1
|
Talà A, Calcagnile M, Resta SC, Pennetta A, De Benedetto GE, Alifano P. Thiostrepton, a resurging drug inhibiting the stringent response to counteract antibiotic-resistance and expression of virulence determinants in Neisseria gonorrhoeae. Front Microbiol 2023; 14:1104454. [PMID: 36910221 PMCID: PMC9998046 DOI: 10.3389/fmicb.2023.1104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Due to the increased resistance to all available antibiotics and the lack of vaccines, Neisseria gonorrhoeae (the gonococcus) poses an urgent threat. Although the mechanisms of virulence and antibiotic resistance have been largely investigated in this bacterium, very few studies have addressed the stringent response (SR) that in pathogenic bacteria controls the expression of genes involved in host-pathogen interaction and tolerance and persistence toward antibiotics. In this study, the results of the transcriptome analysis of a clinical isolate of N. gonorrhoeae, after induction of the SR by serine hydroxamate, provided us with an accurate list of genes that are transcriptionally modulated during the SR. The list includes genes associated with metabolism, cellular machine functions, host-pathogen interaction, genome plasticity, and antibiotic tolerance and persistence. Moreover, we found that the artificial induction of the SR in N. gonorrhoeae by serine hydroxamate is prevented by thiostrepton, a thiopeptide antibiotic that is known to interact with ribosomal protein L11, thereby inhibiting functions of EF-Tu and EF-G, and binding of pppGpp synthase I (RelA) to ribosome upon entry of uncharged tRNA. We found that N. gonorrhoeae is highly sensitive to thiostrepton under in vitro conditions, and that thiostrepton, in contrast to other antibiotics, does not induce tolerance or persistence. Finally, we observed that thiostrepton attenuated the expression of key genes involved in the host-pathogen interaction. These properties make thiostrepton a good drug candidate for dampening bacterial virulence and preventing antibiotic tolerance and persistence. The ongoing challenge is to increase the bioavailability of thiostrepton through the use of chemistry and nanotechnology.
Collapse
Affiliation(s)
- Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Antonio Pennetta
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, Lecce, Italy
| | - Giuseppe Egidio De Benedetto
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
2
|
Transcriptional and Translational Responsiveness of the Neisseria gonorrhoeae Type IV Secretion System to Conditions of Host Infections. Infect Immun 2021; 89:e0051921. [PMID: 34581604 DOI: 10.1128/iai.00519-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The type IV secretion system of Neisseria gonorrhoeae translocates single-stranded DNA into the extracellular space, facilitating horizontal gene transfer and initiating biofilm formation. Expression of this system has been observed to be low under laboratory conditions, and multiple levels of regulation have been identified. We used a translational fusion of lacZ to traD, the gene for the type IV secretion system coupling protein, to screen for increased type IV secretion system expression. We identified several physiologically relevant conditions, including surface adherence, decreased manganese or iron, and increased zinc or copper, which increase gonococcal type IV secretion system protein levels through transcriptional and/or translational mechanisms. These metal treatments are reminiscent of the conditions in the macrophage phagosome. The ferric uptake regulator, Fur, was found to repress traD transcript levels but to also have a second role, acting to allow TraD protein levels to increase only in the absence of iron. To better understand type IV secretion system regulation during infection, we examined transcriptomic data from active urethral infection samples from five men. The data demonstrated differential expression of 20 of 21 type IV secretion system genes during infection, indicating upregulation of genes necessary for DNA secretion during host infection.
Collapse
|
3
|
Quillin SJ, Hockenberry AJ, Jewett MC, Seifert HS. Neisseria gonorrhoeae Exposed to Sublethal Levels of Hydrogen Peroxide Mounts a Complex Transcriptional Response. mSystems 2018; 3:e00156-18. [PMID: 30320218 PMCID: PMC6172773 DOI: 10.1128/msystems.00156-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/17/2018] [Indexed: 01/13/2023] Open
Abstract
Neisseria gonorrhoeae mounts a substantial transcriptional program in response to hydrogen peroxide (HP), a prominent reactive oxygen species (ROS) encountered during infection. We tested which strain FA1090 genes show differential transcript abundance in response to sublethal amounts of HP to differentiate HP-responsive signaling from widespread cellular death and dysregulation. RNA sequencing (RNA-Seq) revealed that 150 genes were significantly upregulated and 143 genes downregulated following HP exposure. We annotated HP-responsive operons and all transcriptional start sites (TSSs) and identified which TSSs responded to HP treatment. We compared the HP responses and other previously reported genes and found only partial overlapping of other regulatory networks, indicating that the response to HP involves multiple biological functions. Using a representative subset of responsive genes, we validated the RNA-Seq results and found that the HP transcriptome was similar to that of sublethal organic peroxide. None of the genes in the representative subset, however, responded to sublethal levels of HOCl or O2 -. These results support the idea that N. gonorrhoeae may use variations in HP levels as a signal for different stages of infection. IMPORTANCE The strict human pathogen Neisseria gonorrhoeae is the only causative agent of the sexually transmitted disease gonorrhea. This bacterium encounters hydrogen peroxide produced from host cells during infection, but the organism survives in the presence of this antimicrobial agent. This work shows that the bacterium responds to hydrogen peroxide by regulating the expression of many genes involved in multiple processes.
