1
|
Saha S, Kroos L. Regulation of late-acting operons by three transcription factors and a CRISPR-Cas component during Myxococcus xanthus development. Mol Microbiol 2024; 121:1002-1020. [PMID: 38525557 DOI: 10.1111/mmi.15252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Upon starvation, rod-shaped Myxococcus xanthus bacteria form mounds and then differentiate into round, stress-resistant spores. Little is known about the regulation of late-acting operons important for spore formation. C-signaling has been proposed to activate FruA, which binds DNA cooperatively with MrpC to stimulate transcription of developmental genes. We report that this model can explain regulation of the fadIJ operon involved in spore metabolism, but not that of the spore coat biogenesis operons exoA-I, exoL-P, and nfsA-H. Rather, a mutation in fruA increased the transcript levels from these operons early in development, suggesting negative regulation by FruA, and a mutation in mrpC affected transcript levels from each operon differently. FruA bound to all four promoter regions in vitro, but strikingly each promoter region was unique in terms of whether or not MrpC and/or the DNA-binding domain of Nla6 bound, and in terms of cooperative binding. Furthermore, the DevI component of a CRISPR-Cas system is a negative regulator of all four operons, based on transcript measurements. Our results demonstrate complex regulation of sporulation genes by three transcription factors and a CRISPR-Cas component, which we propose produces spores suited to withstand starvation and environmental insults.
Collapse
Affiliation(s)
- Shreya Saha
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Alternative functions of CRISPR-Cas systems in the evolutionary arms race. Nat Rev Microbiol 2022; 20:351-364. [PMID: 34992260 DOI: 10.1038/s41579-021-00663-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
CRISPR-Cas systems of bacteria and archaea comprise chromosomal loci with typical repetitive clusters and associated genes encoding a range of Cas proteins. Adaptation of CRISPR arrays occurs when virus-derived and plasmid-derived sequences are integrated as new CRISPR spacers. Cas proteins use CRISPR-derived RNA guides to specifically recognize and cleave nucleic acids of invading mobile genetic elements. Apart from this role as an adaptive immune system, some CRISPR-associated nucleases are hijacked by mobile genetic elements: viruses use them to attack their prokaryotic hosts, and transposons have adopted CRISPR systems for guided transposition. In addition, some CRISPR-Cas systems control the expression of genes involved in bacterial physiology and virulence. Moreover, pathogenic bacteria may use their Cas nuclease activity indirectly to evade the human immune system or directly to invade the nucleus and damage the chromosomal DNA of infected human cells. Thus, the evolutionary arms race has led to the expansion of exciting variations in CRISPR mechanisms and functionalities. In this Review, we explore the latest insights into the diverse functions of CRISPR-Cas systems beyond adaptive immunity and discuss the implications for the development of CRISPR-based applications.
Collapse
|
3
|
Cell density, alignment, and orientation correlate with C-signal-dependent gene expression during Myxococcus xanthus development. Proc Natl Acad Sci U S A 2021; 118:2111706118. [PMID: 34732578 DOI: 10.1073/pnas.2111706118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Starving Myxococcus xanthus bacteria use short-range C-signaling to coordinate their movements and construct multicellular mounds, which mature into fruiting bodies as rods differentiate into spherical spores. Differentiation requires efficient C-signaling to drive the expression of developmental genes, but how the arrangement of cells within nascent fruiting bodies (NFBs) affects C-signaling is not fully understood. Here, we used confocal microscopy and cell segmentation to visualize and quantify the arrangement, morphology, and gene expression of cells near the bottom of NFBs at much higher resolution than previously achieved. We discovered that "transitioning cells" (TCs), intermediate in morphology between rods and spores, comprised 10 to 15% of the total population. Spores appeared midway between the center and the edge of NFBs early in their development and near the center as maturation progressed. The developmental pattern, as well as C-signal-dependent gene expression in TCs and spores, were correlated with cell density, the alignment of neighboring rods, and the tangential orientation of rods early in the development of NFBs. These dynamic radial patterns support a model in which the arrangement of cells within the NFBs affects C-signaling efficiency to regulate precisely the expression of developmental genes and cellular differentiation in space and time. Developmental patterns in other bacterial biofilms may likewise rely on short-range signaling to communicate multiple aspects of cellular arrangement, analogous to juxtacrine and paracrine signaling during animal development.
