1
|
When the metabolism meets the cell cycle in bacteria. Curr Opin Microbiol 2021; 60:104-113. [PMID: 33677348 DOI: 10.1016/j.mib.2021.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Nutrients availability is the sinews of the war for single microbial cells, driving growth and cell cycle progression. Therefore, coordinating cellular processes with nutrients availability is crucial, not only to survive upon famine or fluctuating conditions but also to rapidly thrive and colonize plentiful environments. While metabolism is traditionally seen as a set of chemical reactions taking place in cells to extract energy and produce building blocks from available nutrients, numerous connections between metabolic pathways and cell cycle phases have been documented. The few regulatory systems described at the molecular levels show that regulation is mediated either by a second messenger molecule or by a metabolite and/or a metabolic enzyme. In the latter case, a secondary moonlighting regulatory function evolved independently of the primary catalytic function of the enzyme. In this review, we summarize our current understanding of the complex cross-talks between metabolism and cell cycle in bacteria.
Collapse
|
2
|
Coleman SR, Pletzer D, Hancock REW. Contribution of Swarming Motility to Dissemination in a Pseudomonas aeruginosa Murine Skin Abscess Infection Model. J Infect Dis 2020; 224:726-733. [PMID: 33349847 DOI: 10.1093/infdis/jiaa778] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/16/2020] [Indexed: 01/21/2023] Open
Abstract
Swarming motility in Pseudomonas aeruginosa is a multicellular adaptation induced by semisolid medium with amino acids as a nitrogen source. By phenotypic screening, we differentiated swarming from other complex adaptive phenotypes, such as biofilm formation, swimming and twitching, by identifying a swarming-specific mutant in ptsP, a metabolic regulator. This swarming-deficient mutant was tested in an acute murine skin abscess infection model. Bacteria were recovered at significantly lower numbers from organs of mice infected with the ∆ptsP mutant. We also tested the synthetic peptide 1018 for activity against different motilities and efficacy in vivo. Treatment with peptide 1018 mimicked the phenotype of the ∆ptsP mutant in vitro, as swarming was inhibited at low concentrations (<2 μg/mL) but not swimming or twitching, and in vivo, as mice had a reduced bacterial load recovered from organs. Therefore, PtsP functions as a regulator of swarming, which in turn contributes to dissemination and colonization in vivo.
Collapse
Affiliation(s)
- Shannon R Coleman
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Schulte JE, Roggiani M, Shi H, Zhu J, Goulian M. The phosphohistidine phosphatase SixA dephosphorylates the phosphocarrier NPr. J Biol Chem 2020; 296:100090. [PMID: 33199374 PMCID: PMC7948535 DOI: 10.1074/jbc.ra120.015121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023] Open
Abstract
Histidine phosphorylation is a posttranslational modification that alters protein function and also serves as an intermediate of phosphoryl transfer. Although phosphohistidine is relatively unstable, enzymatic dephosphorylation of this residue is apparently needed in some contexts, since both prokaryotic and eukaryotic phosphohistidine phosphatases have been reported. Here we identify the mechanism by which a bacterial phosphohistidine phosphatase dephosphorylates the nitrogen-related phosphotransferase system, a broadly conserved bacterial pathway that controls diverse metabolic processes. We show that the phosphatase SixA dephosphorylates the phosphocarrier protein NPr and that the reaction proceeds through phosphoryl transfer from a histidine on NPr to a histidine on SixA. In addition, we show that Escherichia coli lacking SixA are outcompeted by wild-type E. coli in the context of commensal colonization of the mouse intestine. Notably, this colonization defect requires NPr and is distinct from a previously identified in vitro growth defect associated with dysregulation of the nitrogen-related phosphotransferase system. The widespread conservation of SixA, and its coincidence with the phosphotransferase system studied here, suggests that this dephosphorylation mechanism may be conserved in other bacteria.
Collapse
Affiliation(s)
- Jane E Schulte
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hui Shi
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; College of Food Science, Southwest University, Beibei, Chongqing, China
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Xu C, Weston BR, Tyson JJ, Cao Y. Cell cycle control and environmental response by second messengers in Caulobacter crescentus. BMC Bioinformatics 2020; 21:408. [PMID: 32998723 PMCID: PMC7526171 DOI: 10.1186/s12859-020-03687-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Second messengers, c-di-GMP and (p)ppGpp, are vital regulatory molecules in bacteria, influencing cellular processes such as biofilm formation, transcription, virulence, quorum sensing, and proliferation. While c-di-GMP and (p)ppGpp are both synthesized from GTP molecules, they play antagonistic roles in regulating the cell cycle. In C. crescentus, c-di-GMP works as a major regulator of pole morphogenesis and cell development. It inhibits cell motility and promotes S-phase entry by inhibiting the activity of the master regulator, CtrA. Intracellular (p)ppGpp accumulates under starvation, which helps bacteria to survive under stressful conditions through regulating nucleotide levels and halting proliferation. (p)ppGpp responds to nitrogen levels through RelA-SpoT homolog enzymes, detecting glutamine concentration using a nitrogen phosphotransferase system (PTS Ntr). This work relates the guanine nucleotide-based second messenger regulatory network with the bacterial PTS Ntr system and investigates how bacteria respond to nutrient availability. Results We propose a mathematical model for the dynamics of c-di-GMP and (p)ppGpp in C. crescentus and analyze how the guanine nucleotide-based second messenger system responds to certain environmental changes communicated through the PTS Ntr system. Our mathematical model consists of seven ODEs describing the dynamics of nucleotides and PTS Ntr enzymes. Our simulations are consistent with experimental observations and suggest, among other predictions, that SpoT can effectively decrease c-di-GMP levels in response to nitrogen starvation just as well as it increases (p)ppGpp levels. Thus, the activity of SpoT (or its homologues in other bacterial species) can likely influence the cell cycle by influencing both c-di-GMP and (p)ppGpp. Conclusions In this work, we integrate current knowledge and experimental observations from the literature to formulate a novel mathematical model. We analyze the model and demonstrate how the PTS Ntr system influences (p)ppGpp, c-di-GMP, GMP and GTP concentrations. While this model does not consider all aspects of PTS Ntr signaling, such as cross-talk with the carbon PTS system, here we present our first effort to develop a model of nutrient signaling in C. crescentus.
