of bacteria that grow attached to surfaces or are associated with interfaces. Bacteria within biofilms are embedded in a self-produced extracellular matrix made of polysaccharides, nucleic acids, and proteins. It is recognized that bacterial biofilms are responsible for the majority of microbial infections that occur in the human body, and that biofilm-related infections are extremely difficult to treat. This is related with the fact that microbial cells in biofilms exhibit increased resistance levels to antibiotics in comparison with planktonic (free-floating) cells. In the last years, the introduction into the market of novel compounds that can overcome the resistance to antimicrobial agents associated with biofilm infection has slowed down. If this situation is not altered, millions of lives are at risk, and this will also strongly affect the world economy. As such, research into the identification and eradication of biofilms is important for the future of human health. In this sense, this article provides an overview of techniques developed to detect and imaging biofilms as well as recent strategies that can be applied to treat biofilms during the several biofilm formation steps.
Collapse
Affiliation(s)
- Adriana Cruz
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Manuel Condinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (M.C.); (B.C.); (C.M.A.)
| | - Beatriz Carvalho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (M.C.); (B.C.); (C.M.A.)
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (M.C.); (B.C.); (C.M.A.)
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (M.C.); (B.C.); (C.M.A.)
| | - Sandra N. Pinto
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
6
|
Rosier A, Beauregard PB, Bais HP. Quorum Quenching Activity of the PGPR Bacillus subtilis UD1022 Alters Nodulation Efficiency of Sinorhizobium meliloti on Medicago truncatula. Front Microbiol 2021; 11:596299. [PMID: 33519732 PMCID: PMC7843924 DOI: 10.3389/fmicb.2020.596299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) have enormous potential for solving some of the myriad challenges facing our global agricultural system. Intense research efforts are rapidly moving the field forward and illuminating the wide diversity of bacteria and their plant beneficial activities. In the development of better crop solutions using these PGPR, producers are including multiple different species of PGPR in their formulations in a "consortia" approach. While the intention is to emulate more natural rhizomicrobiome systems, the aspect of bacterial interactions has not been properly regarded. By using a tri-trophic model of Medicago truncatula A17 Jemalong, its nitrogen (N)-fixing symbiont Sinorhizobium meliloti Rm8530, and the PGPR Bacillus subtilis UD1022, we demonstrate indirect influences between the bacteria affecting their plant growth-promoting activities. Co-cultures of UD1022 with Rm8530 significantly reduced Rm8530 biofilm formation and downregulated quorum sensing (QS) genes responsible for symbiotically active biofilm production. This work also identifies the presence and activity of a quorum quenching lactonase in UD1022 and proposes this as the mechanism for non-synergistic activity of this model "consortium." These interspecies interactions may be common in the rhizosphere and are critical to understand as we seek to develop new sustainable solutions in agriculture.
Collapse
Affiliation(s)
- Amanda Rosier
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | | | - Harsh P. Bais
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| |
Collapse
|
7
|
The Endoribonuclease RNase E Coordinates Expression of mRNAs and Small Regulatory RNAs and Is Critical for the Virulence of Brucella abortus. J Bacteriol 2020; 202:JB.00240-20. [PMID: 32747427 DOI: 10.1128/jb.00240-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
RNases are key regulatory components in prokaryotes, responsible for the degradation and maturation of specific RNA molecules at precise times. Specifically, RNases allow cells to cope with changes in their environment through rapid alteration of gene expression. To date, few RNases have been characterized in the mammalian pathogen Brucella abortus In the present work, we sought to investigate several RNases in B. abortus and determine what role, if any, they have in pathogenesis. Of the 4 RNases reported in this study, the highly conserved endoribonuclease, RNase E, was found to play an integral role in the virulence of B. abortus Although rne, which encodes RNase E, is essential in B. abortus, we were able to generate a strain encoding a defective version of RNase E lacking the C-terminal portion of the protein, and this strain (rne-tnc) was attenuated in a mouse model of Brucella infection. RNA-sequencing analysis revealed massive RNA dysregulation in B. abortus rne-tnc, with 122 upregulated and 161 downregulated transcripts compared to the parental strain. Interestingly, several mRNAs related to metal homeostasis were significantly decreased in the rne-tnc strain. We also identified a small regulatory RNA (sRNA), called Bsr4, that exhibited significantly elevated levels in rne-tnc, demonstrating an important role for RNase E in sRNA-mediated regulatory pathways in Brucella Overall, these data highlight the importance of RNase E in B. abortus, including the role of RNase E in properly controlling mRNA levels and contributing to virulence in an animal model of infection.IMPORTANCE Brucellosis is a debilitating disease of humans and animals globally, and there is currently no vaccine to combat human infection by Brucella spp. Moreover, effective antibiotic treatment in humans is extremely difficult and can lead to disease relapse. Therefore, it is imperative that systems and pathways be identified and characterized in the brucellae so new vaccines and therapies can be generated. In this study, we describe the impact of the endoribonuclease RNase E on the control of mRNA and small regulatory RNA (sRNA) levels in B. abortus, as well as the importance of RNase E for the full virulence of B. abortus This work greatly enhances our understanding of ribonucleases in the biology and pathogenesis of Brucella spp.