Collapse
|
4
|
Feeley BE, Bhardwaj V, McLaughlin PT, Diggs S, Blaha GM, Higgs PI. An amino-terminal threonine/serine motif is necessary for activity of the Crp/Fnr homolog, MrpC and for Myxococcus xanthus developmental robustness. Mol Microbiol 2019; 112:1531-1551. [PMID: 31449700 DOI: 10.1111/mmi.14378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 11/30/2022]
Abstract
The Crp/Fnr family of transcriptional regulators play central roles in transcriptional control of diverse physiological responses, and are activated by a surprising diversity of mechanisms. MrpC is a Crp/Fnr homolog that controls the Myxococcus xanthus developmental program. A long-standing model proposed that MrpC activity is controlled by the Pkn8/Pkn14 serine/threonine kinase cascade, which phosphorylates MrpC on threonine residue(s) located in its extreme amino-terminus. In this study, we demonstrate that a stretch of consecutive threonine and serine residues, T21 T22 S23 S24, is necessary for MrpC activity by promoting efficient DNA binding. Mass spectrometry analysis indicated the TTSS motif is not directly phosphorylated by Pkn14 in vitro but is necessary for efficient Pkn14-dependent phosphorylation on several residues in the remainder of the protein. In an important correction to a long-standing model, we show Pkn8 and Pkn14 kinase activities do not play obvious roles in controlling MrpC activity in wild-type M. xanthus under laboratory conditions. Instead, we propose Pkn14 modulates MrpC DNA binding in response to unknown environmental conditions. Interestingly, substitutions in the TTSS motif caused developmental defects that varied between biological replicates, revealing that MrpC plays a role in promoting a robust developmental phenotype.
Collapse
Affiliation(s)
- Brooke E Feeley
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Vidhi Bhardwaj
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Hesse, Germany
| | | | - Stephen Diggs
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Gregor M Blaha
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Penelope I Higgs
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
5
|
Saha S, Patra P, Igoshin O, Kroos L. Systematic analysis of the Myxococcus xanthus developmental gene regulatory network supports posttranslational regulation of FruA by C-signaling. Mol Microbiol 2019; 111:1732-1752. [PMID: 30895656 DOI: 10.1111/mmi.14249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2019] [Indexed: 12/11/2022]
Abstract
Upon starvation Myxococcus xanthus undergoes multicellular development. Rod-shaped cells move into mounds in which some cells differentiate into spores. Cells begin committing to sporulation at 24-30 h poststarvation, but the mechanisms governing commitment are unknown. FruA and MrpC are transcription factors that are necessary for commitment. They bind cooperatively to promoter regions and activate developmental gene transcription, including that of the dev operon. Leading up to and during the commitment period, dev mRNA increased in wild type, but not in a mutant defective in C-signaling, a short-range signaling interaction between cells that is also necessary for commitment. The C-signaling mutant exhibited ~20-fold less dev mRNA than wild type at 30 h poststarvation, despite a similar level of MrpC and only 2-fold less FruA. Boosting the FruA level twofold in the C-signaling mutant had little effect on the dev mRNA level, and dev mRNA was not less stable in the C-signaling mutant. Neither did high cooperativity of MrpC and FruA binding upstream of the dev promoter explain the data. Rather, our systematic experimental and computational analyses support a model in which C-signaling activates FruA at least ninefold posttranslationally in order to commit a cell to spore formation.
