1
|
Owens NA, Young CC, Laurentius LB, De P, Chatterjee D, Porter MD. Detection of the tuberculosis biomarker mannose-capped lipoarabinomannan in human serum: Impact of sample pretreatment with perchloric acid. Anal Chim Acta 2019; 1046:140-147. [PMID: 30482291 PMCID: PMC6275550 DOI: 10.1016/j.aca.2018.09.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/11/2018] [Accepted: 09/16/2018] [Indexed: 11/18/2022]
Abstract
The development of an accurate and rapid diagnostic test for tuberculosis (TB) to use at point of need is vital to efforts aimed at reducing the global burden from this disease. This paper builds on our previous studies of mannose-capped lipoarabinomannan (ManLAM) as a serum biomarker for active TB infection by means of a heterogeneous immunoassay. That work found that complexation with components in serum (e.g., proteins) sterically hindered the capture and/or labeling of ManLAM in an immunoassay at levels <10 ng mL-1, compromising the clinical utility of this biomarker for detection of active TB infection. We also showed that the acidification of ManLAM-containing serum samples with perchloric acid improved the detectability of ManLAM by 250× by complex disruption when compared to measurements of untreated serum. The present study examined what effects the PCA treatment of serum samples may have on the recovery and structural integrity of ManLAM, owing to its potential susceptibility to acid hydrolysis. Recovery was assessed with an enzyme-linked immunosorbent assay (ELISA). The possible impact of acid hydrolysis on the ManLAM structure was investigated by gas chromatography-mass spectrometry and carbohydrate chemical degradation methods. The ELISA study indicated that while the signal strength for ManLAM in the serum spike-in experiments was significantly stronger after PCA pretreatment when compared to untreated human serum, it was only ∼20% of the ManLAM measured in physiological buffer. This loss in detectability was shown by structural analysis to arise mainly from the acid-induced degradation of the arabinan domains of ManLAM that are targeted by antibodies used for antigen capture and/or tagging. The implications of these findings in terms of the detection of this important biomarker for TB are also discussed.
Collapse
Affiliation(s)
- Nicholas A Owens
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - Colin C Young
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84112, USA; Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - Lars B Laurentius
- Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - Prithwiraj De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Marc D Porter
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA; Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA; Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
2
|
Mycobacterium avium: an overview. Tuberculosis (Edinb) 2019; 114:127-134. [PMID: 30711152 DOI: 10.1016/j.tube.2018.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 01/15/2023]
Abstract
Mycobacterium avium is an environmental microorganism found in soil and water sources worldwide. It is the most prevalent species of nontuberculous mycobacteria that causes infectious diseases, especially in immunocompromised individuals. This review discusses and highlights key topics about M. avium, such as epidemiology, pathogenicity, glycopeptidolipids, laboratory identification, genotyping, antimicrobial therapy and antimicrobial resistance. Additionally, the main comorbidities associated with M. avium infection are discussed.
Collapse
|
3
|
Xu Y, Xu T, Zhang J. Efficient synthesis of a 6-deoxy-talose containing tetrasccharide found in Franconibacter helveticus LMG23732 T. Carbohydr Res 2018. [DOI: 10.1016/j.carres.2018.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Kobayashi K. Serodiagnosis of Mycobacterium avium complex disease in humans: translational research from basic mycobacteriology to clinical medicine. Jpn J Infect Dis 2015; 67:329-32. [PMID: 25241680 DOI: 10.7883/yoken.67.329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rapid and accurate diagnosis of infectious diseases, including mycobacterial disease such as tuberculosis (TB) and diseases due to nontuberculous mycobacteria (NTM), is a very important element of global health. The gold standard in diagnosis of mycobacterial diseases remains clinical examination, combined with direct microscopic examination of sputum and culture of bacteria. Culture of slowly growing mycobacteria, including Mycobacterium tuberculosis and NTM (such as M. avium complex: MAC), can take up to 4 to 6 weeks, and in 10-20% of cases the bacillus is not successfully cultivated. Diagnosis of MAC pulmonary disease (MAC-PD) is complicated and time-consuming (usually at least 1 month). I have characterized the nature of MAC antigens and immune responses from the aspect of basic mycobacteriology, and then translated to clinical science. My multicenter study in Japan has demonstrated the usefulness of a serodiagnostic test to determine serum IgA antibodies against mycobacterial glycopeptidolipid (GPL) core antigen for diagnosing MAC-PD within a few hours. To validate in a larger number of patients, at diverse geographic locations, and among other races, the test was also assessed the usefulness internationally in the United States and Taiwan. In this review, I discuss development of serodiagnosis of MAC-PD by translational research and international collaboration study.
