1
|
Liu Y, Yamamoto T, Kohaya N, Yamamoto K, Okano K, Sumiyoshi T, Hasegawa Y, Lau PCK, Iwaki H. Cloning of two gene clusters involved in the catabolism of 2,4-dinitrophenol by Paraburkholderia sp. strain KU-46 and characterization of the initial DnpAB enzymes and a two-component monooxygenases DnpC1C2. J Biosci Bioeng 2023; 136:223-231. [PMID: 37344279 DOI: 10.1016/j.jbiosc.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
Little is currently known about the metabolism of the industrial pollutant 2,4-dinitrophenol (DNP), particularly among gram-negative bacteria. In this study, we identified two non-contiguous genetic loci spanning 22 kb of Paraburkholderia (formerly Burkholderia) sp. strain KU-46. Additionally, we characterized four key initial genes (dnpA, dnpB, and dnpC1C2) responsible for DNP degradation, providing molecular and biochemical evidence for the degradation of DNP via the formation of 4-nitrophenol (NP), a pathway that is unique among DNP utilizing bacteria. Reverse transcription polymerase chain reaction (PCR) analysis indicated that dnpA, which encodes the initial hydride transferase, and dnpB which encodes a nitrite-eliminating enzyme, were induced by DNP and organized in an operon. Moreover, we purified DnpA and DnpB from recombinant Escherichia coli to demonstrate their effect on the transformation of DNP to NP through the formation of a hydride-Meisenheimer complex of DNP, designated as H--DNP. The function of DnpB appears new since all homologs of the DnpB sequences in the protein database are annotated as putative nitrate ABC transporter substrate-binding proteins. The gene cluster responsible for the degradation of DNP after NP formation was designated dnpC1C2DXFER, and DnpC1 and DnpC2 were functionally characterized as the FAD reductase and oxygenase components of the two-component DNP monooxygenase, respectively. By elucidating the hqdA1A2BCD gene cluster, we are now able to delineate the final degradation pathway of hydroquinone to β-ketoadipate before it enters the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Yaxuan Liu
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Taisei Yamamoto
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Nozomi Kohaya
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Kota Yamamoto
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Kenji Okano
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Takaaki Sumiyoshi
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Yoshie Hasegawa
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Peter C K Lau
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Hiroaki Iwaki
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
2
|
Zubkov FI, Kouznetsov VV. Traveling across Life Sciences with Acetophenone-A Simple Ketone That Has Special Multipurpose Missions. Molecules 2023; 28:370. [PMID: 36615564 PMCID: PMC9823374 DOI: 10.3390/molecules28010370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Each metabolite, regardless of its molecular simplicity or complexity, has a mission or function in the organism biosynthesizing it. In this review, the biological, allelochemical, and chemical properties of acetophenone, as a metabolite involved in multiple interactions with various (mi-cro)organisms, are discussed. Further, the details of its biogenesis and chemical synthesis are provided, and the possibility of its application in different areas of life sciences, i.e., the status quo of acetophenone and its simple substituted analogs, is examined. In particular, natural and synthetic simple acetophenone derivatives are analyzed as promising agrochemicals and useful scaffolds for drug research and development.