Collapse
Affiliation(s)
- Shreya Saha
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Pintu Patra
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Oleg Igoshin
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
6
|
Hoang Y, Kroos L. Ultrasensitive Response of Developing Myxococcus xanthus to the Addition of Nutrient Medium Correlates with the Level of MrpC. J Bacteriol 2018; 200:e00456-18. [PMID: 30181127 PMCID: PMC6199472 DOI: 10.1128/jb.00456-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/29/2018] [Indexed: 11/20/2022] Open
Abstract
Upon depletion of nutrients, Myxococcus xanthus forms mounds on a solid surface. The differentiation of rod-shaped cells into stress-resistant spores within mounds creates mature fruiting bodies. The developmental process can be perturbed by the addition of nutrient medium before the critical period of commitment to spore formation. The response was investigated by adding a 2-fold dilution series of nutrient medium to starving cells. An ultrasensitive response was observed, as indicated by a steep increase in the spore number after the addition of 12.5% versus 25% nutrient medium. The level of MrpC, which is a key transcription factor in the gene regulatory network, correlated with the spore number after nutrient medium addition. The MrpC level decreased markedly by 3 h after adding nutrient medium but recovered more after the addition of 12.5% than after 25% nutrient medium addition. The difference in MrpC levels was greatest midway during the period of commitment to sporulation, and mound formation was restored after 12.5% nutrient medium addition but not after adding 25% nutrient medium. Although the number of spores formed after 12.5% nutrient medium addition was almost normal, the transcript levels of "late" genes in the regulatory network failed to rise normally during the commitment period. However, at later times, expression from a reporter gene fused to a late promoter was higher after adding 12.5% than after adding 25% nutrient medium, consistent with the spore numbers. The results suggest that a threshold level of MrpC must be achieved in order for mounds to persist and for cells within to differentiate into spores.IMPORTANCE Many signaling and gene regulatory networks convert graded stimuli into all-or-none switch-like responses. Such ultrasensitivity can produce bistability in cell populations, leading to different cell fates and enhancing survival. We discovered an ultrasensitive response of M. xanthus to nutrient medium addition during development. A small change in nutrient medium concentration caused a profound change in the developmental process. The level of the transcription factor MrpC correlated with multicellular mound formation and differentiation into spores. A threshold level of MrpC is proposed to be necessary to initiate mound formation and create a positive feedback loop that may explain the ultrasensitive response. Understanding how this biological switch operates will provide a paradigm for the broadly important topic of cellular behavior in microbial communities.
Collapse
Affiliation(s)
- Y Hoang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Faure G, Makarova KS, Koonin EV. CRISPR-Cas: Complex Functional Networks and Multiple Roles beyond Adaptive Immunity. J Mol Biol 2018; 431:3-20. [PMID: 30193985 DOI: 10.1016/j.jmb.2018.08.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/26/2023]
Abstract
CRISPR-Cas is a prokaryotic adaptive immune system that functions by incorporating fragments of foreign DNA into CRISPR arrays. The arrays containing spacers derived from foreign DNA are transcribed, and the transcripts are processed to generate spacer-containing mature CRISPR-RNAs that are employed as guides to specifically recognize and cleave the DNA or RNA of the cognate parasitic genetic elements. The CRISPR-Cas systems show remarkable complexity and diversity of molecular organization and appear to be involved in various cellular functions that are distinct from, even if connected to, adaptive immunity. In this review, we discuss some of such functional links of CRISPR-Cas systems including their effect on horizontal gene transfer that can be either inhibitory or stimulatory, connections between CRISPR-Cas and DNA repair systems as well as programmed cell death and signal transduction mechanisms, and potential role of CRISPR-Cas in transposon integration and plasmid maintenance. The interplay between the primary function of CRISPR-Cas as an adaptive immunity mechanism and these other roles defines the richness of the biological effects of these systems and affects their spread among bacteria and archaea.