Collapse
Affiliation(s)
- Chunrui Xu
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, 24061, VA, USA
| | - Bronson R Weston
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, 24061, VA, USA
| | - John J Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, 24061, VA, USA
| | - Yang Cao
- Department of Computer Science, Virginia Tech, Blacksburg, 24061, VA, USA.
| |
Collapse
|
5
|
Global control of bacterial nitrogen and carbon metabolism by a PTS Ntr-regulated switch. Proc Natl Acad Sci U S A 2020; 117:10234-10245. [PMID: 32341157 DOI: 10.1073/pnas.1917471117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The nitrogen-related phosphotransferase system (PTSNtr) of Rhizobium leguminosarum bv. viciae 3841 transfers phosphate from PEP via PtsP and NPr to two output regulators, ManX and PtsN. ManX controls central carbon metabolism via the tricarboxylic acid (TCA) cycle, while PtsN controls nitrogen uptake, exopolysaccharide production, and potassium homeostasis, each of which is critical for cellular adaptation and survival. Cellular nitrogen status modulates phosphorylation when glutamine, an abundant amino acid when nitrogen is available, binds to the GAF sensory domain of PtsP, preventing PtsP phosphorylation and subsequent modification of ManX and PtsN. Under nitrogen-rich, carbon-limiting conditions, unphosphorylated ManX stimulates the TCA cycle and carbon oxidation, while unphosphorylated PtsN stimulates potassium uptake. The effects are reversed with the phosphorylation of ManX and PtsN, occurring under nitrogen-limiting, carbon-rich conditions; phosphorylated PtsN triggers uptake and nitrogen metabolism, the TCA cycle and carbon oxidation are decreased, while carbon-storage polymers such as surface polysaccharide are increased. Deleting the GAF domain from PtsP makes cells "blind" to the cellular nitrogen status. PTSNtr constitutes a switch through which carbon and nitrogen metabolism are rapidly, and reversibly, regulated by protein:protein interactions. PTSNtr is widely conserved in proteobacteria, highlighting its global importance.
Collapse
|
6
|
Ronneau S, Caballero-Montes J, Coppine J, Mayard A, Garcia-Pino A, Hallez R. Regulation of (p)ppGpp hydrolysis by a conserved archetypal regulatory domain. Nucleic Acids Res 2019; 47:843-854. [PMID: 30496454 PMCID: PMC6344854 DOI: 10.1093/nar/gky1201] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/15/2018] [Indexed: 11/15/2022] Open
Abstract
Sensory and regulatory domains allow bacteria to adequately respond to environmental changes. The regulatory ACT (Aspartokinase, Chorismate mutase and TyrA) domains are mainly found in metabolic-related proteins as well as in long (p)ppGpp synthetase/hydrolase enzymes. Here, we investigate the functional role of the ACT domain of SpoT, the only (p)ppGpp synthetase/hydrolase of Caulobacter crescentus. We show that SpoT requires the ACT domain to efficiently hydrolyze (p)ppGpp. In addition, our in vivo and in vitro data show that the phosphorylated version of EIIANtr (EIIANtr∼P) interacts directly with the ACT and inhibits the hydrolase activity of SpoT. Finally, we highlight the conservation of the ACT-dependent interaction between EIIANtr∼P and SpoT/Rel along with the phosphotransferase system (PTSNtr)-dependent regulation of (p)ppGpp accumulation upon nitrogen starvation in Sinorhizobium meliloti, a plant-associated α-proteobacterium. Thus, this work suggests that α-proteobacteria might have inherited from a common ancestor, a PTSNtr dedicated to modulate (p)ppGpp levels in response to nitrogen availability.
Collapse
Affiliation(s)
- Séverin Ronneau
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Julien Caballero-Montes
- Cellular and Molecular Microbiology, Université Libre de Bruxelles (ULB), 12 Rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Jérôme Coppine
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Aurélie Mayard
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Université Libre de Bruxelles (ULB), 12 Rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Régis Hallez
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| |
Collapse
|
7
|
Ronneau S, Hallez R. Make and break the alarmone: regulation of (p)ppGpp synthetase/hydrolase enzymes in bacteria. FEMS Microbiol Rev 2019; 43:389-400. [PMID: 30980074 PMCID: PMC6606846 DOI: 10.1093/femsre/fuz009] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/21/2019] [Indexed: 11/24/2022] Open
Abstract
Bacteria use dedicated mechanisms to respond adequately to fluctuating environments and to optimize their chances of survival in harsh conditions. One of the major stress responses used by virtually all bacteria relies on the sharp accumulation of an alarmone, the guanosine penta- or tetra-phosphate commonly referred to as (p)ppGpp. Under stressful conditions, essentially nutrient starvation, these second messengers completely reshape the metabolism and physiology by coordinately modulating growth, transcription, translation and cell cycle. As a central regulator of bacterial stress response, the alarmone is also involved in biofilm formation, virulence, antibiotics tolerance and resistance in many pathogenic bacteria. Intracellular concentrations of (p)ppGpp are determined by a highly conserved and widely distributed family of proteins called RelA-SpoT Homologs (RSH). Recently, several studies uncovering mechanisms that regulate RSH activities have renewed a strong interest in this field. In this review, we outline the diversity of the RSH protein family as well as the molecular devices used by bacteria to integrate and transform environmental cues into intracellular (p)ppGpp levels.