Collapse
|
8
|
Zeng YH, Cai ZH, Zhu JM, Du XP, Zhou J. Two hierarchical LuxR-LuxI type quorum sensing systems in Novosphingobium activate microcystin degradation through transcriptional regulation of the mlr pathway. WATER RESEARCH 2020; 183:116092. [PMID: 32622230 DOI: 10.1016/j.watres.2020.116092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Microcystins (MCs) are the most common cyanotoxins produced by harmful cyanobacterial blooms and pose an increasing global threat to human health and ecosystems. Microbial degradation represents an efficient and sustainable approach for the removal of MCs. Although the enzymatic pathway for biodegradation of MCs has been characterized, the regulatory mechanisms underlying the degradation processes remain unclear. Quorum sensing (QS) is a cell-density-dependent regulatory mechanism that enables bacteria to orchestrate collective behaviors. The acyl-homoserine lactone (AHL)-mediated QS system regulates the biodegradation of many organic pollutants. However, it is not known whether this QS system is involved in the degradation of MCs. This study aimed to fill this knowledge gap. In this study, the proportion of culturable AHL-producers increased significantly after enrichment of MCs, and AHL-based QS systems were present in all genome-sequenced MC-degrading strains, supporting the hypothesis that QS participates in the degradation of MCs. Two bifunctional Novosphingobium strains (with MC-degrading and AHL-producing abilities) were isolated using a novel primer pair targeting mlrA, the marker gene of mlr degradation pathway. Biochemical and genetic analysis revealed that the MC-degrading bacterium Novosphingobium sp. ERW19 encodes two hierarchical regulatory QS systems designated novR1/novI1 and novR2/novI2. Gene knockout and complementation experiments indicated that both systems were required for efficient degradation of MCs. Transcriptomic analyses revealed that the QS systems positively regulate degradation of MCs through transcriptional activation of MC-degrading genes, especially mlrA. Given that QS may be a common trait within mlr pathway-dependent MC-degrading bacterial strains and the degradation activity is directly regulated by QS, manipulation of the QS systems may be a promising strategy to control biodegradation of MCs.
Collapse
Affiliation(s)
- Yan-Hua Zeng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Jian-Ming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Xiao-Peng Du
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China.
| |
Collapse
|
9
|
Guleria S, Joshi R, Singh D, Kumar S. Identification of host factors limiting the overexpression of recombinant Cu, Zn superoxide dismutase in Escherichia coli. Biotechnol Lett 2020; 42:2389-2401. [DOI: 10.1007/s10529-020-02962-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/03/2020] [Indexed: 11/24/2022]
|
10
|
Riboregulation in Nitrogen-Fixing Endosymbiotic Bacteria. Microorganisms 2020; 8:microorganisms8030384. [PMID: 32164262 PMCID: PMC7143759 DOI: 10.3390/microorganisms8030384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/21/2023] Open
Abstract
Small non-coding RNAs (sRNAs) are ubiquitous components of bacterial adaptive regulatory networks underlying stress responses and chronic intracellular infection of eukaryotic hosts. Thus, sRNA-mediated regulation of gene expression is expected to play a major role in the establishment of mutualistic root nodule endosymbiosis between nitrogen-fixing rhizobia and legume plants. However, knowledge about this level of genetic regulation in this group of plant-interacting bacteria is still rather scarce. Here, we review insights into the rhizobial non-coding transcriptome and sRNA-mediated post-transcriptional regulation of symbiotic relevant traits such as nutrient uptake, cell cycle, quorum sensing, or nodule development. We provide details about the transcriptional control and protein-assisted activity mechanisms of the functionally characterized sRNAs involved in these processes. Finally, we discuss the forthcoming research on riboregulation in legume symbionts.
Collapse
|
11
|
Melior H, Li S, Madhugiri R, Stötzel M, Azarderakhsh S, Barth-Weber S, Baumgardt K, Ziebuhr J, Evguenieva-Hackenberg E. Transcription attenuation-derived small RNA rnTrpL regulates tryptophan biosynthesis gene expression in trans. Nucleic Acids Res 2020; 47:6396-6410. [PMID: 30993322 PMCID: PMC6614838 DOI: 10.1093/nar/gkz274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/01/2019] [Accepted: 04/12/2019] [Indexed: 01/06/2023] Open
Abstract
Ribosome-mediated transcription attenuation is a basic posttranscriptional regulation mechanism in bacteria. Liberated attenuator RNAs arising in this process are generally considered nonfunctional. In Sinorhizobium meliloti, the tryptophan (Trp) biosynthesis genes are organized into three operons, trpE(G), ppiD-trpDC-moaC-moeA, and trpFBA-accD-folC, of which only the first one, trpE(G), contains a short ORF (trpL) in the 5′-UTR and is regulated by transcription attenuation. Under conditions of Trp sufficiency, transcription is terminated between trpL and trpE(G), and a small attenuator RNA, rnTrpL, is produced. Here, we show that rnTrpL base-pairs with trpD and destabilizes the polycistronic trpDC mRNA, indicating rnTrpL-mediated downregulation of the trpDC operon in trans. Although all three trp operons are regulated in response to Trp availability, only in the two operons trpE(G) and trpDC the Trp-mediated regulation is controlled by rnTrpL. Together, our data show that the trp attenuator coordinates trpE(G) and trpDC expression posttranscriptionally by two fundamentally different mechanisms: ribosome-mediated transcription attenuation in cis and base-pairing in trans. Also, we present evidence that rnTrpL-mediated regulation of trpDC genes expression in trans is conserved in Agrobacterium and Bradyrhizobium, suggesting that the small attenuator RNAs may have additional conserved functions in the control of bacterial gene expression.