Collapse
Affiliation(s)
- Guilhem Faure
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
8
|
McLaughlin PT, Bhardwaj V, Feeley BE, Higgs PI. MrpC, a CRP/Fnr homolog, functions as a negative autoregulator during the
Myxococcus xanthus
multicellular developmental program. Mol Microbiol 2018; 109:245-261. [DOI: 10.1111/mmi.13982] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/05/2018] [Accepted: 05/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
| | - Vidhi Bhardwaj
- Department of EcophysiologyMax Planck Institute for Terrestrial MicrobiologyMarburg Hesse Germany
| | - Brooke E. Feeley
- Department of Biological SciencesWayne State UniversityDetroit MI USA
| | - Penelope I. Higgs
- Department of Biological SciencesWayne State UniversityDetroit MI USA
| |
Collapse
|
9
|
The dev Operon Regulates the Timing of Sporulation during Myxococcus xanthus Development. J Bacteriol 2017; 199:JB.00788-16. [PMID: 28264995 DOI: 10.1128/jb.00788-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/28/2017] [Indexed: 02/06/2023] Open
Abstract
Myxococcus xanthus undergoes multicellular development when starved. Thousands of rod-shaped cells coordinate their movements and aggregate into mounds in which cells differentiate into spores. Mutations in the dev operon impair development. The dev operon encompasses a clustered regularly interspaced short palindromic repeat-associated (CRISPR-Cas) system. Null mutations in devI, a small gene at the beginning of the dev operon, suppress the developmental defects caused by null mutations in the downstream devR and devS genes but failed to suppress defects caused by a small in-frame deletion in devT We provide evidence that the original mutant has a second-site mutation. We show that devT null mutants exhibit developmental defects indistinguishable from devR and devS null mutants, and a null mutation in devI suppresses the defects of a devT null mutation. The similarity of DevTRS proteins to components of the CRISPR-associated complex for antiviral defense (Cascade), together with our molecular characterization of dev mutants, support a model in which DevTRS form a Cascade-like subcomplex that negatively autoregulates dev transcript accumulation and prevents DevI overproduction that would strongly inhibit sporulation. Our results also suggest that DevI transiently inhibits sporulation when regulated normally. The mechanism of transient inhibition may involve MrpC, a key transcription factor, whose translation appears to be weakly inhibited by DevI. Finally, our characterization of a devI devS mutant indicates that very little exo transcript is required for sporulation, which is surprising since Exo proteins help form the polysaccharide spore coat.IMPORTANCE CRISPR-Cas systems typically function as adaptive immune systems in bacteria. The dev CRISPR-Cas system of M. xanthus has been proposed to prevent bacteriophage infection during development, but how dev controls sporulation has been elusive. Recent evidence supported a model in which DevR and DevS prevent overproduction of DevI, a predicted 40-residue inhibitor of sporulation. We provide genetic evidence that DevT functions together with DevR and DevS to prevent DevI overproduction. We also show that spores form about 6 h earlier in mutants lacking devI than in the wild type. Only a minority of natural isolates appear to have a functional dev promoter and devI, suggesting that a functional dev CRISPR-Cas system evolved recently in niches where delayed sporulation and/or protection from bacteriophage infection proved advantageous.
Collapse
|
10
|
Highly Signal-Responsive Gene Regulatory Network Governing Myxococcus Development. Trends Genet 2016; 33:3-15. [PMID: 27916428 DOI: 10.1016/j.tig.2016.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 10/14/2016] [Accepted: 10/24/2016] [Indexed: 11/20/2022]
Abstract
The bacterium Myxococcus xanthus undergoes multicellular development when starved. Thousands of cells build mounds in which some differentiate into spores. This remarkable feat and the genetic tractability of Myxococcus provide a unique opportunity to understand the evolution of gene regulatory networks (GRNs). Recent work has revealed a GRN involving interconnected cascades of signal-responsive transcriptional activators. Initially, starvation-induced intracellular signals direct changes in gene expression. Subsequently, self-generated extracellular signals provide morphological cues that regulate certain transcriptional activators. However, signals for many of the activators remain to be discovered. A key insight is that activators often work combinatorially, allowing signal integration. The Myxococcus GRN differs strikingly from those governing sporulation of Bacillus and Streptomyces, suggesting that Myxococcus evolved a highly signal-responsive GRN to enable complex multicellular development.