Collapse
Affiliation(s)
- Fedor I. Zubkov
- Department of Organic Chemistry, Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Vladimir V. Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander, Cl. 9 # Cra 27, A.A., Bucaramanga 680006, Colombia
| |
Collapse
|
3
|
Abstract
Upgrading lignin, an underutilized component of biomass, is essential for sustainable biorefining. Biocatalysis has considerable potential for upgrading lignin, but our lack of knowledge of relevant enzymes and pathways has limited its application. Herein, we describe a microbial pathway that catabolizes acetovanillone, a major component of several industrial lignin streams. This pathway is unusual in that it involves phosphorylation and carboxylation before conversion to the intermediate, vanillate, which is degraded via the β-ketoadipate pathway. Importantly, the hydroxyphenylethanone catabolic pathway enables bacterial growth on softwood lignin pretreated by oxidative catalytic fractionation. Overall, these insights greatly facilitate the engineering of bacteria to biocatalytically upgrade lignin. Bacterial catabolic pathways have considerable potential as industrial biocatalysts for the valorization of lignin, a major component of plant-derived biomass. Here, we describe a pathway responsible for the catabolism of acetovanillone, a major component of several industrial lignin streams. Rhodococcus rhodochrous GD02 was previously isolated for growth on acetovanillone. A high-quality genome sequence of GD02 was generated. Transcriptomic analyses revealed a cluster of eight genes up-regulated during growth on acetovanillone and 4-hydroxyacetophenone, as well as a two-gene cluster up-regulated during growth on acetophenone. Bioinformatic analyses predicted that the hydroxyphenylethanone (Hpe) pathway proceeds via phosphorylation and carboxylation, before β-elimination yields vanillate from acetovanillone or 4-hydroxybenzoate from 4-hydroxyacetophenone. Consistent with this prediction, the kinase, HpeHI, phosphorylated acetovanillone and 4-hydroxyacetophenone. Furthermore, HpeCBA, a biotin-dependent enzyme, catalyzed the ATP-dependent carboxylation of 4-phospho-acetovanillone but not acetovanillone. The carboxylase’s specificity for 4-phospho-acetophenone (kcat/KM = 34 ± 2 mM−1 s−1) was approximately an order of magnitude higher than for 4-phospho-acetovanillone. HpeD catalyzed the efficient dephosphorylation of the carboxylated products. GD02 grew on a preparation of pine lignin produced by oxidative catalytic fractionation, depleting all of the acetovanillone, vanillin, and vanillate. Genomic and metagenomic searches indicated that the Hpe pathway occurs in a relatively small number of bacteria. This study facilitates the design of bacterial strains for biocatalytic applications by identifying a pathway for the degradation of acetovanillone.
Collapse
|
4
|
Efficient degradation of hydroquinone by a metabolically engineered Pseudarthrobacter sulfonivorans strain. Arch Microbiol 2022; 204:588. [PMID: 36048304 DOI: 10.1007/s00203-022-03214-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022]
Abstract
Pseudarthrobacter sulfonivorans strain Ar51 can degrade crude oil and multi-substituted benzene compounds efficiently at low temperatures. However, it cannot degrade hydroquinone, which is a key intermediate in the degradation of several other compounds of environmental importance, such as 4-nitrophenol, g-hexachlorocyclohexane, 4-hydroxyacetophenone and 4-aminophenol. Here we co-expressed the two subunits of hydroquinone dioxygenase from Sphingomonas sp. strain TTNP3 with different promoters in the strain Ar51. The strain with 2 hdnO promoters exhibited the strongest hydroquinone catabolic activity. However, in the absence of antibiotic selection this ability to degrade hydroquinone was lost due to plasmid instability. Consequently, we constructed a hisD knockout strain, which was unable to synthesise histidine. By introducing the hisD gene onto the plasmid, the ability to degrade hydroquinone in the absence of antibiotic selection was stabilised. In addition, to make the strain more stable for industrial applications, we knocked out the recA gene and integrated the hydroquinone dioxygenase genes at this chromosomal locus. This strain exhibited the strongest activity in catabolizing hydroquinone, up to 470 mg/L in 16 h without antibiotic selection. In addition, this activity was shown to be stable when the strain has cultured in medium without antibiotic selection after 20 passages.