Collapse
Affiliation(s)
- Hendrik Melior
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Siqi Li
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University, Giessen, 35392, Germany
| | - Maximilian Stötzel
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Saina Azarderakhsh
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Susanne Barth-Weber
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Kathrin Baumgardt
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University, Giessen, 35392, Germany
| | | |
Collapse
|
12
|
McIntosh M, Serrania J, Lacanna E. A novel LuxR-type solo of Sinorhizobium meliloti, NurR, is regulated by the chromosome replication coordinator, DnaA and activates quorum sensing. Mol Microbiol 2019; 112:678-698. [PMID: 31124196 DOI: 10.1111/mmi.14312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2019] [Indexed: 12/16/2022]
Abstract
The genome of Sinorhizobium meliloti, a model for studying plant-bacteria symbiosis, contains eight genes coding for LuxR-like proteins. Two of these, SinR and ExpR, are essential for quorum sensing (QS). Roles and regulation surrounding the others are mostly unknown. Here, we reveal the DNA recognition sequence and regulon of the LuxR-like protein SMc00877. Unlike ExpR, which uses the long-chain acyl homoserine lactones (AHLs) as inducers, SMc00877 functioned independently of AHLs and was even functional in Escherichia coli. A target of SMc00877 is SinR, the major regulator of AHL production in S. meliloti. Disruption of SMc00877 decreased AHL production. A weaker production of AHLs resulted in smaller microcolonies, starting from single cells, and delayed AHL-dependent regulation. SMc00877 was expressed only in growing cells in the presence of replete nutrients. Therefore, we renamed it NurR (nutrient sensitive LuxR-like regulator). We traced this nutrient-sensitive expression to transcription control by the DNA replication initiation factor, DnaA, which is essential for growth. These results indicate that NurR has a role in modulating the threshold of QS activation according to growth. We propose growth behavior as an additional prerequisite to population density for the activation of QS in S. meliloti.
Collapse
Affiliation(s)
- Matthew McIntosh
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, 35043, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany.,Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Javier Serrania
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, 35043, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Egidio Lacanna
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, 35043, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| |
Collapse
|
13
|
Bettenworth V, Steinfeld B, Duin H, Petersen K, Streit WR, Bischofs I, Becker A. Phenotypic Heterogeneity in Bacterial Quorum Sensing Systems. J Mol Biol 2019; 431:4530-4546. [PMID: 31051177 DOI: 10.1016/j.jmb.2019.04.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
Quorum sensing is usually thought of as a collective behavior in which all members of a population partake. However, over the last decade, several reports of phenotypic heterogeneity in quorum sensing-related gene expression have been put forward, thus challenging this view. In the respective systems, cells of isogenic populations did not contribute equally to autoinducer production or target gene activation, and in some cases, the fraction of contributing cells was modulated by environmental factors. Here, we look into potential origins of these incidences and into how initial cell-to-cell variations might be amplified to establish distinct phenotypic heterogeneity. We furthermore discuss potential functions heterogeneity in bacterial quorum sensing systems could serve: as a preparation for environmental fluctuations (bet hedging), as a more cost-effective way of producing public goods (division of labor), as a loophole for genotypic cooperators when faced with non-contributing mutants (cheat protection), or simply as a means to fine-tune the output of the population as a whole (output modulation). We illustrate certain aspects of these recent developments with the model organisms Sinorhizobium meliloti, Sinorhizobium fredii and Bacillus subtilis, which possess quorum sensing systems of different complexity, but all show phenotypic heterogeneity therein.
Collapse
Affiliation(s)
- Vera Bettenworth
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, 35043 Marburg, Germany; Faculty of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany.
| | - Benedikt Steinfeld
- BioQuant Center of the University of Heidelberg, 69120 Heidelberg, Germany; Center for Molecular Biology (ZMBH), University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
| | - Hilke Duin
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Katrin Petersen
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Ilka Bischofs
- BioQuant Center of the University of Heidelberg, 69120 Heidelberg, Germany; Center for Molecular Biology (ZMBH), University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, 35043 Marburg, Germany; Faculty of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany.
| |
Collapse
|
14
|
Transcriptome Analysis of Novosphingobium pentaromativorans US6-1 Reveals the Rsh Regulon and Potential Molecular Mechanisms of N-acyl-l-homoserine Lactone Accumulation. Int J Mol Sci 2018; 19:ijms19092631. [PMID: 30189641 PMCID: PMC6163740 DOI: 10.3390/ijms19092631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/27/2018] [Accepted: 09/02/2018] [Indexed: 11/17/2022] Open
Abstract
In most bacteria, a bifunctional Rsh responsible for (p)ppGpp metabolism is the key player in stringent response. To date, no transcriptome-wide study has been conducted to investigate the Rsh regulon, and the molecular mechanism of how Rsh affects the accumulation of N-acyl-l-homoserine lactone (AHL) remains unknown in sphingomonads. In this study, we identified an rshUS6–1 gene by sequence analysis in Novosphingobium pentaromativorans US6-1, a member of the sphingomonads. RNA-seq was used to determine transcription profiles of the wild type and the ppGpp-deficient rshUS6–1 deletion mutant (∆rsh). There were 1540 genes in the RshUS6–1 regulon, including those involved in common traits of sphingomonads such as exopolysaccharide biosynthesis. Furthermore, both RNA-seq and quantitative real-time polymerase chain reaction (qRT-PCR) showed essential genes for AHL production (novI and novR) were positively regulated by RshUS6–1 during the exponential growth phase. A degradation experiment indicated the reason for the AHL absence in ∆rsh was unrelated to the AHL degradation. According to RNA-seq, we proposed σE, DksA, Lon protease and RNA degradation enzymes might be involved in the RshUS6–1-dependent expression of novI and novR. Here, we report the first transcriptome-wide analysis of the Rsh regulon in sphingomonads and investigate the potential mechanisms regulating AHL accumulation, which is an important step towards understanding the regulatory system of stringent response in sphingomonads.