Collapse
Affiliation(s)
- Séverin Ronneau
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Régis Hallez
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| |
Collapse
|
8
|
Determination of protein phosphorylation by polyacrylamide gel electrophoresis. J Microbiol 2019; 57:93-100. [DOI: 10.1007/s12275-019-9021-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 12/21/2022]
|
9
|
Abstract
SixA, a well-conserved protein found in proteobacteria, actinobacteria, and cyanobacteria, is the only reported example of a bacterial phosphohistidine phosphatase. A single protein target of SixA has been reported to date: the Escherichia coli histidine kinase ArcB. The present work analyzes an ArcB-independent growth defect of a sixA deletion in E. coli A screen for suppressors, analysis of various mutants, and phosphorylation assays indicate that SixA modulates phosphorylation of the nitrogen-related phosphotransferase system (PTSNtr). The PTSNtr is a widely conserved bacterial pathway that regulates diverse metabolic processes through the phosphorylation states of its protein components, EINtr, NPr, and EIIANtr, which receive phosphoryl groups on histidine residues. However, a mechanism for dephosphorylating this system has not been reported. The results presented here suggest a model in which SixA removes phosphoryl groups from the PTSNtr by acting on NPr. This work uncovers a new role for the phosphohistidine phosphatase SixA and, through factors that affect SixA expression or activity, may point to additional inputs that regulate the PTSNtr IMPORTANCE One common means to regulate protein activity is through phosphorylation. Protein phosphatases exist to reverse this process, returning the protein to the unphosphorylated form. The vast majority of protein phosphatases that have been identified target phosphoserine, phosphotheronine, and phosphotyrosine. A widely conserved phosphohistidine phosphatase was identified in Escherichia coli 20 years ago but remains relatively understudied. The present work shows that this phosphatase modulates the nitrogen-related phosphotransferase system, a pathway that is regulated by nitrogen and carbon metabolism and affects diverse aspects of bacterial physiology. Until now, there was no known mechanism for removing phosphoryl groups from this pathway.
Collapse
|
10
|
Gravina F, Sanchuki HS, Rodrigues TE, Gerhardt ECM, Pedrosa FO, Souza EM, Valdameri G, de Souza GA, Huergo LF. Proteome analysis of an Escherichia coli ptsN-null strain under different nitrogen regimes. J Proteomics 2017; 174:28-35. [PMID: 29274402 DOI: 10.1016/j.jprot.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/29/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022]
Abstract
The carbohydrate-uptake phosphorelay PTS system plays a key role in metabolic regulation in Bacteria controlling the utilization of secondary carbon sources. Some bacteria, such as Escherichia coli, encode a paralogous system named PTSNtr (nitrogen related PTS). PTSNtr is composed of EINtr (ptsP), NPr (ptsO), and EIIANtr (ptsN). These proteins act as a phosphorelay system from phosphoenolpyruvate to EINtr, NPr and them to EIIANtr. PTSNtr is not involved in carbohydrate uptake and it may be dedicated to performing regulatory functions. The phosphorylation state of EINtr is regulated by allosteric binding of glutamine and 2-oxoglutarate, metabolites whose intracellular levels reflect the nitrogen status. Although PTSNtr is designated as having nitrogen-sensory properties, no major effect of this system on nitrogen regulation has been described in E. coli. Here we show that an E. coli ptsN deletion mutant has impaired growth in minimal medium. Proteome analysis of the ∆ptsN strain under different nitrogen regimes revealed no involvement in regulation of the canonical nitrogen regulatory (Ntr) system. The proteomic data support the conclusion that ptsN is required to balance the activities of the sigma factors RpoS and RpoD in such way that, in the absence of ptsN, RpoS-dependent genes are preferentially expressed. SIGNIFICANCE The nitrogen related PTSNtr phosphorelay system has been hypothesized to participate in the control of nitrogen metabolism. Here we used a proteomics approach to show that an Escherichia coli ptsN null strain, which misses the final module of PTSNtr phosphorelay, has no significant effects on nitrogen metabolism under different nitrogen regimes. We noted that ptsN is required for fitness under minimal medium and for the proper balance between RpoS and sigma 70 activities in such way that, in the absence of ptsN, RpoS-dependent genes are preferentially expressed.
Collapse
Affiliation(s)
- Fernanda Gravina
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Heloisa S Sanchuki
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Thiago E Rodrigues
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | | | - Fábio O Pedrosa
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Emanuel M Souza
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Gláucio Valdameri
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil; Departamento de Análises Clínicas, UFPR, Curitiba, PR, Brazil
| | - Gustavo A de Souza
- Oslo University Hospital, The Proteomics Core Facility, Rikshospitalet, Oslo, Norway; Instituto do Cérebro, UFRN, Natal, RN, Brazil
| | - Luciano F Huergo
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil; Setor Litoral, UFPR, Matinhos, PR, Brazil.
| |
Collapse
|
11
|
Barbier T, Zúñiga-Ripa A, Moussa S, Plovier H, Sternon JF, Lázaro-Antón L, Conde-Álvarez R, De Bolle X, Iriarte M, Moriyón I, Letesson JJ. Brucella central carbon metabolism: an update. Crit Rev Microbiol 2017; 44:182-211. [PMID: 28604247 DOI: 10.1080/1040841x.2017.1332002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The brucellae are facultative intracellular pathogens causing brucellosis, an important zoonosis. Here, we review the nutritional, genetic, proteomic and transcriptomic studies on Brucella carbon uptake and central metabolism, information that is needed for a better understanding of Brucella virulence. There is no uniform picture across species but the studies suggest primary and/or secondary transporters for unknown carbohydrates, lactate, glycerol phosphate, erythritol, xylose, ribose, glucose and glucose/galactose, and routes for their incorporation to central metabolism, including an erythritol pathway feeding the pentose phosphate cycle. Significantly, all brucellae lack phosphoenolpyruvate synthase and phosphofructokinase genes, which confirms previous evidence on glycolysis absence, but carry all Entner-Doudoroff (ED) pathway and Krebs cycle (and glyoxylate pathway) genes. However, glucose catabolism proceeds through the pentose phosphate cycle in the classical species, and the ED pathway operates in some rodent-associated brucellae, suggesting an ancestral character for this pathway in this group. Gluconeogenesis is functional but does not rely exclusively on classical fructose bisphosphatases. Evidence obtained using infection models is fragmentary but suggests the combined or sequential use of hexoses/pentoses, amino acids and gluconeogenic substrates. We also discuss the role of the phosphotransferase system, stringent reponse, quorum sensing, BvrR/S and sRNAs in metabolism control, an essential aspect of the life style of facultative intracellular parasites.