Collapse
|
5
|
Zhang X, Linghu S, Chen Z, Gu H, Chen X, Wei X, Hu X, Yang Y, Gao Y. Bacterial diversity evolution process based on physicochemical characteristics of sludge treating hydroquinone during acclimation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31686-31699. [PMID: 35001263 DOI: 10.1007/s11356-021-17325-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Hydroquinone is one of the main pollutants in coal-gasification wastewater, which is biologically toxic and difficult to remove. The aerobic biodegradation rate, organic toxicity, and microbial community structure at different acclimation stages of degradation of hydroquinone by activated sludge were investigated. In each acclimation cycle, the removal of hydroquinone reached 100% after 5 days, indicating that high-concentration hydroquinone in the activated sludge could be completely biodegraded. When the microbial flora was inhibited by the influent hydroquinone, the enzyme system experienced stress conditions and led to the secretion of secondary metabolites, extracellular protein of 5-10 kDa mainly contributing to the sludge organic toxicity. Microbial diversity analysis showed that with the increase of the concentration of hydroquinone, β-Proteus bacteria such as Azoarcus and Dechloromonas gradually accumulated, which improved the removal of hydroquinone with aerobic activated sludge in the sequencing batch reactor (SBR) system. As the inhibition degree exceeded the appropriate tolerance range of microorganisms, bacteria would secrete much more secondary metabolites, and the organic toxicity of sludge would reach a relatively high level.
Collapse
Affiliation(s)
- Xinyu Zhang
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, China
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Shanshan Linghu
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, China
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhichong Chen
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, China
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Gu
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, China
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiurong Chen
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, China.
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xiao Wei
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, China
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Xueyang Hu
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, China
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Yingying Yang
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, China
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuqing Gao
- National Engineering Laboratory for High-Concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, 200237, China
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
Harnessing Paenarthrobacter ureafaciens YL1 and Pseudomonas koreensis YL2 Interactions to Improve Degradation of Sulfamethoxazole. Microorganisms 2022; 10:microorganisms10030648. [PMID: 35336223 PMCID: PMC8953276 DOI: 10.3390/microorganisms10030648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Sulfamethoxazole (SMX) is a widespread and persistent pollutant in the environment. Although the screening and analysis of SMX-degrading bacteria have been documented, the interaction mechanisms of functional microorganisms are still poorly understood. This study constructed a consortium with strain YL1 and YL2 supplied with SMX as the sole carbon and energy source. The coexisting mechanism and the removal of SMX of the consortium were investigated. The total oxidizable carbon (TOC) removal rate of the combined bacterial system was 38.94% compared to 29.45% for the single bacterial system at the same biomass. The mixed bacterial consortium was able to resist SMX at concentrations up to 400 mg/L and maintained a stable microbial structure at different culture conditions. The optimum conditions found for SMX degradation were 30 °C, pH 7.0, a shaking speed of 160 r·min−1, and an initial SMX concentration of 200 mg·L−1. The degradation of SMX was accelerated by the addition of YL2 for its ability to metabolize the key intermediate, 4-aminophenol. The removal rate of 4-aminophenol by strain YL2 reached 19.54% after 5 days. Genome analysis revealed that adding riboflavin and enhancing the reducing capacity might contribute to the degradation of SMX. These results indicated that it is important for the bioremediation of antibiotic-contaminated aquatic systems to understand the metabolism of bacterial communities.