Collapse
|
15
|
Saramago M, Robledo M, Matos RG, Jiménez-Zurdo JI, Arraiano CM. Sinorhizobium meliloti RNase III: Catalytic Features and Impact on Symbiosis. Front Genet 2018; 9:350. [PMID: 30210532 PMCID: PMC6121014 DOI: 10.3389/fgene.2018.00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/09/2018] [Indexed: 11/13/2022] Open
Abstract
Members of the ribonuclease (RNase) III family of enzymes are metal-dependent double-strand specific endoribonucleases. They are ubiquitously found and eukaryotic RNase III-like enzymes include Dicer and Drosha, involved in RNA processing and RNA interference. In this work, we have addressed the primary characterization of RNase III from the symbiotic nitrogen-fixing α-proteobacterium Sinorhizobium meliloti. The S. meliloti rnc gene does encode an RNase III-like protein (SmRNase III), with recognizable catalytic and double-stranded RNA (dsRNA)-binding domains that clusters in a branch with its α–proteobacterial counterparts. Purified SmRNase III dimerizes, is active at neutral to alkaline pH and behaves as a strict metal cofactor-dependent double-strand endoribonuclease, with catalytic features distinguishable from those of the prototypical member of the family, the Escherichia coli ortholog (EcRNase III). SmRNase III prefers Mn2+ rather than Mg2+ as metal cofactor, cleaves the generic structured R1.1 substrate at a site atypical for RNase III cleavage, and requires higher cofactor concentrations and longer dsRNA substrates than EcRNase III for optimal activity. Furthermore, the ultraconserved E125 amino acid was shown to play a major role in the metal-dependent catalysis of SmRNase III. SmRNase III degrades endogenous RNA substrates of diverse biogenesis with different efficiency, and is involved in the maturation of the 23S rRNA. SmRNase III loss-of-function neither compromises viability nor alters morphology of S. meliloti cells, but influences growth, nodulation kinetics, the onset of nitrogen fixation and the overall symbiotic efficiency of this bacterium on the roots of its legume host, alfalfa, which ultimately affects plant growth. Our results support an impact of SmRNase III on nodulation and symbiotic nitrogen fixation in plants.
Collapse
Affiliation(s)
- Margarida Saramago
- Instituto de Tecnología Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marta Robledo
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Rute G Matos
- Instituto de Tecnología Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José I Jiménez-Zurdo
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Cecília M Arraiano
- Instituto de Tecnología Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
16
|
Calatrava-Morales N, McIntosh M, Soto MJ. Regulation Mediated by N-Acyl Homoserine Lactone Quorum Sensing Signals in the Rhizobium-Legume Symbiosis. Genes (Basel) 2018; 9:genes9050263. [PMID: 29783703 PMCID: PMC5977203 DOI: 10.3390/genes9050263] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Soil-dwelling bacteria collectively referred to as rhizobia synthesize and perceive N-acyl-homoserine lactone (AHL) signals to regulate gene expression in a population density-dependent manner. AHL-mediated signaling in these bacteria regulates several functions which are important for the establishment of nitrogen-fixing symbiosis with legume plants. Moreover, rhizobial AHL act as interkingdom signals triggering plant responses that impact the plant-bacteria interaction. Both the regulatory mechanisms that control AHL synthesis in rhizobia and the set of bacterial genes and associated traits under quorum sensing (QS) control vary greatly among the rhizobial species. In this article, we focus on the well-known QS system of the alfalfa symbiont Sinorhizobium(Ensifer)meliloti. Bacterial genes, environmental factors and transcriptional and posttranscriptional regulatory mechanisms that control AHL production in this Rhizobium, as well as the effects of the signaling molecule on bacterial phenotypes and plant responses will be reviewed. Current knowledge of S. meliloti QS will be compared with that of other rhizobia. Finally, participation of the legume host in QS by interfering with rhizobial AHL perception through the production of molecular mimics will also be addressed.
Collapse
Affiliation(s)
- Nieves Calatrava-Morales
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| | - Matthew McIntosh
- Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, 35392 Giessen, Germany.
| | - María J Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| |
Collapse
|
17
|
Robledo M, Schlüter JP, Loehr LO, Linne U, Albaum SP, Jiménez-Zurdo JI, Becker A. An sRNA and Cold Shock Protein Homolog-Based Feedforward Loop Post-transcriptionally Controls Cell Cycle Master Regulator CtrA. Front Microbiol 2018; 9:763. [PMID: 29740411 PMCID: PMC5928217 DOI: 10.3389/fmicb.2018.00763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/04/2018] [Indexed: 11/13/2022] Open
Abstract
Adjustment of cell cycle progression is crucial for bacterial survival and adaptation under adverse conditions. However, the understanding of modulation of cell cycle control in response to environmental changes is rather incomplete. In α-proteobacteria, the broadly conserved cell cycle master regulator CtrA underlies multiple levels of control, including coupling of cell cycle and cell differentiation. CtrA levels are known to be tightly controlled through diverse transcriptional and post-translational mechanisms. Here, small RNA (sRNA)-mediated post-transcriptional regulation is uncovered as an additional level of CtrA fine-tuning. Computational predictions as well as transcriptome and proteome studies consistently suggested targeting of ctrA and the putative cold shock chaperone cspA5 mRNAs by the trans-encoded sRNA (trans-sRNA) GspR (formerly SmelC775) in several Sinorhizobium species. GspR strongly accumulated in the stationary growth phase, especially in minimal medium (MM) cultures. Lack of the gspR locus confers a fitness disadvantage in competition with the wild type, while its overproduction hampers cell growth, suggesting that this riboregulator interferes with cell cycle progression. An eGFP-based reporter in vivo assay, involving wild-type and mutant sRNA and mRNA pairs, experimentally confirmed GspR-dependent post-transcriptional down-regulation of ctrA and cspA5 expression, which most likely occurs through base-pairing to the respective mRNA. The energetically favored secondary structure of GspR is predicted to comprise three stem-loop domains, with stem-loop 1 and stem-loop 3 targeting ctrA and cspA5 mRNA, respectively. Moreover, this work reports evidence for post-transcriptional control of ctrA by CspA5. Thus, this regulation and GspR-mediated post-transcriptional repression of ctrA and cspA5 expression constitute a coherent feed-forward loop, which may enhance the negative effect of GspR on CtrA levels. This novel regulatory circuit involving the riboregulator GspR, CtrA, and a cold shock chaperone may contribute to fine-tuning of ctrA expression.