Collapse
Affiliation(s)
- T Barbier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - A Zúñiga-Ripa
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - S Moussa
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - H Plovier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - J F Sternon
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - L Lázaro-Antón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - R Conde-Álvarez
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - X De Bolle
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - M Iriarte
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - I Moriyón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - J J Letesson
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| |
Collapse
|
12
|
GigA and GigB are Master Regulators of Antibiotic Resistance, Stress Responses, and Virulence in Acinetobacter baumannii. J Bacteriol 2017; 199:JB.00066-17. [PMID: 28264991 DOI: 10.1128/jb.00066-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/24/2017] [Indexed: 01/17/2023] Open
Abstract
A critical component of bacterial pathogenesis is the ability of an invading organism to sense and adapt to the harsh environment imposed by the host's immune system. This is especially important for opportunistic pathogens, such as Acinetobacter baumannii, a nutritionally versatile environmental organism that has recently gained attention as a life-threatening human pathogen. The emergence of A. baumannii is closely linked to antibiotic resistance, and many contemporary isolates are multidrug resistant (MDR). Unlike many other MDR pathogens, the molecular mechanisms underlying A. baumannii pathogenesis remain largely unknown. We report here the characterization of two recently identified virulence determinants, GigA and GigB, which comprise a signal transduction pathway required for surviving environmental stresses, causing infection and antibiotic resistance. Through transcriptome analysis, we show that GigA and GigB coordinately regulate the expression of many genes and are required for generating an appropriate transcriptional response during antibiotic exposure. Genetic and biochemical data demonstrate a direct link between GigA and GigB and the nitrogen phosphotransferase system (PTSNtr), establishing a novel connection between a novel stress response module and a well-conserved metabolic-sensing pathway. Based on the results presented here, we propose that GigA and GigB are master regulators of a global stress response in A. baumannii, and coupling this pathway with the PTSNtr allows A. baumannii to integrate cellular metabolic status with external environmental cues.IMPORTANCE Opportunistic pathogens, including Acinetobacter baumannii, encounter many harsh environments during the infection cycle, including antibiotic exposure and the hostile environment within a host. While the development of antibiotic resistance in A. baumannii has been well studied, how this organism senses and responds to environmental cues remain largely unknown. Herein, we investigate two previously identified virulence determinants, GigA and GigB, and report that they are required for in vitro stress resistance, likely comprising upstream elements of a global stress response pathway. Additional experiments identify a connection between GigA/GigB and a widely conserved metabolic-sensing pathway, the nitrogen phosphotransferase system. We propose that coordination of these two pathways allows A. baumannii to respond appropriately to changing environmental conditions, including those encountered during infection.
Collapse
|
13
|
Muriel-Millán LF, Moreno S, Gallegos-Monterrosa R, Espín G. Unphosphorylated EIIA Ntr induces ClpAP-mediated degradation of RpoS in Azotobacter vinelandii. Mol Microbiol 2017; 104:197-211. [PMID: 28097724 DOI: 10.1111/mmi.13621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 02/02/2023]
Abstract
The nitrogen-related phosphotransferase system (PTSNtr ) is composed of the EINtr , NPr and EIIANtr proteins that form a phosphorylation cascade from phosphoenolpyruvate. PTSNtr is a global regulatory system present in most Gram-negative bacteria that controls some pivotal processes such as potassium and phosphate homeostasis, virulence, nitrogen fixation and ABC transport activation. In the soil bacterium Azotobacter vinelandii, unphosphorylated EIIANtr negatively regulates the expression of genes related to the synthesis of the bioplastic polyester poly-β-hydroxybutyrate (PHB) and cyst-specific lipids alkylresorcinols (ARs). The mechanism by which EIIANtr controls gene expression in A. vinelandii is not known. Here, we show that, in presence of unphosphorylated EIIANtr , the stability of the stationary phase sigma factor RpoS, which is necessary for transcriptional activation of PHB and ARs synthesis related genes, is reduced, and that the inactivation of genes coding for ClpAP protease complex in strains that carry unphosphorylated EIIANtr , restored the levels and in vivo stability of RpoS, as well as the synthesis of PHB and ARs. Taken together, our results reveal a novel mechanism, by which EIIANtr globally controls gene expression in A. vinelandii, where the unphosphorylated EIIANtr induces the degradation of RpoS by the proteolytic complex ClpAP.
Collapse
Affiliation(s)
- Luis Felipe Muriel-Millán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Ramsés Gallegos-Monterrosa
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| |
Collapse
|
14
|
Hallez R, Delaby M, Sanselicio S, Viollier PH. Hit the right spots: cell cycle control by phosphorylated guanosines in alphaproteobacteria. Nat Rev Microbiol 2017; 15:137-148. [PMID: 28138140 DOI: 10.1038/nrmicro.2016.183] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The class Alphaproteobacteria includes Gram-negative free-living, symbiotic and obligate intracellular bacteria, as well as important plant, animal and human pathogens. Recent work has established the key antagonistic roles that phosphorylated guanosines, cyclic-di-GMP (c-di-GMP) and the alarmones guanosine tetraphosphate and guanosine pentaphosphate (collectively referred to as (p)ppGpp), have in the regulation of the cell cycle in these bacteria. In this Review, we discuss the insights that have been gained into the regulation of the initiation of DNA replication and cytokinesis by these second messengers, with a particular focus on the cell cycle of Caulobacter crescentus. We explore how the fluctuating levels of c-di-GMP and (p)ppGpp during the progression of the cell cycle and under conditions of stress control the synthesis and proteolysis of key regulators of the cell cycle. As these signals also promote bacterial interactions with host cells, the enzymes that control (p)ppGpp and c-di-GMP are attractive antibacterial targets.