Collapse
Affiliation(s)
- Sarah J. Quillin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam J. Hockenberry
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Program in Biological Sciences, Northwestern University, Evanston, Illinois, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Program in Biological Sciences, Northwestern University, Evanston, Illinois, USA
| | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Transcriptome Analysis of Neisseria gonorrhoeae during Natural Infection Reveals Differential Expression of Antibiotic Resistance Determinants between Men and Women. mSphere 2018; 3:3/3/e00312-18. [PMID: 29950382 PMCID: PMC6021601 DOI: 10.1128/mspheredirect.00312-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 11/20/2022] Open
Abstract
Recent emergence of antimicrobial resistance of Neisseria gonorrhoeae worldwide has resulted in limited therapeutic choices for treatment of infections caused by this organism. We performed global transcriptomic analysis of N. gonorrhoeae in subjects with gonorrhea who attended a Nanjing, China, sexually transmitted infection (STI) clinic, where antimicrobial resistance of N. gonorrhoeae is high and increasing. We found that N. gonorrhoeae transcriptional responses to infection differed in genital specimens taken from men and women, particularly antibiotic resistance gene expression, which was increased in men. These sex-specific findings may provide a new approach to guide therapeutic interventions and preventive measures that are also sex specific while providing additional insight to address antimicrobial resistance of N. gonorrhoeae. Neisseria gonorrhoeae is a bacterial pathogen responsible for the sexually transmitted infection gonorrhea. Emergence of antimicrobial resistance (AMR) of N. gonorrhoeae worldwide has resulted in limited therapeutic choices for this infection. Men who seek treatment often have symptomatic urethritis; in contrast, gonococcal cervicitis in women is usually minimally symptomatic, but may progress to pelvic inflammatory disease. Previously, we reported the first analysis of gonococcal transcriptome expression determined in secretions from women with cervical infection. Here, we defined gonococcal global transcriptional responses in urethral specimens from men with symptomatic urethritis and compared these with transcriptional responses in specimens obtained from women with cervical infections and in vitro-grown N. gonorrhoeae isolates. This is the first comprehensive comparison of gonococcal gene expression in infected men and women. RNA sequencing analysis revealed that 9.4% of gonococcal genes showed increased expression exclusively in men and included genes involved in host immune cell interactions, while 4.3% showed increased expression exclusively in women and included phage-associated genes. Infected men and women displayed comparable antibiotic-resistant genotypes and in vitro phenotypes, but a 4-fold higher expression of the Mtr efflux pump-related genes was observed in men. These results suggest that expression of AMR genes is programed genotypically and also driven by sex-specific environments. Collectively, our results indicate that distinct N. gonorrhoeae gene expression signatures are detected during genital infection in men and women. We propose that therapeutic strategies could target sex-specific differences in expression of antibiotic resistance genes. IMPORTANCE Recent emergence of antimicrobial resistance of Neisseria gonorrhoeae worldwide has resulted in limited therapeutic choices for treatment of infections caused by this organism. We performed global transcriptomic analysis of N. gonorrhoeae in subjects with gonorrhea who attended a Nanjing, China, sexually transmitted infection (STI) clinic, where antimicrobial resistance of N. gonorrhoeae is high and increasing. We found that N. gonorrhoeae transcriptional responses to infection differed in genital specimens taken from men and women, particularly antibiotic resistance gene expression, which was increased in men. These sex-specific findings may provide a new approach to guide therapeutic interventions and preventive measures that are also sex specific while providing additional insight to address antimicrobial resistance of N. gonorrhoeae.
Collapse
|
5
|
Moreau MR, Massari P, Genco CA. The ironclad truth: how in vivo transcriptomics and in vitro mechanistic studies shape our understanding of Neisseria gonorrhoeae gene regulation during mucosal infection. Pathog Dis 2017; 75:3829888. [PMID: 28520925 PMCID: PMC5808646 DOI: 10.1093/femspd/ftx057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/16/2017] [Indexed: 11/12/2022] Open
Abstract
Neisseria gonorrhoeae is one of the most prevalent sexually transmitted infections worldwide. This obligate human pathogen has been extensively studied in vitro, where bacterial factors that are known to contribute to gonococcal disease and their regulation are relatively well defined. However, these in vitro experimental conditions only loosely replicate the host specific environment encountered by the bacteria in vivo. We recently reported on the complete gonococcal transcriptome expressed during natural human mucosal infection using RNA-seq analysis. Gene transcripts expressed in vivo (in vivo expressed factors) included genes encoding antibiotic resistance determinants, and a large number of hypothetical genes. A comparison of the gonococcal transcriptome expressed in vivo with the corresponding strain grown in vitro identified sets of genes regulated by infection, including those regulated by iron and the transcriptional regulatory protein Fur. We highlight here the role of Fur and gonococcal-specific regulatory processes important for infection and pathogenicity. We have determined that the genes controlled by Fur follow the same expression pattern in vivo as described previously in vitro, confirming Fur's regulatory role during infection. Collectively, these studies provide new insights into how bacterial fitness and pathogenicity are modulated during human mucosal infection.