Collapse
Affiliation(s)
- Marta Robledo
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany.,Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Jan-Philip Schlüter
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Lars O Loehr
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Linne
- LOEWE Center for Synthetic Microbiology and Faculty of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Stefan P Albaum
- Bioinformatics Resource Facility, Center for Biotechnology, Universität Bielefeld, Bielefeld, Germany
| | - José I Jiménez-Zurdo
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
18
|
Zeng Y, Wang Y, Yu Z, Huang Y. Hypersensitive Response of Plasmid-Encoded AHL Synthase Gene to Lifestyle and Nutrient by Ensifer adhaerens X097. Front Microbiol 2017; 8:1160. [PMID: 28702008 PMCID: PMC5487405 DOI: 10.3389/fmicb.2017.01160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/07/2017] [Indexed: 11/16/2022] Open
Abstract
It is known that some bacteria, especially members of the family Rhizobiaceae, have multiple N-acyl homoserine lactones (AHL) synthase genes and produce multiple AHL signals. However, how bacteria selectively utilize these multiple genes and signals to cope with changing environments is poorly understood. Ensifer adhaerens is an important microorganism in terms of biotechnology, ecology and evolutionary. In this study, we investigated the AHL-based QS system of E. adhaerens X097 and its response to different lifestyles or nutrients. Draft genome sequence data indicated that X097 harbored three distinct AHL synthase genes (ensI1, 2, 3) and seven luxR homologs, which was different from other E. adhaerens strains. In vitro expression indicated that plasmid-encoded ensI1 and ensI2 directed production of multiple AHLs, while chromosome-encoded ensI3 only directed production of C14-HSL. Predicted three dimensional structure of EnsI3 was quite different from that of EnsI1 and EnsI2. X097 produced different AHL profiles in Luria-Bertani (LB) and NFB medium, under biofilm and planktonic lifestyle, respectively. Notably, expression of ensI1 and ensI2 but not ensI3 is hypersensitive to different lifestyles and nutrients. The hypersensitive response of plasmid-encoded AHL synthase genes to different culture conditions may shed a light on the phylogenetic development of AHL synthase genes in Rhizobiaceae family.
Collapse
Affiliation(s)
- Yanhua Zeng
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang UniversityHangzhou, China
| | - Yanli Wang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang UniversityHangzhou, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou, China
| | - Yili Huang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang UniversityHangzhou, China
| |
Collapse
|
19
|
Enzymatic activity necessary to restore the lethality due to Escherichia coli RNase E deficiency is distributed among bacteria lacking RNase E homologues. PLoS One 2017; 12:e0177915. [PMID: 28542621 PMCID: PMC5436854 DOI: 10.1371/journal.pone.0177915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli RNase E (Eco-RNase E), encoded by rne (Eco-rne), is considered the global RNA decay initiator. Although Eco-RNase E is an essential gene product in E. coli, some bacterial species, such as Bacillus subtilis, do not possess Eco-RNase E sequence homologues. B. subtilis instead possesses RNase J1/J2 (Bsu-RNase J1/J2) and RNase Y (Bsu-RNase Y) to execute RNA decay. Here we found that E. coli lacking the Eco-rne gene (Δrne E. coli) was viable conditional on M9 minimal media by introducing Bsu-RNase J1/J2 or Bsu-RNase Y. We also cloned an extremely short Eco-RNase E homologue (Wpi-RNase E) and a canonical sized Bsu-RNase J1/J2 homologue (Wpi-RNase J) from Wolbachia pipientis, an α-proteobacterial endosymbiont of arthropods. We found that Wpi-RNase J restored the colony-forming ability (CFA) of Δrne E. coli, whereas Wpi-RNase E did not. Unexpectedly, Wpi-RNase E restored defective CFA due to lack of Eco-RNase G, a paralogue of Eco-RNase E. Our results indicate that bacterial species that lack Eco-RNase E homologues or bacterial species that possess Eco-RNase E homologues which lack Eco-RNase E-like activities have a modest Eco-RNase E-like function using RNase J and/or RNase Y. These results suggest that Eco-RNase E-like activities might distribute among a wide array of bacteria and that functions of RNases may have changed dynamically during evolutionary divergence of bacterial lineages.