Collapse
Affiliation(s)
- Régis Hallez
- Bacterial Cell cycle and Development (BCcD), Unité de recherche en biologie des micro-organismes (URBM), University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Marie Delaby
- Department of Microbiology and Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Stefano Sanselicio
- Department of Microbiology and Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland.,Present address: Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
15
|
Trejo A, Moreno S, Cocotl-Yañez M, Espín G. GacA regulates the PTSNtr-dependent control of cyst formation inAzotobacter vinelandii. FEMS Microbiol Lett 2016; 364:fnw278. [DOI: 10.1093/femsle/fnw278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/27/2016] [Accepted: 12/03/2016] [Indexed: 11/14/2022] Open
|
16
|
Zhang Y, Smallbone LA, diCenzo GC, Morton R, Finan TM. Loss of malic enzymes leads to metabolic imbalance and altered levels of trehalose and putrescine in the bacterium Sinorhizobium meliloti. BMC Microbiol 2016; 16:163. [PMID: 27456220 PMCID: PMC4960864 DOI: 10.1186/s12866-016-0780-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malic enzymes decarboxylate the tricarboxylic acid (TCA) cycle intermediate malate to the glycolytic end-product pyruvate and are well positioned to regulate metabolic flux in central carbon metabolism. Despite the wide distribution of these enzymes, their biological roles are unclear in part because the reaction catalyzed by these enzymes can be by-passed by other pathways. The N2-fixing alfalfa symbiont Sinorhizobium meliloti contains both a NAD(P)-malic enzyme (DME) and a separate NADP-malic enzyme (TME) and to help understand the role of these enzymes, we investigated growth, metabolomic, and transcriptional consequences resulting from loss of these enzymes in free-living cells. RESULTS Loss of DME, TME, or both enzymes had no effect on growth with the glycolytic substrate, glucose. In contrast, the dme mutants, but not tme, grew slowly on the gluconeogenic substrate succinate and this slow growth was further reduced upon the addition of glucose. The dme mutant strains incubated with succinate accumulated trehalose and hexose sugar phosphates, secreted malate, and relative to wild-type, these cells had moderately increased transcription of genes involved in gluconeogenesis and pathways that divert metabolites away from the TCA cycle. While tme mutant cells grew at the same rate as wild-type on succinate, they accumulated the compatible solute putrescine. CONCLUSIONS NAD(P)-malic enzyme (DME) of S. meliloti is required for efficient metabolism of succinate via the TCA cycle. In dme mutants utilizing succinate, malate accumulates and is excreted and these cells appear to increase metabolite flow via gluconeogenesis with a resulting increase in the levels of hexose-6-phosphates and trehalose. For cells utilizing succinate, TME activity alone appeared to be insufficient to produce the levels of pyruvate required for efficient TCA cycle metabolism. Putrescine was found to accumulate in tme cells growing with succinate, and whether this is related to altered levels of NADPH requires further investigation.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Laura Anne Smallbone
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| | - George C diCenzo
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| | - Richard Morton
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
17
|
Ronneau S, Petit K, De Bolle X, Hallez R. Phosphotransferase-dependent accumulation of (p)ppGpp in response to glutamine deprivation in Caulobacter crescentus. Nat Commun 2016; 7:11423. [PMID: 27109061 PMCID: PMC4848567 DOI: 10.1038/ncomms11423] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 03/24/2016] [Indexed: 01/17/2023] Open
Abstract
The alarmone (p)ppGpp is commonly used by bacteria to quickly respond to nutrient starvation. Although (p)ppGpp synthetases such as SpoT have been extensively studied, little is known about the molecular mechanisms stimulating alarmone synthesis upon starvation. Here, we describe an essential role of the nitrogen-related phosphotransferase system (PTSNtr) in controlling (p)ppGpp accumulation in Caulobacter crescentus. We show that cells sense nitrogen starvation by way of detecting glutamine deprivation using the first enzyme (EINtr) of PTSNtr. Decreasing intracellular glutamine concentration triggers phosphorylation of EINtr and its downstream components HPr and EIIANtr. Once phosphorylated, both HPr∼P and EIIANtr∼P stimulate (p)ppGpp accumulation by modulating SpoT activities. This burst of second messenger primarily impacts the non-replicative phase of the cell cycle by extending the G1 phase. This work highlights a new role for bacterial PTS systems in stimulating (p)ppGpp accumulation in response to metabolic cues and in controlling cell cycle progression and cell growth. The small molecule (p)ppGpp is commonly produced by bacteria as a signal of nutrient starvation. Here, Ronneau et al. show that (p)ppGpp accumulation in the model bacterium Caulobacter crescentus is modulated by a nitrogen-related phosphotransferase system in response to glutamine deprivation.