Collapse
Affiliation(s)
- Matthew R. Moreau
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Paola Massari
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Caroline A. Genco
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
6
|
Jackson LA, Day M, Allen J, Scott E, Dyer DW. Iron-regulated small RNA expression as Neisseria gonorrhoeae FA 1090 transitions into stationary phase growth. BMC Genomics 2017; 18:317. [PMID: 28431495 PMCID: PMC5399841 DOI: 10.1186/s12864-017-3684-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/06/2017] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND For most pathogens, iron (Fe) homeostasis is crucial for maintenance within the host and the ability to cause disease. The primary transcriptional regulator that controls intracellular Fe levels is the Fur (ferric uptake regulator) protein, which exerts its action on transcription by binding to a promoter-proximal sequence termed the Fur box. Fur-regulated transcriptional responses are often fine-tuned at the post-transcriptional level through the action of small regulatory RNAs (sRNAs). Consequently, identifying sRNAs contributing to the control of Fe homeostasis is important for understanding the Fur-controlled bacterial Fe-response network. RESULTS In this study, we sequenced size-selected directional libraries representing sRNA samples from Neisseria gonorrhoeae strain FA 1090, and examined the Fe- and temporal regulation of these sRNAs. RNA-seq data for all time points identified a pool of at least 340 potential sRNAs. Differential analysis demonstrated that expression appeared to be regulated by Fe availability for at least fifteen of these sRNAs. Fourteen sRNAs were induced in high Fe conditions, consisting of both cis and trans sRNAs, some of which are predicted to control expression of a known virulence factor, and one SAM riboswitch. An additional putative cis-acting sRNA was repressed by Fe availability. In the pathogenic Neisseria species, one sRNA that contributes to Fe-regulated post-transcriptional control is the Fur-repressible sRNA NrrF. The expression of five Fe-induced sRNAs appeared to be at least partially controlled by NrrF, while the remainder was expressed independently of NrrF. The expression of the 14 Fe-induced sRNAs also exhibited temporal control, as their expression levels increased dramatically as the bacteria entered stationary phase. CONCLUSIONS Here we report the temporal expression of Fe-regulated sRNAs in N. gonorrhoeae FA 1090 with several appearing to be controlled by the Fe-repressible sRNA NrrF. Temporal regulation of these sRNAs suggests a regulatory role in controlling functions necessary for survival, and may be important for phenotypes often associated with altered growth rates, such as biofilm formation or intracellular survival. Future functional studies will be needed to understand how these regulatory sRNAs contribute to gonococcal biology and pathogenesis.
Collapse
Affiliation(s)
- Lydgia A. Jackson
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, 975 NE 10th Street, Oklahoma City, OK 73104 USA
| | - Michael Day
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, 975 NE 10th Street, Oklahoma City, OK 73104 USA
| | - Jennie Allen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, 975 NE 10th Street, Oklahoma City, OK 73104 USA
| | - Edgar Scott
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, 975 NE 10th Street, Oklahoma City, OK 73104 USA
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, 975 NE 10th Street, Oklahoma City, OK 73104 USA
| |
Collapse
|
7
|
Bagchi A. Difference in DNA-binding abilities of Fur-homolog DNA binding protein from Neisseria gonorrhoeae. Microb Pathog 2016; 99:62-67. [PMID: 27506628 DOI: 10.1016/j.micpath.2016.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/13/2016] [Accepted: 08/04/2016] [Indexed: 11/16/2022]
Abstract
Gonorrhea is a severe disease infecting both men and women worldwide. The causative agent of the disease is Neisseria gonorrhoeae. The organism mostly affects human beings in iron restricted environments. In such an environment the organism produces a set of proteins which are mostly absent in iron rich environments. The expressions of the genes for the proteins are regulated by the transcription factor (TF) belonging to the Fur family. Interestingly, the same TF acts as the activator and repressor of genes. In this present work, an attempt has been made to analyze the molecular details of the differential DNA-binding activities of the TF from Neisseria gonorrhoeae to come up with a plausible molecular reason behind the difference DNA binding activities of the same TF. Computational modelling technique was used to build the three dimensional structure of the TF. Molecular docking and molecular dynamics simulations were employed to determine the binding interactions between the TF and the promoter DNA. With the help of the computational techniques, the biochemical reason behind the different modes of DNA binding by the TF was analyzed. Results from this analysis may be useful to future drug development endeavours to curtail the spread of Gonorrhea.