Collapse
|
7
|
Henson WR, Meyers AW, Jayakody LN, DeCapite A, Black BA, Michener WE, Johnson CW, Beckham GT. Biological upgrading of pyrolysis-derived wastewater: Engineering Pseudomonas putida for alkylphenol, furfural, and acetone catabolism and (methyl)muconic acid production. Metab Eng 2021; 68:14-25. [PMID: 34438073 DOI: 10.1016/j.ymben.2021.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
While biomass-derived carbohydrates have been predominant substrates for biological production of renewable fuels, chemicals, and materials, organic waste streams are growing in prominence as potential alternative feedstocks to improve the sustainability of manufacturing processes. Catalytic fast pyrolysis (CFP) is a promising approach to generate biofuels from lignocellulosic biomass, but it generates a complex, carbon-rich, and toxic wastewater stream that is challenging to process catalytically but could be biologically upgraded to valuable co-products. In this work, we implemented modular, heterologous catabolic pathways in the Pseudomonas putida KT2440-derived EM42 strain along with the overexpression of native toxicity tolerance machinery to enable utilization of 89% (w/w) of carbon in CFP wastewater. The dmp monooxygenase and meta-cleavage pathway from Pseudomonas putida CF600 were constitutively expressed to enable utilization of phenol, cresols, 2- and 3-ethyl phenol, and methyl catechols, and the native chaperones clpB, groES, and groEL were overexpressed to improve toxicity tolerance to diverse aromatic substrates. Next, heterologous furfural and acetone utilization pathways were incorporated, and a native alcohol dehydrogenase was overexpressed to improve methanol utilization, generating reducing equivalents. All pathways (encoded by genes totaling ~30 kilobases of DNA) were combined into a single strain that can catabolize a mock CFP wastewater stream as a sole carbon source. Further engineering enabled conversion of all aromatic compounds in the mock wastewater stream to (methyl)muconates with a ~90% (mol/mol) yield. Biological upgrading of CFP wastewater as outlined in this work provides a roadmap for future applications in valorizing other heterogeneous waste streams.
Collapse
Affiliation(s)
- William R Henson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Alex W Meyers
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Lahiru N Jayakody
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Annette DeCapite
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Brenna A Black
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - William E Michener
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
8
|
Westphal AH, Tischler D, van Berkel WJH. Natural diversity of FAD-dependent 4-hydroxybenzoate hydroxylases. Arch Biochem Biophys 2021; 702:108820. [PMID: 33684360 DOI: 10.1016/j.abb.2021.108820] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 01/05/2023]
Abstract
4-Hydroxybenzoate 3-hydroxylase (PHBH) is the most extensively studied group A flavoprotein monooxygenase (FPMO). PHBH is almost exclusively found in prokaryotes, where its induction, usually as a consequence of lignin degradation, results in the regioselective formation of protocatechuate, one of the central intermediates in the global carbon cycle. In this contribution we introduce several less known FAD-dependent 4-hydroxybenzoate hydroxylases. Phylogenetic analysis showed that the enzymes discussed here reside in distinct clades of the group A FPMO family, indicating their separate divergence from a common ancestor. Protein homology modelling revealed that the fungal 4-hydroxybenzoate 3-hydroxylase PhhA is structurally related to phenol hydroxylase (PHHY) and 3-hydroxybenzoate 4-hydroxylase (3HB4H). 4-Hydroxybenzoate 1-hydroxylase (4HB1H) from yeast catalyzes an oxidative decarboxylation reaction and is structurally similar to 3-hydroxybenzoate 6-hydroxylase (3HB6H), salicylate hydroxylase (SALH) and 6-hydroxynicotinate 3-monooxygenase (6HNMO). Genome mining suggests that the 4HB1H activity is widespread in the fungal kingdom and might be responsible for the oxidative decarboxylation of vanillate, an import intermediate in lignin degradation. 4-Hydroxybenzoyl-CoA 1-hydroxylase (PhgA) catalyzes an intramolecular migration reaction (NIH shift) during the three-step conversion of 4-hydroxybenzoate to gentisate in certain Bacillus species. PhgA is phylogenetically related to 4-hydroxyphenylacetate 1-hydroxylase (4HPA1H). In summary, this paper shines light on the natural diversity of group A FPMOs that are involved in the aerobic microbial catabolism of 4-hydroxybenzoate.
Collapse
Affiliation(s)
- Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands.
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Germany.