Collapse
Affiliation(s)
- Séverin Ronneau
- Bacterial Cell cycle and Development (BCcD), URBM, University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Kenny Petit
- Bacterial Cell cycle and Development (BCcD), URBM, University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Xavier De Bolle
- Bacterial Cell cycle and Development (BCcD), URBM, University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Régis Hallez
- Bacterial Cell cycle and Development (BCcD), URBM, University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| |
Collapse
|
18
|
Abstract
The metabolite 2-oxoglutarate (also known as α-ketoglutarate, 2-ketoglutaric acid, or oxoglutaric acid) lies at the intersection between the carbon and nitrogen metabolic pathways. This compound is a key intermediate of one of the most fundamental biochemical pathways in carbon metabolism, the tricarboxylic acid (TCA) cycle. In addition, 2-oxoglutarate also acts as the major carbon skeleton for nitrogen-assimilatory reactions. Experimental data support the conclusion that intracellular levels of 2-oxoglutarate fluctuate according to nitrogen and carbon availability. This review summarizes how nature has capitalized on the ability of 2-oxoglutarate to reflect cellular nutritional status through evolution of a variety of 2-oxoglutarate-sensing regulatory proteins. The number of metabolic pathways known to be regulated by 2-oxoglutarate levels has increased significantly in recent years. The signaling properties of 2-oxoglutarate are highlighted by the fact that this metabolite regulates the synthesis of the well-established master signaling molecule, cyclic AMP (cAMP), in Escherichia coli.
Collapse
|
19
|
Ceizel Borella G, Lagares A, Valverde C. Expression of the Sinorhizobium meliloti small RNA gene mmgR is controlled by the nitrogen source. FEMS Microbiol Lett 2016; 363:fnw069. [PMID: 27010014 DOI: 10.1093/femsle/fnw069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2016] [Indexed: 01/30/2023] Open
Abstract
Small non-coding regulatory RNAs (sRNAs) are key players in post-transcriptional regulation of gene expression. Hundreds of sRNAs have been identified in Sinorhizobium meliloti, but their biological function remains unknown for most of them. In this study, we characterized the expression pattern of the gene encoding the 77-nt sRNA MmgR in S. meliloti strain 2011. A chromosomal transcriptional reporter fusion (PmmgR-gfp) showed that the mmgR promoter is active along different stages of the interaction with alfalfa roots. In pure cultures, PmmgR-gfp activity paralleled the sRNA abundance indicating that mmgR expression is primarily controlled at the level of transcriptional initiation. PmmgR-gfp activity was higher during growth in rhizobial defined medium (RDM) than in TY medium. Furthermore, PmmgR-gfp was induced at 60 min after shifting growing cells from TY to RDM medium, i.e. shorter than the cell doubling time. In defined RDM medium containing NO3 (-), both PmmgR-gfp and MmgR level were repressed by the addition of tryptone or single amino acids, suggesting that mmgR expression depends on the cellular nitrogen (N) status. In silico analysis failed to detect conserved motifs upstream the promoter RNA polymerase binding site, but revealed a strongly conserved motif centered at -28 that may be linked to the observed regulatory pattern by the N source.
Collapse
Affiliation(s)
- Germán Ceizel Borella
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Antonio Lagares
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Claudio Valverde
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| |
Collapse
|
20
|
Li YZ, Wang D, Feng XY, Jiao J, Chen WX, Tian CF. Genetic Analysis Reveals the Essential Role of Nitrogen Phosphotransferase System Components in Sinorhizobium fredii CCBAU 45436 Symbioses with Soybean and Pigeonpea Plants. Appl Environ Microbiol 2016; 82:1305-15. [PMID: 26682851 PMCID: PMC4751829 DOI: 10.1128/aem.03454-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/10/2015] [Indexed: 11/20/2022] Open
Abstract
The nitrogen phosphotransferase system (PTS(Ntr)) consists of EI(Ntr), NPr, and EIIA(Ntr). The active phosphate moiety derived from phosphoenolpyruvate is transferred through EI(Ntr) and NPr to EIIA(Ntr). Sinorhizobium fredii can establish a nitrogen-fixing symbiosis with the legume crops soybean (as determinate nodules) and pigeonpea (as indeterminate nodules). In this study, S. fredii strains with mutations in ptsP and ptsO (encoding EI(Ntr) and NPr, respectively) formed ineffective nodules on soybeans, while a strain with a ptsN mutation (encoding EIIA(Ntr)) was not defective in symbiosis with soybeans. Notable reductions in the numbers of bacteroids within each symbiosome and of poly-β-hydroxybutyrate granules in bacteroids were observed in nodules infected by the ptsP or ptsO mutant strains but not in those infected with the ptsN mutant strain. However, these defects of the ptsP and ptsO mutant strains were recovered in ptsP ptsN and ptsO ptsN double-mutant strains, implying a negative role of unphosphorylated EIIA(Ntr) in symbiosis. Moreover, the symbiotic defect of the ptsP mutant was also recovered by expressing EI(Ntr) with or without the GAF domain, indicating that the putative glutamine-sensing domain GAF is dispensable in symbiotic interactions. The critical role of PTS(Ntr) in symbiosis was also observed when related PTS(Ntr) mutant strains of S. fredii were inoculated on pigeonpea plants. Furthermore, nodule occupancy and carbon utilization tests suggested that multiple outputs could be derived from components of PTS(Ntr) in addition to the negative role of unphosphorylated EIIA(Ntr).