Collapse
|
5
|
Quadri LEN. Biosynthesis of mycobacterial lipids by polyketide synthases and beyond. Crit Rev Biochem Mol Biol 2014; 49:179-211. [DOI: 10.3109/10409238.2014.896859] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
7
|
Mukherjee R, Chatterji D. Glycopeptidolipids: immuno-modulators in greasy mycobacterial cell envelope. IUBMB Life 2012; 64:215-25. [PMID: 22252955 DOI: 10.1002/iub.602] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 11/10/2011] [Indexed: 11/12/2022]
Abstract
Species of opportunistic mycobacteria are the major causative agent for disseminating pulmonary infections in immuno-compromised individuals. These naturally resistant strains recruit a unique type of glycolipid known as glycopeptidolipids (GPLs), noncovalently attached to the outer surface of their thick lipid rich cell envelope. Species specific GPLs constitute the chemical determinants of most nontuberculous mycobacterial serotypes, and their absence from the cell surface confers altered colony morphology, hydrophobicity, and inability to grow as biofilms. The objective of this review is to present a comprehensive account and highlight the renewed interest on this much neglected group of pleiotropic molecules with respect to their structural diversity and biosynthesis. In addition, the role of GPLs in mycobacterial survival, both intracellular and in the environment is also discussed. It also explores the possibility of identifying new targets for intervening Mycobacterium avium complex-related infections. These antigenic molecules have been considered to play a pivotal role in immune suppression and can also induce various cytokine mediated innate immune responses, the molecular mechanism of which remains obscure.
Collapse
Affiliation(s)
- Raju Mukherjee
- Swiss Federal Institute of Technology, Lausanne, Switzerland.
| | | |
Collapse
|
8
|
Fujiwara N, Naka T, Ogawa M, Yamamoto R, Ogura H, Taniguchi H. Characteristics of Mycobacterium smegmatis J15cs strain lipids. Tuberculosis (Edinb) 2011; 92:187-92. [PMID: 22056691 DOI: 10.1016/j.tube.2011.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/26/2011] [Accepted: 10/10/2011] [Indexed: 11/16/2022]
Abstract
Mycobacterium smegmatis is a rapidly growing, non-pathogenic mycobacterium, and M. smegmatis strain mc(2)155 in particular has been used as a tool for molecular analysis of mycobacteria because of its high rate of transformation. We examined another strain, M. smegmatis J15cs, which has the advantage of surviving for six days in murine macrophages. The J15cs strain produces a rough dry colony, and we hypothesized that the long survival of the J15cs strain was correlated with its cell wall components. Therefore, the lipid compositions of these two strains were compared. The subclasses and carbon species of the mycolic acids were very similar, and the major glycolipids and phospholipids were expressed in both strains. However, apolar glycopeptidolipids were deleted only in the J15cs strain. The presence of apolar glycopeptidolipids gives the cell wall a different structure. Moreover, the apolar glycopeptidolipids were recognized by macrophages via toll-like receptor 2, but not 4. We concluded that the absence of apolar glycopeptidolipids is a definitive feature of the J15cs strain, and affects its morphology and survival in host cells.