Collapse
|
11
|
Molecular Mechanisms of Signaling in Myxococcus xanthus Development. J Mol Biol 2016; 428:3805-30. [DOI: 10.1016/j.jmb.2016.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
|
12
|
Abstract
The study of natural products is entering a renaissance, driven by the discovery that the majority of bacterial secondary metabolites are not produced under standard laboratory conditions. Understanding the ecological role of natural products is key to efficiently directing our screening efforts, and to ensuring that each screen efficiently captures the full biosynthetic repertoire of the producing organisms. Myxobacteria represent one of the most common and diverse groups of bacteria, with roughly 2500 strains publically available. Fed largely through predation, the myxobacteria have developed a large repertoire of natural products that target other microorganisms, including bacteria and fungi. Many of these interactions can be observed in predation assays, providing direct evidence for environmental interactions. With a focus on Myxococcus xanthus, this review will highlight how recent advances in myxobacteria are revealing the chemical ecology of bacterial natural products.
Collapse
Affiliation(s)
- Brandon L. Findlay
- Department of Chemistry and
Biochemistry, Faculty of Arts and Science, Concordia University, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
13
|
devI is an evolutionarily young negative regulator of Myxococcus xanthus development. J Bacteriol 2015; 197:1249-62. [PMID: 25645563 DOI: 10.1128/jb.02542-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED During starvation-induced development of Myxococcus xanthus, thousands of rod-shaped cells form mounds in which they differentiate into spores. The dev locus includes eight genes followed by clustered regularly interspaced short palindromic repeats (CRISPRs), comprising a CRISPR-Cas system (Cas stands for CRISPR associated) typically involved in RNA interference. Mutations in devS or devR of a lab reference strain permit mound formation but impair sporulation. We report that natural isolates of M. xanthus capable of normal development are highly polymorphic in the promoter region of the dev operon. We show that the dev promoter is predicted to be nonfunctional in most natural isolates and is dispensable for development of a laboratory reference strain. Moreover, deletion of the dev promoter or the small gene immediately downstream of it, here designated devI (development inhibitor), suppressed the sporulation defect of devS or devR mutants in the lab strain. Complementation experiments and the result of introducing a premature stop codon in devI support a model in which DevRS proteins negatively autoregulate expression of devI, whose 40-residue protein product DevI inhibits sporulation if overexpressed. DevI appears to act in a cell-autonomous manner since experiments with conditioned medium and with cell mixtures gave no indication of extracellular effects. Strikingly, we report that devI is entirely absent from most M. xanthus natural isolates and was only recently integrated into the developmental programs of some lineages. These results provide important new insights into both the evolutionary history of the dev operon and its mechanistic role in M. xanthus sporulation. IMPORTANCE Certain mutations in the dev CRISPR-Cas (clustered regularly interspaced short palindromic repeat-associated) system of Myxococcus xanthus impair sporulation. The link between development and a CRISPR-Cas system has been a mystery. Surprisingly, DNA sequencing of natural isolates revealed that many appear to lack a functional dev promoter, yet these strains sporulate normally. Deletion of the dev promoter or the small gene downstream of it suppressed the sporulation defect of a lab strain with mutations in dev genes encoding Cas proteins. The results support a model in which the Cas proteins DevRS prevent overexpression of the small gene devI, which codes for an inhibitor of sporulation. Phylogenetic analysis of natural isolates suggests that devI and the dev promoter were only recently acquired in some lineages.