Collapse
Affiliation(s)
- Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, India.
| |
Collapse
|
8
|
Characterization of the Neisseria gonorrhoeae Iron and Fur Regulatory Network. J Bacteriol 2016; 198:2180-91. [PMID: 27246574 DOI: 10.1128/jb.00166-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED The Neisseria gonorrhoeae ferric uptake regulator (Fur) protein controls expression of iron homeostasis genes in response to intracellular iron levels. In this study, using transcriptome sequencing (RNA-seq) analysis of an N. gonorrhoeae fur strain, we defined the gonococcal Fur and iron regulons and characterized Fur-controlled expression of an ArsR-like DNA binding protein. We observed that 158 genes (8% of the genome) showed differential expression in response to iron in an N. gonorrhoeae wild-type or fur strain, while 54 genes exhibited differential expression in response to Fur. The Fur regulon was extended to additional regulators, including NrrF and 13 other small RNAs (sRNAs), and two transcriptional factors. One transcriptional factor, coding for an ArsR-like regulator (ArsR), exhibited increased expression under iron-replete conditions in the wild-type strain but showed decreased expression across iron conditions in the fur strain, an effect that was reversed in a fur-complemented strain. Fur was shown to bind to the promoter region of the arsR gene downstream of a predicted σ(70) promoter region. Electrophoretic mobility shift assay (EMSA) analysis confirmed binding of the ArsR protein to the norB promoter region, and sequence analysis identified two additional putative targets, NGO1411 and NGO1646. A gonococcal arsR strain demonstrated decreased survival in human endocervical epithelial cells compared to that of the wild-type and arsR-complemented strains, suggesting that the ArsR regulon includes genes required for survival in host cells. Collectively, these results demonstrate that the N. gonorrhoeae Fur functions as a global regulatory protein to repress or activate expression of a large repertoire of genes, including additional transcriptional regulatory proteins. IMPORTANCE Gene regulation in bacteria in response to environmental stimuli, including iron, is of paramount importance to both bacterial replication and, in the case of pathogenic bacteria, successful infection. Bacterial DNA binding proteins are a common mechanism utilized by pathogens to control gene expression under various environmental conditions. Here, we show that the DNA binding protein Fur, expressed by the human pathogen Neisseria gonorrhoeae, controls the expression of a large repertoire of genes and extends this regulon by controlling expression of additional DNA binding proteins. One of these proteins, an ArsR-like regulator, was required for N. gonorrhoeae survival within host cells. These results show that the Fur regulon extends to additional regulatory proteins, which together contribute to gonococcal mechanisms of pathogenesis.
Collapse
|
9
|
Andrade WA, Agarwal S, Mo S, Shaffer SA, Dillard JP, Schmidt T, Hornung V, Fitzgerald KA, Kurt-Jones EA, Golenbock DT. Type I Interferon Induction by Neisseria gonorrhoeae: Dual Requirement of Cyclic GMP-AMP Synthase and Toll-like Receptor 4. Cell Rep 2016; 15:2438-48. [PMID: 27264171 PMCID: PMC5401638 DOI: 10.1016/j.celrep.2016.05.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/28/2016] [Accepted: 05/05/2016] [Indexed: 12/29/2022] Open
Abstract
The innate immune system is the first line of defense against Neisseria gonorrhoeae (GC). Exposure of cells to GC lipooligosaccharides induces a strong immune response, leading to type I interferon (IFN) production via TLR4/MD-2. In addition to living freely in the extracellular space, GC can invade the cytoplasm to evade detection and elimination. Double-stranded DNA introduced into the cytosol binds and activates the enzyme cyclic-GMP-AMP synthase (cGAS), which produces 2'3'-cGAMP and triggers STING/TBK-1/IRF3 activation, resulting in type I IFN expression. Here, we reveal a cytosolic response to GC DNA that also contributes to type I IFN induction. We demonstrate that complete IFN-β induction by live GC depends on both cGAS and TLR4. Type I IFN is detrimental to the host, and dysregulation of iron homeostasis genes may explain lower bacteria survival in cGAS(-/-) and TLR4(-/-) cells. Collectively, these observations reveal cooperation between TLRs and cGAS in immunity to GC infection.
Collapse
Affiliation(s)
- Warrison A Andrade
- Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sarika Agarwal
- Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shunyan Mo
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Scott A Shaffer
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tobias Schmidt
- Institute of Molecular Medicine, Universitätsklinikum Bonn, Bonn 53127, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, Universitätsklinikum Bonn, Bonn 53127, Germany
| | - Katherine A Fitzgerald
- Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Evelyn A Kurt-Jones
- Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Douglas T Golenbock
- Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG 30190-002, Brazil.