Collapse
Affiliation(s)
- Nagatoshi Fujiwara
- Department of Bacteriology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Naka T, Maeda S, Niki M, Ohara N, Yamamoto S, Yano I, Maeyama JI, Ogura H, Kobayashi K, Fujiwara N. Lipid phenotype of two distinct subpopulations of Mycobacterium bovis Bacillus Calmette-Guerin Tokyo 172 substrain. J Biol Chem 2011; 286:44153-44161. [PMID: 22030395 DOI: 10.1074/jbc.m111.310037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) Tokyo 172 is a predominant World Health Organization Reference Reagent for the BCG vaccine. Recently, the BCG Tokyo 172 substrain was reported to consist of two subpopulations with different colony morphologies, smooth and rough. Smooth colonies had a characteristic 22-bp deletion in Rv3405c of the region of difference (RD) 16 (type I), and rough colonies were complete in this region (type II). We hypothesized that the morphological difference is related to lipid phenotype and affects their antigenicity. We determined the lipid compositions and biosynthesis of types I and II. Scanning electron microscopy showed that type I was 1.5 times longer than type II. Phenolic glycolipid (PGL) and phthiocerol dimycocerosate (PDIM) were found only in type I. Although it has been reported that the RD16 is involved in the expression of PGL, type II did not possess PGL/PDIM. We examined the ppsA-E gene responsible for PGL/PDIM biosynthesis and found that the existence of PGL/PDIM in types I and II is caused by a ppsA gene mutation not regulated by the RD16. PGL suppressed the host recognition of total lipids via Toll-like receptor 2, and this suggests that PGL is antigenic and involved in host responses, acting as a cell wall component. This is the first report to show the difference between lipid phenotypes of types I and II. It is important to clarify the heterogeneity of BCG vaccine substrains to discuss and evaluate the quality, safety, and efficacy of the BCG vaccine.
Collapse
Affiliation(s)
- Takashi Naka
- Department of Bacteriology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; MBR Co. Ltd., Osaka 560-8552, Japan
| | - Shinji Maeda
- Molecular Epidemiology Division, Mycobacterium Reference Center, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo 204-8533, Japan
| | - Mamiko Niki
- Department of Bacteriology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Naoya Ohara
- Department of Oral Microbiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | - Ikuya Yano
- Japan BCG Laboratory, Tokyo 204-0022, Japan
| | - Jun-Ichi Maeyama
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Hisashi Ogura
- Department of Bacteriology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; Department of Virology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Kazuo Kobayashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Nagatoshi Fujiwara
- Department of Bacteriology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.
| |
Collapse
|
10
|
Structure and host recognition of serotype 13 glycopeptidolipid from Mycobacterium intracellulare. J Bacteriol 2011; 193:5766-74. [PMID: 21856857 DOI: 10.1128/jb.05412-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Mycobacterium avium-M. intracellulare complex (MAIC) is divided into 28 serotypes by a species-specific glycopeptidolipid (GPL). Previously, we clarified the structures of serotype 7 GPL and two methyltransferase genes (orfA and orfB) in serotype 12 GPL. This study elucidated the chemical structure, biosynthesis gene, and host innate immune response of serotype 13 GPL. The oligosaccharide (OSE) structure of serotype 13 GPL was determined to be 4-2'-hydroxypropanoyl-amido-4,6-dideoxy-β-hexose-(1 → 3)-4-O-methyl-α-L-rhamnose-(1 → 3)-α-L-rhamnose-(1 → 3)-α-L-rhamnose-(1 → 2)-α-L-6-deoxy-talose by using chromatography, mass spectrometry, and nuclear magnetic resonance (NMR) analyses. The structure of the serotype 13 GPL was different from those of serotype 7 and 12 GPLs only in O-methylations. We found a relationship between the structure and biosynthesis gene cluster. M. intracellulare serotypes 12 and 13 have a 1.95-kb orfA-orfB gene responsible for 3-O-methylation at the terminal hexose, orfB, and 4-O-methylation at the rhamnose next to the terminal hexose, orfA. The serotype 13 orfB had a nonfunctional one-base missense mutation that modifies serotype 12 GPL to serotype 13 GPL. Moreover, the native serotype 13 GPL was multiacetylated and recognized via Toll-like receptor 2. The findings presented here imply that serotypes 7, 12, and 13 are phylogenetically related and confirm that acetylation of the GPL is necessary for host recognition. This study will promote better understanding of the structure-function relationships of GPLs and may open a new avenue for the prevention of MAIC infections.