Collapse
|
20
|
Baumgardt K, Melior H, Madhugiri R, Thalmann S, Schikora A, McIntosh M, Becker A, Evguenieva-Hackenberg E. RNase E and RNase J are needed for S-adenosylmethionine homeostasis in Sinorhizobium meliloti. MICROBIOLOGY-SGM 2017; 163:570-583. [PMID: 28141492 DOI: 10.1099/mic.0.000442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ribonucleases (RNases) E and J play major roles in E. coli and Bacillus subtilis, respectively, and co-exist in Sinorhizobium meliloti. We analysed S. meliloti 2011 mutants with mini-Tn5 insertions in the corresponding genes rne and rnj and found many overlapping effects. We observed similar changes in mRNA levels, including lower mRNA levels of the motility and chemotaxis related genes flaA, flgB and cheR and higher levels of ndvA (important for glucan export). The acyl-homoserine lactone (AHL) levels were also higher during exponential growth in both RNase mutants, despite no increase in the expression of the sinI AHL synthase gene. Furthermore, several RNAs from both mutants migrated aberrantly in denaturing gels at 300 V but not under stronger denaturing conditions at 1300 V. The similarities between the two mutants could be explained by increased levels of the key methyl donor S-adenosylmethionine (SAM), since this may result in faster AHL synthesis leading to higher AHL accumulation as well as in uncontrolled methylation of macromolecules including RNA, which may strengthen RNA secondary structures. Indeed, we found that in both mutants the N6-methyladenosine content was increased almost threefold and the SAM level was increased at least sevenfold. Complementation by induced ectopic expression of the respective RNase restored the AHL and SAM levels in each of the mutants. In summary, our data show that both RNase E and RNase J are needed for SAM homeostasis in S. meliloti.
Collapse
Affiliation(s)
- Kathrin Baumgardt
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.,Present address: CNRS, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Hendrik Melior
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Ramakanth Madhugiri
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.,Present address: Institute of Medical Virology, Biomedical Research Center, Justus Liebig University, Schubertstr. 81, D 35392 Giessen, Germany
| | - Sebastian Thalmann
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Adam Schikora
- Institute of Phytopathology and Applied Zoology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.,Present address: Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Brunswick, Germany
| | - Matthew McIntosh
- Centre of Synthetic Microbiology, Hans-Meerwein-Straße 6, D-35043 Marburg, Germany
| | - Anke Becker
- Centre of Synthetic Microbiology, Hans-Meerwein-Straße 6, D-35043 Marburg, Germany
| | | |
Collapse
|
21
|
Gao M, Nguyen H, Salas González I, Teplitski M. Regulation of fixLJ by Hfq Controls Symbiotically Important Genes in Sinorhizobium meliloti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:844-853. [PMID: 27712144 DOI: 10.1094/mpmi-09-16-0182-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The RNA-binding chaperone Hfq plays critical roles in the establishment and functionality of the symbiosis between Sinorhizobium meliloti and its legume hosts. A mutation in hfq reduces symbiotic efficiency resulting in a Fix- phenotype, characterized by the inability of the bacterium to fix nitrogen. At least in part, this is due to the ability of Hfq to regulate the fixLJ operon, which encodes a sensor kinase-response regulator pair that controls expression of the nitrogenase genes. The ability of Hfq to bind fixLJ in vitro and in planta was demonstrated with gel shift and coimmunoprecipitation experiments. Two (ARN)2 motifs in the fixLJ message were the likely sites through which Hfq exerted its posttranscriptional control. Consistent with the regulatory effects of Hfq, downstream genes controlled by FixLJ (such as nifK, noeB) were also subject to Hfq regulation in planta.
Collapse
Affiliation(s)
- Mengsheng Gao
- Soil and Water Sciences Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville 32611, U.S.A
| | - Hahn Nguyen
- Soil and Water Sciences Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville 32611, U.S.A
| | - Isai Salas González
- Soil and Water Sciences Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville 32611, U.S.A
| | - Max Teplitski
- Soil and Water Sciences Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville 32611, U.S.A
| |
Collapse
|
22
|
Lu H, Greenberg JT, Holuigue L. Editorial: Salicylic Acid Signaling Networks. FRONTIERS IN PLANT SCIENCE 2016; 7:238. [PMID: 26941775 PMCID: PMC4764731 DOI: 10.3389/fpls.2016.00238] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/12/2016] [Indexed: 05/24/2023]
Affiliation(s)
- Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimore, MD, USA
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of ChicagoChicago, IL, USA
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
23
|
Baumgardt K, Šmídová K, Rahn H, Lochnit G, Robledo M, Evguenieva-Hackenberg E. The stress-related, rhizobial small RNA RcsR1 destabilizes the autoinducer synthase encoding mRNA sinI in Sinorhizobium meliloti. RNA Biol 2015; 13:486-99. [PMID: 26588798 PMCID: PMC4962803 DOI: 10.1080/15476286.2015.1110673] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Quorum sensing is a cell density-dependent communication system of bacteria relying on autoinducer molecules. During the analysis of the post-transcriptional regulation of quorum sensing in the nitrogen fixing plant symbiont Sinorhizobium meliloti, we predicted and verified a direct interaction between the 5'-UTR of sinI mRNA encoding the autoinducer synthase and a small RNA (sRNA), which we named RcsR1. In vitro, RcsR1 prevented cleavage in the 5'-UTR of sinI by RNase E and impaired sinI translation. In line with low ribosomal occupancy and transcript destabilization upon binding of RcsR1 to sinI, overproduction of RcsR1 in S. meliloti resulted in lower level and shorter half-life of sinI mRNA, and in decreased autoinducer amount. Although RcsR1 can influence quorum sensing via sinI, its level did not vary at different cell densities, but decreased under salt stress and increased at low temperature. We found that RcsR1 and its stress-related expression pattern, but not the interaction with sinI homologs, are conserved in Sinorhizobium, Rhizobium and Agrobacterium. Consistently, overproduction of RcsR1 in S. meliloti and Agrobacterium tumefaciens inhibited growth at high salinity. We identified conserved targets of RcsR1 and showed that most conserved interactions and the effect on growth under salt stress are mediated by the first stem-loop of RcsR1, while its central part is responsible for the species-specific interaction with sinI. We conclude that RcsR1 is an ancient, stress-related riboregulator in rhizobia and propose that it links stress responses to quorum sensing in S. meliloti.