| |
Collapse
|
10
|
The Gonococcal Transcriptome during Infection of the Lower Genital Tract in Women. PLoS One 2015; 10:e0133982. [PMID: 26244506 PMCID: PMC4526530 DOI: 10.1371/journal.pone.0133982] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/04/2015] [Indexed: 11/24/2022] Open
Abstract
Gonorrhea is a highly prevalent disease resulting in significant morbidity worldwide, with an estimated 106 cases reported annually. Neisseria gonorrhoeae, the causative agent of gonorrhea, colonizes and infects the human genital tract and often evades host immune mechanisms until successful antibiotic treatment is used. The alarming increase in antibiotic-resistant strains of N. gonorrhoeae, the often asymptomatic nature of this disease in women and the lack of a vaccine directed at crucial virulence determinants have prompted us to perform transcriptome analysis to understand gonococcal gene expression patterns during natural infection. We sequenced RNA extracted from cervico-vaginal lavage samples collected from women recently exposed to infected male partners and determined the complete N. gonorrhoeae transcriptome during infection of the lower genital tract in women. On average, 3.19% of total RNA isolated from female samples aligned to the N. gonorrhoeae NCCP11945 genome and 1750 gonococcal ORFs (65% of all protein-coding genes) were transcribed. High expression in vivo was observed in genes encoding antimicrobial efflux pumps, iron response, phage production, pilin structure, outer membrane structures and hypothetical proteins. A parallel analysis was performed using the same strains grown in vitro in a chemically defined media (CDM). A total of 140 genes were increased in expression during natural infection compared to growth in CDM, and 165 genes were decreased in expression. Large differences were found in gene expression profiles under each condition, particularly with genes involved in DNA and RNA processing, iron, transposase, pilin and lipoproteins. We specifically interrogated genes encoding DNA binding regulators and iron-scavenging proteins, and identified increased expression of several iron-regulated genes, including tbpAB and fbpAB, during infection in women as compared to growth in vitro, suggesting that during infection of the genital tract in women, the gonococcus is exposed to an iron deplete environment. Collectively, we demonstrate that a large portion of the gonococcal genome is expressed and regulated during mucosal infection including genes involved in regulatory functions and iron scavenging.
Collapse
|
11
|
McClure R, Tjaden B, Genco C. Identification of sRNAs expressed by the human pathogen Neisseria gonorrhoeae under disparate growth conditions. Front Microbiol 2014; 5:456. [PMID: 25221548 PMCID: PMC4148029 DOI: 10.3389/fmicb.2014.00456] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/11/2014] [Indexed: 01/17/2023] Open
Abstract
In the last several years, bacterial gene regulation via small RNAs (sRNAs) has been recognized as an important mechanism controlling expression of essential proteins that are critical to bacterial growth and metabolism. Technologies such as RNA-seq are rapidly expanding the field of sRNAs and are enabling a global view of the “sRNAome” of several bacterial species. While numerous sRNAs have been identified in a variety of both Gram-negative and Gram-positive bacteria, only a very small number have been fully characterized in the human pathogen Neisseria gonorrhoeae, the etiological agent of the STD gonorrhea. Here we present the first analysis of N. gonorrhoeae specifically focused on the identification of sRNAs through RNA-seq analysis of the organism cultured under different in vitro growth conditions. Using a new computational program, Rockhopper, to analyze prokaryotic RNA-seq data obtained from N. gonorrhoeae we identified several putative sRNAs and confirmed their expression and size through Northern blot analysis. In addition, RNA was collected from four different growth conditions (iron replete and deplete, as well as with and without co-culture with human endocervical cells). Many of the putative sRNAs identified shoed varying expression levels relative to the different growth conditions examine or were detected only under certain conditions but not others. Comparisons of identified sRNAs with the regulatory pattern of putative mRNA targets revealed possible functional roles for these sRNAs. These studies are the first to carry out a global analysis of N. gonorrhoeae specifically focused on sRNAs and show that RNA-mediated regulation may be an important mechanism of gene control in this human pathogen.
Collapse
Affiliation(s)
- Ryan McClure
- Department of Medicine Section of Infectious Disease, Boston University School of Medicine Boston, MA, USA ; Department of Microbiology, Boston University School of Medicine Boston, MA, USA
| | - Brian Tjaden
- Department of Computer Science, Wellesley College Wellesley, MA, USA
| | - Caroline Genco
- Department of Medicine Section of Infectious Disease, Boston University School of Medicine Boston, MA, USA ; Department of Microbiology, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
12
|
Yu C, Lopez CA, Hu H, Xia Y, Freedman DS, Reddington AP, Daaboul GG, Ünlü MS, Genco CA. A high-throughput method to examine protein-nucleotide interactions identifies targets of the bacterial transcriptional regulatory protein fur. PLoS One 2014; 9:e96832. [PMID: 24811061 PMCID: PMC4014563 DOI: 10.1371/journal.pone.0096832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/13/2014] [Indexed: 11/19/2022] Open
Abstract
The Ferric uptake regulatory protein (Fur) is a transcriptional regulatory protein that functions to control gene transcription in response to iron in a number of pathogenic bacteria. In this study, we applied a label-free, quantitative and high-throughput analysis method, Interferometric Reflectance Imaging Sensor (IRIS), to rapidly characterize Fur-DNA interactions in vitro with predicted Fur binding sequences in the genome of Neisseria gonorrhoeae, the causative agent of the sexually transmitted disease gonorrhea. IRIS can easily be applied to examine multiple protein-protein, protein-nucleotide and nucleotide-nucleotide complexes simultaneously and demonstrated here that seventy percent of the predicted Fur boxes in promoter regions of iron-induced genes bound to Fur in vitro with a range of affinities as observed using this microarray screening technology. Combining binding data with mRNA expression levels in a gonococcal fur mutant strain allowed us to identify five new gonococcal genes under Fur-mediated direct regulation.