Collapse
|
14
|
Transcription factor MrpC binds to promoter regions of hundreds of developmentally-regulated genes in Myxococcus xanthus. BMC Genomics 2014; 15:1123. [PMID: 25515642 PMCID: PMC4320627 DOI: 10.1186/1471-2164-15-1123] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/08/2014] [Indexed: 11/30/2022] Open
Abstract
Background Myxococcus xanthus is a bacterium that undergoes multicellular development when starved. Cells move to aggregation centers and form fruiting bodies in which cells differentiate into dormant spores. MrpC appears to directly activate transcription of fruA, which also codes for a transcription factor. Both MrpC and FruA are crucial for aggregation and sporulation. The two proteins bind cooperatively in promoter regions of some developmental genes. Results Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) and bioinformatic analysis of cells that had formed nascent fruiting bodies revealed 1608 putative MrpC binding sites. These sites included several known to bind MrpC and they were preferentially distributed in likely promoter regions, especially those of genes up-regulated during development. The up-regulated genes include 22 coding for protein kinases. Some of these are known to be directly involved in fruiting body formation and several negatively regulate MrpC accumulation. Our results also implicate MrpC as a direct activator or repressor of genes coding for several transcription factors known to be important for development, for a major spore protein and several proteins important for spore formation, for proteins involved in extracellular A- and C-signaling, and intracellular ppGpp-signaling during development, and for proteins that control the fate of other proteins or play a role in motility. We found that the putative MrpC binding sites revealed by ChIP-seq are enriched for DNA sequences that strongly resemble a consensus sequence for MrpC binding proposed previously. MrpC2, an N-terminally truncated form of MrpC, bound to DNA sequences matching the consensus in all 11 cases tested. Using longer DNA segments containing 15 of the putative MrpC binding sites from our ChIP-seq analysis as probes in electrophoretic mobility shift assays, evidence for one or more MrpC2 binding site was observed in all cases and evidence for cooperative binding of MrpC2 and FruA was seen in 13 cases. Conclusions We conclude that MrpC and MrpC2 bind to promoter regions of hundreds of developmentally-regulated genes in M. xanthus, in many cases cooperatively with FruA. This binding very likely up-regulates protein kinases, and up- or down-regulates other proteins that profoundly influence the developmental process. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1123) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Combinatorial regulation of the dev operon by MrpC2 and FruA during Myxococcus xanthus development. J Bacteriol 2014; 197:240-51. [PMID: 25349159 DOI: 10.1128/jb.02310-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proper expression of the dev operon is important for normal development of Myxococcus xanthus. When starved, these bacteria coordinate their gliding movements to build mounds that become fruiting bodies as some cells differentiate into spores. Mutations in the devTRS genes impair sporulation. Expression of the operon occurs within nascent fruiting bodies and depends in part on C signaling. Here, we report that expression of the dev operon, like that of several other C-signal-dependent genes, is subject to combinatorial control by the transcription factors MrpC2 and FruA. A DNA fragment upstream of the dev promoter was bound by a protein in an extract containing MrpC2, protecting the region spanning positions -77 to -54. Mutations in this region impaired binding of purified MrpC2 and abolished developmental expression of reporter fusions. The association of MrpC2 and/or its longer form, MrpC, with the dev promoter region depended on FruA in vivo, based on chromatin immunoprecipitation analysis, and purified FruA appeared to bind cooperatively with MrpC2 to DNA just upstream of the dev promoter in vitro. We conclude that cooperative binding of the two proteins to this promoter-proximal site is crucial for dev expression. 5' deletion analysis implied a second upstream positive regulatory site, which corresponded to a site of weak cooperative binding of MrpC2 and FruA and boosted dev expression 24 h into development. This site is unique among the C-signal-dependent genes studied so far. Deletion of this site in the M. xanthus chromosome did not impair sporulation under laboratory conditions.
Collapse
|