Collapse
Affiliation(s)
- Kathrin Baumgardt
- a Institute for Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring Giessen , Germany
| | - Klára Šmídová
- a Institute for Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring Giessen , Germany.,b Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Studnickova 7, Prague 2, and Institute of Microbiology, Academy of Sciences of the Czech Republic, Laboratory of Bioinformatics, Videnska Prague 4 , Czech Republic
| | - Helen Rahn
- a Institute for Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring Giessen , Germany
| | - Günter Lochnit
- c Institute of Biochemistry, Friedrichstraße Giessen , Germany
| | - Marta Robledo
- d LOEWE Center for Synthetic Microbiology and Department of Biology, Hans-Meerwein-Straße Marburg , Germany
| | - Elena Evguenieva-Hackenberg
- a Institute for Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring Giessen , Germany
| |
Collapse
|
24
|
Unraveling the universe of small RNA regulators in the legume symbiont Sinorhizobium meliloti. Symbiosis 2015. [DOI: 10.1007/s13199-015-0345-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Aït-Bara S, Carpousis AJ. RNA degradosomes in bacteria and chloroplasts: classification, distribution and evolution of RNase E homologs. Mol Microbiol 2015; 97:1021-135. [PMID: 26096689 DOI: 10.1111/mmi.13095] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 11/29/2022]
Abstract
Ribonuclease E (RNase E) of Escherichia coli, which is the founding member of a widespread family of proteins in bacteria and chloroplasts, is a fascinating enzyme that still has not revealed all its secrets. RNase E is an essential single-strand specific endoribonuclease that is involved in the processing and degradation of nearly every transcript in E. coli. A striking enzymatic property is a preference for substrates with a 5' monophosphate end although recent work explains how RNase E can overcome the protection afforded by the 5' triphosphate end of a primary transcript. Other features of E. coli RNase E include its interaction with enzymes involved in RNA degradation to form the multienzyme RNA degradosome and its localization to the inner cytoplasmic membrane. The N-terminal catalytic core of the RNase E protomer associates to form a tetrameric holoenzyme. Each RNase E protomer has a large C-terminal intrinsically disordered (ID) noncatalytic region that contains sites for interactions with protein components of the RNA degradosome as well as RNA and phospholipid bilayers. In this review, RNase E homologs have been classified into five types based on their primary structure. A recent analysis has shown that type I RNase E in the γ-proteobacteria forms an orthologous group of proteins that has been inherited vertically. The RNase E catalytic core and a large ID noncatalytic region containing an RNA binding motif and a membrane targeting sequence are universally conserved features of these orthologs. Although the ID noncatalytic region has low composition and sequence complexity, it is possible to map microdomains, which are short linear motifs that are sites of interaction with protein and other ligands. Throughout bacteria, the composition of the multienzyme RNA degradosome varies with species, but interactions with exoribonucleases (PNPase, RNase R), glycolytic enzymes (enolase, aconitase) and RNA helicases (DEAD-box proteins, Rho) are common. Plasticity in RNA degradosome composition is due to rapid evolution of RNase E microdomains. Characterization of the RNase E-PNPase interaction in α-proteobacteria, γ-proteobacteria and cyanobacteria suggests that it arose independently several times during evolution, thus conferring an advantage in control and coordination of RNA processing and degradation.
Collapse
Affiliation(s)
- Soraya Aït-Bara
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, Institut, National de la Santé et de la Recherche Médicale & Université d'Auvergne, Clermont-Ferrand, 63001, France
| | - Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100, Centre National de la Recherche Scientifique et Université de Toulouse 3, Toulouse, 31062, France
| |
Collapse
|
26
|
Relative Strengths of Promoters Provided by Common Mobile Genetic Elements Associated with Resistance Gene Expression in Gram-Negative Bacteria. Antimicrob Agents Chemother 2015; 59:5088-91. [PMID: 26055385 DOI: 10.1128/aac.00420-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/05/2015] [Indexed: 01/01/2023] Open
Abstract
Comparison of green fluorescent protein expression from outward-facing promoters (POUT) of ISAba1, ISEcp1, and ISAba125 revealed approximate equivalence in strength, intermediate between PCS (strong) and PCWTGN-10 (weak) class 1 integron promoter variants, >30-fold stronger than POUT of ISCR1, and >5 times stronger than Ptac. Consistent with its usual role, PCWTGN-10 produces more mRNA from a "downstream" gfp gene transcriptionally linked to a "usual" PCWTGN-10-associated gene cassette than does POUT of ISAba1.