Collapse
Affiliation(s)
- Yue Zhen Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, and Rhizobium Research Center, China Agricultural University, Beijing, ChinaUniversity of Wisconsin-Madison
| | - Dan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, and Rhizobium Research Center, China Agricultural University, Beijing, ChinaUniversity of Wisconsin-Madison
| | - Xue Ying Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, and Rhizobium Research Center, China Agricultural University, Beijing, ChinaUniversity of Wisconsin-Madison
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, and Rhizobium Research Center, China Agricultural University, Beijing, ChinaUniversity of Wisconsin-Madison
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, and Rhizobium Research Center, China Agricultural University, Beijing, ChinaUniversity of Wisconsin-Madison
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, and Rhizobium Research Center, China Agricultural University, Beijing, ChinaUniversity of Wisconsin-Madison
| |
Collapse
|
21
|
Abstract
UNLABELLED Despite the myriad of different sensory domains encoded in bacterial genomes, only a few are known to control the cell cycle. Here, suppressor genetics was used to unveil the regulatory interplay between the PAS (Per-Arnt-Sim) domain protein MopJ and the uncharacterized GAF (cyclic GMP-phosphodiesterase-adenylyl cyclase-FhlA) domain protein PtsP, which resembles an alternative component of the phosphoenolpyruvate (PEP) transferase system. Both of these systems indirectly target the Caulobacter crescentus cell cycle master regulator CtrA, but in different ways. While MopJ acts on CtrA via the cell cycle kinases DivJ and DivL, which control the removal of CtrA at the G1-S transition, our data show that PtsP signals through the conserved alarmone (p)ppGpp, which prevents CtrA cycling under nutritional stress and in stationary phase. We found that PtsP interacts genetically and physically with the (p)ppGpp synthase/hydrolase SpoT and that it modulates several promoters that are directly activated by the cell cycle transcriptional regulator GcrA. Thus, parallel systems integrate nutritional and systemic signals within the cell cycle transcriptional network, converging on the essential alphaproteobacterial regulator CtrA while also affecting global cell cycle transcription in other ways. IMPORTANCE Many alphaproteobacteria divide asymmetrically, and their cell cycle progression is carefully regulated. How these bacteria control the cell cycle in response to nutrient limitation is not well understood. Here, we identify a multicomponent signaling pathway that acts on the cell cycle when nutrients become scarce in stationary phase. We show that efficient accumulation of the master cell cycle regulator CtrA in stationary-phase Caulobacter crescentus cells requires the previously identified stationary-phase/cell cycle regulator MopJ as well as the phosphoenolpyruvate protein phosphotransferase PtsP, which acts via the conserved (p)ppGpp synthase SpoT. We identify cell cycle-regulated promoters that are affected by this pathway, providing an explanation of how (p)ppGpp-signaling might couple starvation to control cell cycle progression in Caulobacter spp. and likely other Alphaproteobacteria. This pathway has the potential to integrate carbon fluctuation into cell cycle control, since in phosphotransferase systems it is the glycolytic product phosphenolpyruvate (PEP) rather than ATP that is used as the phosphor donor for phosphorylation.
Collapse
|
22
|
Site-Specific Ser/Thr/Tyr Phosphoproteome of Sinorhizobium meliloti at Stationary Phase. PLoS One 2015; 10:e0139143. [PMID: 26401955 PMCID: PMC4581636 DOI: 10.1371/journal.pone.0139143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
Sinorhizobium meliloti, a facultative microsymbiont of alfalfa, should fine-tune its cellular processes to live saprophytically in soils characterized with limited nutrients and diverse stresses. In this study, TiO2 enrichment and LC-MS/MS were used to uncover the site-specific Ser/Thr/Tyr phosphoproteome of S. meliloti in minimum medium at stationary phase. There are a total of 96 unique phosphorylated sites, with a Ser/Thr/Tyr distribution of 63:28:5, in 77 proteins. Phosphoproteins identified in S. meliloti showed a wide distribution pattern regarding to functional categories, such as replication, transcription, translation, posttranslational modification, transport and metabolism of amino acids, carbohydrate, inorganic ion, succinoglycan etc. Ser/Thr/Tyr phosphosites identified within the conserved motif in proteins of key cellular function indicate a crucial role of phosphorylation in modulating cellular physiology. Moreover, phosphorylation in proteins involved in processes related to rhizobial adaptation was also discussed, such as those identified in SMa0114 and PhaP2 (polyhydroxybutyrate synthesis), ActR (pH stress and microaerobic adaption), SupA (potassium stress), chaperonin GroEL2 (viability and potentially symbiosis), and ExoP (succinoglycan synthesis and secretion). These Ser/Thr/Tyr phosphosites identified herein would be helpful for our further investigation and understanding of the role of phosphorylation in rhizobial physiology.
Collapse
|
23
|
Abstract
CcrM is an orphan DNA methyltransferase nearly universally conserved in a vast group of Alphaproteobacteria. In Caulobacter crescentus, it controls the expression of key genes involved in the regulation of the cell cycle and cell division. Here, we demonstrate, using an experimental evolution approach, that C. crescentus can significantly compensate, through easily accessible genetic changes like point mutations, the severe loss in fitness due to the absence of CcrM, quickly improving its growth rate and cell morphology in rich medium. By analyzing the compensatory mutations genome-wide in 12 clones sampled from independent ΔccrM populations evolved for ~300 generations, we demonstrated that each of the twelve clones carried at least one mutation that potentially stimulated ftsZ expression, suggesting that the low intracellular levels of FtsZ are the major burden of ΔccrM mutants. In addition, we demonstrate that the phosphoenolpyruvate-carbohydrate phosphotransfer system (PTS) actually modulates ftsZ and mipZ transcription, uncovering a previously unsuspected link between metabolic regulation and cell division in Alphaproteobacteria. We present evidence that point mutations found in genes encoding proteins of the PTS provide the strongest fitness advantage to ΔccrM cells cultivated in rich medium despite being disadvantageous in minimal medium. This environmental sign epistasis might prevent such mutations from getting fixed under changing natural conditions, adding a plausible explanation for the broad conservation of CcrM. In bacteria, DNA methylation has a variety of functions, including the control of DNA replication and/or gene expression. The cell cycle-regulated DNA methyltransferase CcrM modulates the transcription of many genes and is critical for fitness in Caulobacter crescentus. Here, we used an original experimental evolution approach to determine which of its many targets make CcrM so important physiologically. We show that populations lacking CcrM evolve quickly, accumulating an excess of mutations affecting, directly or indirectly, the expression of the ftsZ cell division gene. This finding suggests that the most critical function of CcrM in C. crescentus is to promote cell division by enhancing FtsZ intracellular levels. During this work, we also discovered an unexpected link between metabolic regulation and cell division that might extend to other Alphaproteobacteria.