Collapse
Affiliation(s)
- Chunxiao Yu
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Carlos A. Lopez
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Han Hu
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts, United States of America
| | - Yu Xia
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts, United States of America
| | - David S. Freedman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Alexander P. Reddington
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts, United States of America
| | - George G. Daaboul
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - M. Selim Ünlü
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Physics Department, Boston University, Boston, Massachusetts, United States of America
| | - Caroline Attardo Genco
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Nabu S, Lawung R, Isarankura-Na-Ayudhya P, Isarankura-Na-Ayudhya C, Roytrakul S, Prachayasittikul V. Reference map and comparative proteomic analysis of Neisseria gonorrhoeae displaying high resistance against spectinomycin. J Med Microbiol 2014; 63:371-385. [PMID: 24567501 DOI: 10.1099/jmm.0.067595-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A proteome reference map of Neisseria gonorrhoeae was successfully established using two-dimensional gel electrophoresis in conjunction with matrix-assisted laser desorption ionization-time of flight mass spectrometry. This map was further applied to compare protein expression profiles of high-level spectinomycin-resistant (clinical isolate) and -susceptible (reference strain) N. gonorrhoeae following treatment with subminimal inhibitory concentrations (subMICs) of spectinomycin. Approximately 200 protein spots were visualized by Coomassie brilliant blue G-250 staining and 66 spots representing 58 unique proteins were subsequently identified. Most of the identified proteins were analysed as cytoplasmic proteins and belonged to the class of energy metabolism. Comparative proteomic analysis of whole protein expression of susceptible and resistant gonococci showed up to 96% similarity while eight proteins were found to be differentially expressed in the resistant strain. In the presence of subMICs of spectinomycin, it was found that 50S ribosomal protein L7/L12, an essential component for ribosomal translocation, was upregulated in both strains, ranging from 1.5- to 3.5-fold, suggesting compensatory mechanisms of N. gonorrhoeae in response to antibiotic that inhibits protein synthesis. Moreover, the differential expression of proteins involved in energy metabolism, amino acid biosynthesis, and the cell envelope was noticeably detected, indicating significant cellular responses and adaptation against antibiotic stress. Such knowledge provides valuable data, not only fundamental proteomic data, but also knowledge of the mode of action of antibiotic and secondary target proteins implicated in adaptation and compensatory mechanisms.
Collapse
Affiliation(s)
- Sunanta Nabu
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Ratana Lawung
- Center of Medical Laboratory Services, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.,Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | | | | | - Sittiruk Roytrakul
- Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
14
|
Ishak N, Tikhomirova A, Bent SJ, Ehrlich GD, Hu FZ, Kidd SP. There is a specific response to pH by isolates of Haemophilus influenzae and this has a direct influence on biofilm formation. BMC Microbiol 2014; 14:47. [PMID: 24555828 PMCID: PMC3938079 DOI: 10.1186/1471-2180-14-47] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/19/2014] [Indexed: 12/22/2022] Open
Abstract
Background Haemophilus influenzae colonizes the nasopharynx as a commensal. Strain-specific factors allow some strains to migrate to particular anatomical niches, such as the middle ear, bronchi or blood, and induce disease by surviving within the conditions present at these sites in the body. It is established that H. influenzae colonization and in some cases survival is highly dependent on their ability to form a biofilm. Biofilm formation is a key trait in the development of chronic infection by certain isolates. This is exemplified by the contrast between the biofilm-forming strains found in middle ear infections and those isolates that survive within the blood and are rarely associated with biofilm development. Results Screening a group of H. influenzae strains revealed only slight variations in their growth across a range of pH conditions. However, some isolates responded to a pH of 8.0 by the formation of a biofilm. While the type b capsular blood isolate Eagan did not form a biofilm and grew at the same rate regardless of pH 6.8-8.0, transcriptomic analyses demonstrated that at pH 8.0 it uniquely induced a gluconate-uptake and metabolism pathway, which concurrently imports H+. A non-typeable H. influenzae, isolated from the middle ear, induced biofilm formation at pH 8.0, and at this pH it induced a series of iron acquisition genes, consistent with previous studies linking iron homeostasis to biofilm lifestyle. Conclusions Different strains of H. influenzae cope with changes in environmental factors using strain-specific mechanisms. These pathways define the scope and mode of niche-survival for an isolate. The pH is a property that is different from the middle ear (at least pH 8.0) compared to other sites that H. influenzae can colonize and infect. The transcriptional response to increasing pH by H. influenzae varies between strains, and pH is linked to pathways that allow strains to either continue free-living growth or induction of a biofilm. We showed that a biofilm-forming isolate induced iron metabolism pathways, whereas a strain that does not form biofilm at increasing pH induced mechanisms for growth and pH homeostasis based on sugar acid transport.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen P Kidd