Collapse
|
11
|
Rombouts Y, Elass E, Biot C, Maes E, Coddeville B, Burguière A, Tokarski C, Buisine E, Trivelli X, Kremer L, Guérardel Y. Structural analysis of an unusual bioactive N-acylated lipo-oligosaccharide LOS-IV in Mycobacterium marinum. J Am Chem Soc 2010; 132:16073-84. [PMID: 20964371 DOI: 10.1021/ja105807s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although lipo-oligosaccharides (LOSs) are recognized as major parietal components in many mycobacterial species, their involvement in the host-pathogen interactions have been scarcely documented. In particular, the biological implications arising from the high degree of structural species-specificity of these glycolipids remain largely unknown. Growing recognition of the Mycobacterium marinum-Danio rerio as a specific host-pathogen model devoted to the study of the physiopathology of mycobacterial infections prompted us to elucidate the structure-to-function relationships of the elusive end-product, LOS-IV, of the LOS biosynthetic pathway in M. marinum. Combination of physicochemical and molecular modeling methods established that LOS-IV resulted from the differential transfer on the caryophyllose-containing LOS-III of a family of very unusual N-acylated monosaccharides, naturally present as different diastereoisomers. In agreement with the partial loss of pathogenecity previously reported in a LOS-IV-deficient M. marinum mutant, we demonstrated that this terminal monosaccharide conferred to LOS-IV important biological functions, including macrophage activating properties.
Collapse
Affiliation(s)
- Yoann Rombouts
- Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, UGSF, F-59650 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Novel rhamnosyltransferase involved in biosynthesis of serovar 4-specific glycopeptidolipid from Mycobacterium avium complex. J Bacteriol 2010; 192:5700-8. [PMID: 20817766 DOI: 10.1128/jb.00554-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycopeptidolipids (GPLs) are one of the major glycolipid components present on the surface of Mycobacterium avium complex (MAC) that belong to opportunistic pathogens distributed in the natural environment. The serovars of MAC, up to around 30 types, are defined by the variable oligosaccharide portions of the GPLs. Epidemiological studies show that serovar 4 is the most prevalent type, and the prognosis of pulmonary disease caused by serovar 4 is significantly worse than that caused by other serovars. However, little is known about the biosynthesis of serovar 4-specific GPL, particularly the formation of the oligosaccharide portion that determines the properties of serovar 4. To investigate the biosynthesis of serovar 4-specific GPL, we focused on one segment that included functionally unknown genes in the GPL biosynthetic gene cluster of a serovar 4 strain. In this segment, a putative hemolytic protein gene, hlpA, and its downstream gene were found to be responsible for the formation of the 4-O-methyl-rhamnose residue, which is unique to serovar 4-specific GPL. Moreover, functional characterization of the hlpA gene revealed that it encodes a rhamnosyltransferase that transfers a rhamnose residue via 1→4 linkage to a fucose residue of serovar 2-specific GPL, which is a key pathway leading to the synthesis of oligosaccharide of serovar 4-specific GPL. These findings may provide clues to understanding the biological role of serovar 4-specific GPL in MAC pathogenicity and may also provide new insights into glycosyltransferase, which generates structural and functional diversity of GPLs.
Collapse
|
13
|
The Mycobacterium avium complex gtfTB gene encodes a glucosyltransferase required for the biosynthesis of serovar 8-specific glycopeptidolipid. J Bacteriol 2008; 190:7918-24. [PMID: 18849433 DOI: 10.1128/jb.00911-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium avium complex (MAC) is one of the most common opportunistic pathogens widely distributed in the natural environment. The 28 serovars of MAC are defined by variable oligosaccharide portions of glycopeptidolipids (GPLs) that are abundant on the surface of the cell envelope. These GPLs are also known to contribute to the virulence of MAC. Serovar 8 is one of the dominant serovars isolated from AIDS patients, but the biosynthesis of serovar 8-specific GPL remains unknown. To clarify this, we compared gene clusters involved in the biosynthesis of several serovar-specific GPLs and identified the genomic region predicted to be responsible for GPL biosynthesis in a serovar 8 strain. Sequencing of this region revealed the presence of four open reading frames, three unnamed genes and gtfTB, the function of which has not been elucidated. The simultaneous expression of gtfTB and two downstream genes in a recombinant Mycobacterium smegmatis strain genetically modified to produce serovar 1-specific GPL resulted in the appearance of 4,6-O-(1-carboxyethylidene)-3-O-methyl-glucose, which is unique to serovar 8-specific GPL, suggesting that these three genes participate in its biosynthesis. Furthermore, functional analyses of gtfTB indicated that it encodes a glucosyltransferase that transfers a glucose residue via 1-->3 linkage to a rhamnose residue of serovar 1-specific GPL, which is critical to the formation of the oligosaccharide portion of serovar 8-specific GPL. Our findings might provide a clue to understanding the biosynthetic regulation that modulates the biological functions of GPLs in MAC.
Collapse
|