Collapse
|
27
|
A stress-induced small RNA modulates alpha-rhizobial cell cycle progression. PLoS Genet 2015; 11:e1005153. [PMID: 25923724 PMCID: PMC4414408 DOI: 10.1371/journal.pgen.1005153] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 03/18/2015] [Indexed: 01/22/2023] Open
Abstract
Mechanisms adjusting replication initiation and cell cycle progression in response to environmental conditions are crucial for microbial survival. Functional characterization of the trans-encoded small non-coding RNA (trans-sRNA) EcpR1 in the plant-symbiotic alpha-proteobacterium Sinorhizobium meliloti revealed a role of this class of riboregulators in modulation of cell cycle regulation. EcpR1 is broadly conserved in at least five families of the Rhizobiales and is predicted to form a stable structure with two defined stem-loop domains. In S. meliloti, this trans-sRNA is encoded downstream of the divK-pleD operon. ecpR1 belongs to the stringent response regulon, and its expression was induced by various stress factors and in stationary phase. Induced EcpR1 overproduction led to cell elongation and increased DNA content, while deletion of ecpR1 resulted in reduced competitiveness. Computationally predicted EcpR1 targets were enriched with cell cycle-related mRNAs. Post-transcriptional repression of the cell cycle key regulatory genes gcrA and dnaA mediated by mRNA base-pairing with the strongly conserved loop 1 of EcpR1 was experimentally confirmed by two-plasmid differential gene expression assays and compensatory changes in sRNA and mRNA. Evidence is presented for EcpR1 promoting RNase E-dependent degradation of the dnaA mRNA. We propose that EcpR1 contributes to modulation of cell cycle regulation under detrimental conditions. Microorganisms frequently encounter adverse conditions unfavorable for cell proliferation. They have evolved diverse mechanisms, including transcriptional control and targeted protein degradation, to adjust cell cycle progression in response to environmental cues. Non-coding RNAs are widespread regulators of various cellular processes in all domains of life. In prokaryotes, trans-encoded small non-coding RNAs (trans-sRNAs) contribute to a rapid cellular response to changing environments, but so far have not been directly related to cell cycle regulation. Here, we report the first example of a trans-sRNA (EcpR1) with two experimentally confirmed targets in the core of cell cycle regulation and demonstrate that in the plant-symbiotic alpha-proteobacterium Sinorhizobium meliloti the regulatory mechanism involves base-pairing of this sRNA with the dnaA and gcrA mRNAs. Most trans-sRNAs are restricted to closely related species, but the stress-induced EcpR1 is broadly conserved in the order of Rhizobiales suggesting an evolutionary advantage conferred by ecpR1. It broadens the functional diversity of prokaryotic sRNAs and adds a new regulatory level to the mechanisms that contribute to interlinking stress responses with the cell cycle machinery.
Collapse
|
28
|
Gao M, Tang M, Guerich L, Salas-Gonzalez I, Teplitski M. Modulation of Sinorhizobium meliloti quorum sensing by Hfq-mediated post-transcriptional regulation of ExpR. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:148-154. [PMID: 25382642 DOI: 10.1111/1758-2229.12235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
In Sinorhizobium meliloti, the timing of quorum sensing (QS)-dependent gene expression is controlled at multiple levels. RNA binding protein Hfq contributes to the regulation of QS signal production, and this regulation is exerted both in the manner that involves the acyl homoserine lactone receptor ExpR, and via expR-independent mechanisms. In the expR+ strain of S. meliloti, deletion of hfq resulted in the hyper-accumulation of QS signals at low population densities, increased diversity of the QS signals in mid-to-late exponential phase and then led to a sharp decrease in QS signal accumulation in stationary phase. Quantitative polymerase chain reaction revealed that the accumulation of expR and sinI (but not sinR) mRNA was increased in the late exponential phase in an hfq-dependent manner. A translational, but not transcriptional, expR-uidA reporter was controlled by hfq, while both transcriptional and translational sinI-uidA reporters were regulated in the hfq-dependent manner. In co-immunoprecipation experiments, expR mRNA was bound to and then released from Hfq, similar to the positive controls (small regulatory RNA SmrC9, SmrC15, SmrC16 and SmrC45). Neither sinI nor sinR transcripts were detected in the pool of RNA heat-released from Hfq-RNA complexes. Therefore, post-transcriptional regulator Hfq controls the production and perception of QS signals, and at higher population densities this control is mediated directly via interactions with expR.
Collapse
Affiliation(s)
- Mengsheng Gao
- Soil and Water Science Department, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
29
|
Becker A, Overlöper A, Schlüter JP, Reinkensmeier J, Robledo M, Giegerich R, Narberhaus F, Evguenieva-Hackenberg E. Riboregulation in plant-associated α-proteobacteria. RNA Biol 2014; 11:550-62. [PMID: 25003187 DOI: 10.4161/rna.29625] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The symbiotic α-rhizobia Sinorhizobium meliloti, Bradyrhizobium japonicum, Rhizobium etli and the related plant pathogen Agrobacterium tumefaciens are important model organisms for studying plant-microbe interactions. These metabolically versatile soil bacteria are characterized by complex lifestyles and large genomes. Here we summarize the recent knowledge on their small non-coding RNAs (sRNAs) including conservation, function, and interaction of the sRNAs with the RNA chaperone Hfq. In each of these organisms, an inventory of hundreds of cis- and trans-encoded sRNAs with regulatory potential was uncovered by high-throughput approaches and used for the construction of 39 sRNA family models. Genome-wide analyses of hfq mutants and co-immunoprecipitation with tagged Hfq revealed a major impact of the RNA chaperone on the physiology of plant-associated α-proteobacteria including symbiosis and virulence. Highly conserved members of the SmelC411 family are the AbcR sRNAs, which predominantly regulate ABC transport systems. AbcR1 of A. tumefaciens controls the uptake of the plant-generated signaling molecule GABA and is a central regulator of nutrient uptake systems. It has similar functions in S. meliloti and the human pathogen Brucella abortus. As RNA degradation is an important process in RNA-based gene regulation, a short overview on ribonucleases in plant-associated α-proteobacteria concludes this review.
Collapse
Affiliation(s)
- Anke Becker
- LOEWE Centre for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; Marburg, Germany
| | | | - Jan-Philip Schlüter
- LOEWE Centre for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; Marburg, Germany
| | - Jan Reinkensmeier
- Center for Biotechnology (CeBiTec); Bielefeld University; Bielefeld, Germany
| | - Marta Robledo
- LOEWE Centre for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; Marburg, Germany
| | - Robert Giegerich
- Center for Biotechnology (CeBiTec); Bielefeld University; Bielefeld, Germany
| | | | | |
Collapse
|