- Research Centre for Infectious Diseases, The University of Adelaide, North Terrace Campus, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
15
|
Control of RNA stability by NrrF, an iron-regulated small RNA in Neisseria gonorrhoeae. J Bacteriol 2013; 195:5166-73. [PMID: 24039262 DOI: 10.1128/jb.00839-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Regulation of gene expression by small noncoding RNAs (sRNAs) plays a critical role in bacterial response to physiological stresses. NrrF, a trans-acting sRNA in Neisseria meningitidis and Neisseria gonorrhoeae, has been shown in the meningococcus to control indirectly, in response to iron (Fe) availability, the transcription of genes encoding subunits of succinate dehydrogenase, a Fe-requiring enzyme. Given that in other organisms, sRNAs target multiple mRNAs to control gene expression, we used a global approach to examine the role of NrrF in controlling gonococcal transcription. Three strains, including N. gonorrhoeae FA1090, an nrrF deletion mutant, and a complemented derivative, were examined using a custom CombiMatrix microarray to assess the role of this sRNA in controlling gene expression in response to Fe availability. In the absence of NrrF, the mRNA half-lives for 12 genes under Fe-depleted growth conditions were longer than those in FA1090. The 12 genes controlled by NrrF encoded proteins with biological functions including energy metabolism, oxidative stress, antibiotic resistance, and amino acid synthesis, as well as hypothetical proteins and a regulatory protein whose functions are not fully understood.
Collapse
|
16
|
Abstract
The ferric uptake regulator (Fur) protein has been shown to function as a repressor of transcription in a number of diverse microorganisms. However, recent studies have established that Fur can function at a global level as both an activator and a repressor of transcription through both direct and indirect mechanisms. Fur-mediated indirect activation occurs via the repression of additional repressor proteins, or small regulatory RNAs, thereby activating transcription of a previously silent gene. Fur mediates direct activation through binding of Fur to the promoter regions of genes. Whereas the repressive mechanism of Fur has been thoroughly investigated, emerging studies on direct and indirect Fur-mediated activation mechanisms have revealed novel global regulatory circuits.
Collapse
|
17
|
Fur-mediated activation of gene transcription in the human pathogen Neisseria gonorrhoeae. J Bacteriol 2012; 194:1730-42. [PMID: 22287521 DOI: 10.1128/jb.06176-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is well established that the ferric uptake regulatory protein (Fur) functions as a transcriptional repressor in diverse microorganisms. Recent studies demonstrated that Fur also functions as a transcriptional activator. In this study we defined Fur-mediated activation of gene transcription in the sexually transmitted disease pathogen Neisseria gonorrhoeae. Analysis of 37 genes which were previously determined to be iron induced and which contained putative Fur boxes revealed that only 30 of these genes exhibited reduced transcription in a gonococcal fur mutant strain. Fur-mediated activation was established by examining binding of Fur to the putative promoter regions of 16 Fur-activated genes with variable binding affinities observed. Only ∼50% of the newly identified Fur-regulated genes bound Fur in vitro, suggesting that additional regulatory circuits exist which may function through a Fur-mediated indirect mechanism. The gonococcal Fur-activated genes displayed variable transcription patterns in a fur mutant strain, which correlated with the position of the Fur box in each (promoter) region. These results suggest that Fur-mediated direct transcriptional activation is fulfilled by multiple mechanisms involving either competing with a repressor or recruiting RNA polymerase. Collectively, our studies have established that gonococcal Fur functions as an activator of gene transcription through both direct and indirect mechanisms.
Collapse
|
18
|
Jackson LA, Dyer DW. Protocol for gene expression profiling using DNA microarrays in Neisseria gonorrhoeae. Methods Mol Biol 2012; 903:343-57. [PMID: 22782831 DOI: 10.1007/978-1-61779-937-2_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gene expression profiling using DNA microarrays has become commonplace in current molecular biology practices, and has dramatically enhanced our understanding of the biology of Neisseria spp., and the interaction of these organisms with the host. With the choice of microarray platforms offered for gene expression profiling and commercially available arrays, investigators must ask several central questions to make decisions based on their research focus. Are arrays on hand for their organism and if not then would it be cost-effective to design custom arrays. Other important considerations; what types of specialized equipment for array hybridization and signal detection are required and is the specificity and sensitivity of the array adequate for your application. Here, we describe the use of a custom 12K CombiMatrix ElectraSense™ oligonucleotide microarray format for assessing global gene expression profiles in Neisseria spp.