Collapse
|
24
|
Lüttmann D, Göpel Y, Görke B. Cross-Talk between the Canonical and the Nitrogen-Related Phosphotransferase Systems Modulates Synthesis of the KdpFABC Potassium Transporter in Escherichia coli. J Mol Microbiol Biotechnol 2015; 25:168-77. [DOI: 10.1159/000375497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many Proteobacteria possess the regulatory nitrogen-related phosphotransferase system (PTS<sup>Ntr</sup>), which operates in parallel to the transport PTS. PTS<sup>Ntr</sup> is composed of the proteins EI<sup>Ntr</sup> and NPr and the final phosphate acceptor EIIA<sup>Ntr</sup>. Both PTSs can exchange phosphoryl groups among each other. Proteins governing K<sup>+</sup> uptake represent a major target of PTS<sup>Ntr</sup> in <i>Escherichia coli</i>. Nonphosphorylated EIIA<sup>Ntr</sup> binds and stimulates the K<sup>+</sup> sensor KdpD, which activates expression of the <i>kdpFABC</i> operon encoding a K<sup>+</sup> transporter. Here we show that this regulation also operates in an <i>ilvG</i><sup><i>+</i></sup> strain ruling out previous concern about interference with a nonfunctional <i>ilvG</i> allele present in many strains. Furthermore, we analyzed phosphorylation of EIIA<sup>Ntr</sup>. In wild-type cells EIIA<sup>Ntr</sup> is predominantly phosphorylated, regardless of the growth stage and the utilized carbon source. However, cross-phosphorylation of EIIA<sup>Ntr</sup> by the transport PTS becomes apparent in the absence of EI<sup>Ntr</sup>: EIIA<sup>Ntr</sup> is predominantly nonphosphorylated when cells grow on a PTS sugar and phosphorylated when a non-PTS carbohydrate is utilized. These differences in phosphorylation are transduced into corresponding <i>kdpFABC</i> transcription levels. Thus, the transport PTS may affect phosphorylation of EIIA<sup>Ntr</sup> and accordingly modulate processes controlled by EIIA<sup>Ntr</sup>. Our data suggest that this cross-talk becomes most relevant under conditions that would inhibit activity of EI<sup>Ntr</sup>.
Collapse
|
25
|
The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 2015; 78:231-56. [PMID: 24847021 DOI: 10.1128/mmbr.00001-14] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components.
Collapse
|
26
|
Lee J, Park YH, Kim YR, Seok YJ, Lee CR. Dephosphorylated NPr is involved in an envelope stress response of Escherichia coli. MICROBIOLOGY-SGM 2015; 161:1113-1123. [PMID: 25701731 PMCID: PMC4635465 DOI: 10.1099/mic.0.000056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/10/2015] [Indexed: 01/20/2023]
Abstract
Besides the canonical phosphoenolpyruvate-dependent phosphotransferase system (PTS) for carbohydrate transport, most Proteobacteria possess the so-called nitrogen PTS (PTSNtr) that transfers a phosphate group from phosphoenolpyruvate (PEP) over enzyme INtr (EINtr) and NPr to enzyme IIANtr (EIIANtr). The PTSNtr lacks membrane-bound components and functions exclusively in a regulatory capacity. While EIIANtr has been implicated in a variety of cellular processes such as potassium homeostasis, phosphate starvation, nitrogen metabolism, carbon metabolism, regulation of ABC transporters and poly-β-hydroxybutyrate accumulation in many Proteobacteria, the only identified role of NPr is the regulation of biosynthesis of the lipopolysaccharide (LPS) layer by direct interaction with LpxD in Escherichia coli. In this study, we provide another phenotype related to NPr. Several lines of evidence demonstrate that E. coli strains with increased levels of dephosphorylated NPr are sensitive to envelope stresses, such as osmotic, ethanol and SDS stresses, and these phenotypes are independent of LpxD. The C-terminal region of NPr plays an important role in sensitivity to envelope stresses. Thus, our data suggest that the dephospho-form of NPr affects adaptation to envelope stresses through a C-terminus-dependent mechanism.
Collapse
Affiliation(s)
- Jaeseop Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Young-Ha Park
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yeon-Ran Kim
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yeong-Jae Seok
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 151-742, Republic of Korea.,Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido 449-728, Republic of Korea
| |
Collapse
|
27
|
Ronneau S, Moussa S, Barbier T, Conde-Álvarez R, Zuniga-Ripa A, Moriyon I, Letesson JJ. Brucella, nitrogen and virulence. Crit Rev Microbiol 2014; 42:507-25. [PMID: 25471320 DOI: 10.3109/1040841x.2014.962480] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use.
Collapse
Affiliation(s)
| | - Simon Moussa
- a UNamur, URBM 61 rue de Bruxelles , Namur , Belgium and
| | | | - Raquel Conde-Álvarez
- b Departamento de Microbiología , Edificio de Investigación, Universidad de Navarra , Pamplona , Spain
| | - Amaia Zuniga-Ripa
- b Departamento de Microbiología , Edificio de Investigación, Universidad de Navarra , Pamplona , Spain
| | - Ignacio Moriyon
- b Departamento de Microbiología , Edificio de Investigación, Universidad de Navarra , Pamplona , Spain
| | | |
Collapse
|
28
|
Geddes BA, Oresnik IJ. Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti. Can J Microbiol 2014; 60:491-507. [PMID: 25093748 DOI: 10.1139/cjm-2014-0306] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large proportion of genes within a genome encode proteins that play a role in metabolism. The Alphaproteobacteria are a ubiquitous group of bacteria that play a major role in a number of environments. For well over 50 years, carbon metabolism in Rhizobium has been studied at biochemical and genetic levels. Here, we review the pre- and post-genomics literature of the metabolism of the alphaproteobacterium Sinorhizobium meliloti. This review provides an overview of carbon metabolism that is useful to readers interested in this organism and to those working on other organisms that do not follow other model system paradigms.
Collapse
Affiliation(s)
- Barney A Geddes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|