Collapse
Affiliation(s)
- Lydgia A Jackson
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | |
Collapse
|
19
|
Fantappiè L, Scarlato V, Delany I. Identification of the in vitro target of an iron-responsive AraC-like protein from Neisseria meningitidis that is in a regulatory cascade with Fur. MICROBIOLOGY-SGM 2011; 157:2235-2247. [PMID: 21602219 DOI: 10.1099/mic.0.048033-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study we characterized a genetic locus that is predicted to encode one of the three AraC-like regulators of Neisseria meningitidis, a homologue of MpeR of Neisseria gonorrhoeae which is specific to the pathogenic Neisseria species. Previous microarray studies have suggested that this gene is a member of the Fur regulon. In strain MC58, it is a pseudogene (annotated as two ORFs, NMB1879 and NMB1878) containing a frameshift mutation which we show is common to all strains tested belonging to the ST-32 hypervirulent clonal complex. Using primer extension and S1 nuclease protection assays, we mapped two promoters in the upstream intergenic region: the mpeR promoter and the NMB1880 promoter. The latter promoter drives transcription of the divergent upstream locus, which is predicted to encode a high-affinity iron uptake system. We demonstrated that both promoters are induced during iron limitation and that this regulation is also mediated by the Fur regulator. DNA-binding studies with the purified MpeR protein revealed that it binds to a region directly upstream of the NMB1880 divergent promoter, suggesting a role in its regulation. Mutants of N. meningitidis strains lacking MpeR or overexpressing MpeR showed no significant differences in expression of the P(NMB1880) promoter, nor did global transcriptional profiling of an MpeR knockout identify any deregulated genes, suggesting that the MpeR protein is inactive under the conditions used in these experiments. The presence of MpeR in a regulatory cascade downstream of the Fur master iron regulator implicates it as being expressed in the iron-limiting environment of the host, where it may in turn regulate a group of genes, including the divergent iron transport locus, in response to signals important for infection.
Collapse
Affiliation(s)
- Laura Fantappiè
- Novartis Vaccines, Microbial Molecular Biology, Via Fiorentina 1, 53100 Siena, Italy
| | - Vincenzo Scarlato
- Department of Biology, University of Bologna, Bologna, Italy.,Novartis Vaccines, Microbial Molecular Biology, Via Fiorentina 1, 53100 Siena, Italy
| | - Isabel Delany
- Novartis Vaccines, Microbial Molecular Biology, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
20
|
Deslandes V, Denicourt M, Girard C, Harel J, Nash JHE, Jacques M. Transcriptional profiling of Actinobacillus pleuropneumoniae during the acute phase of a natural infection in pigs. BMC Genomics 2010; 11:98. [PMID: 20141640 PMCID: PMC2829017 DOI: 10.1186/1471-2164-11-98] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 02/08/2010] [Indexed: 01/18/2023] Open
Abstract
Background Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a respiratory disease which causes great economic losses worldwide. Many virulence factors are involved in the pathogenesis, namely capsular polysaccharides, RTX toxins, LPS and many iron acquisition systems. In order to identify genes that are expressed in vivo during a natural infection, we undertook transcript profiling experiments with an A. pleuropneumoniae DNA microarray, after recovery of bacterial mRNAs from serotype 5b-infected porcine lungs. AppChip2 contains 2033 PCR amplicons based on the genomic sequence of App serotype 5b strain L20, representing more than 95% of ORFs greater than 160 bp in length. Results Transcriptional profiling of A. pleuropneumoniae recovered from the lung of a pig suffering from a natural infection or following growth of the bacterial isolate in BHI medium was performed. An RNA extraction protocol combining beadbeating and hot-acid-phenol was developed in order to maximize bacterial mRNA yields and quality following total RNA extraction from lung lesions. Nearly all A. pleuropneumoniae transcripts could be detected on our microarrays, and 150 genes were deemed differentially expressed in vivo during the acute phase of the infection. Our results indicate that, for example, gene apxIVA from an operon coding for RTX toxin ApxIV is highly up-regulated in vivo, and that two genes from the operon coding for type IV fimbriae (APL_0878 and APL_0879) were also up-regulated. These transcriptional profiling data, combined with previous comparative genomic hybridizations performed by our group, revealed that 66 out of the 72 up-regulated genes are conserved amongst all serotypes and that 3 of them code for products that are predicted outer membrane proteins (genes irp and APL_0959, predicted to code for a TonB-dependent receptor and a filamentous hemagglutinin/adhesin respectively) or lipoproteins (gene APL_0920). Only 4 of 72 up-regulated genes had previously been identified in controled experimental infections. Conclusions These genes that we have identified as up-regulated in vivo, conserved across serotypes and coding for potential outer membrane proteins represent potential candidates for the development of a cross-protective vaccine against porcine pleuropneumonia.
Collapse
Affiliation(s)
- Vincent Deslandes
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | | | | | | | | | | |
Collapse
|