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
9
|
Dawson RA, Larke-Mejía NL, Crombie AT, Ul Haque MF, Murrell JC. Isoprene Oxidation by the Gram-Negative Model bacterium Variovorax sp. WS11. Microorganisms 2020; 8:E349. [PMID: 32121431 PMCID: PMC7143210 DOI: 10.3390/microorganisms8030349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 01/19/2023] Open
Abstract
Plant-produced isoprene (2-methyl-1,3-butadiene) represents a significant portion of global volatile organic compound production, equaled only by methane. A metabolic pathway for the degradation of isoprene was first described for the Gram-positive bacterium Rhodococcus sp. AD45, and an alternative model organism has yet to be characterised. Here, we report the characterisation of a novel Gram-negative isoprene-degrading bacterium, Variovorax sp. WS11. Isoprene metabolism in this bacterium involves a plasmid-encoded iso metabolic gene cluster which differs from that found in Rhodococcus sp. AD45 in terms of organisation and regulation. Expression of iso metabolic genes is significantly upregulated by both isoprene and epoxyisoprene. The enzyme responsible for the initial oxidation of isoprene, isoprene monooxygenase, oxidises a wide range of alkene substrates in a manner which is strongly influenced by the presence of alkyl side-chains and differs from other well-characterised soluble diiron monooxygenases according to its response to alkyne inhibitors. This study presents Variovorax sp. WS11 as both a comparative and contrasting model organism for the study of isoprene metabolism in bacteria, aiding our understanding of the conservation of this biochemical pathway across diverse ecological niches.
Collapse
Affiliation(s)
- Robin A. Dawson
- School of Environmental Sciences, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK; (R.A.D.); (N.L.L.-M.)
| | - Nasmille L. Larke-Mejía
- School of Environmental Sciences, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK; (R.A.D.); (N.L.L.-M.)
| | - Andrew T. Crombie
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK;
| | - Muhammad Farhan Ul Haque
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54000, Pakistan;
| | - J. Colin Murrell
- School of Environmental Sciences, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK; (R.A.D.); (N.L.L.-M.)
| |
Collapse
|
10
|
Sharma V, Kumar R, Sharma VK, Yadav AK, Tiirola M, Sharma PK. Expression, purification, characterization and in silico analysis of newly isolated hydrocarbon degrading bleomycin resistance dioxygenase. Mol Biol Rep 2019; 47:533-544. [PMID: 31724125 DOI: 10.1007/s11033-019-05159-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/23/2019] [Indexed: 10/25/2022]
Abstract
In the present investigation, we report cloning, expression, purification and characterization of a novel Bleomycin Resistance Dioxygenase (BRPD). His-tagged fusion protein was purified to homogeneity using Ni-NTA affinity chromatography, yielding 1.2 mg of BRPD with specific activity of 6.25 U mg-1 from 600 ml of E. coli culture. Purified enzyme was a dimer with molecular weight ~ 26 kDa in SDS-PAGE and ~ 73 kDa in native PAGE analysis. The protein catalyzed breakdown of hydrocarbon substrates, including catechol and hydroquinone, in the presence of metal ions, as characterized via spectrophotometric analysis of the enzymatic reactions. Bleomycin binding was proven using the EMSA gel retardation assay, and the putative bleomycin binding site was further determined by in silico analysis. Molecular dynamic simulations revealed that BRPD attains octahedral configuration in the presence of Fe2+ ion, forming six co-ordinate complexes to degrade hydroquinone-like molecules. In contrary, in the presence of Zn2+ ion BRPD adopts tetrahedral configuration, which enables degradation of catechol-like molecules.
Collapse
Affiliation(s)
- Vinay Sharma
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Pb, India
| | - Rajender Kumar
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
| | | | | | - Marja Tiirola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, 40014, Jyvaskyla, Finland
| | - Pushpender Kumar Sharma
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Pb, India.
| |
Collapse
|
11
|
Lubbers RJM, Dilokpimol A, Visser J, Mäkelä MR, Hildén KS, de Vries RP. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnol Adv 2019; 37:107396. [PMID: 31075306 DOI: 10.1016/j.biotechadv.2019.05.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.
Collapse
Affiliation(s)
- Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Kristiina S Hildén
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| |
Collapse
|
12
|
Zharikova NV, Zhurenko EY, Iasakov TR, Korobov VV, Erastov AS, Markusheva TV. Conversion of 4-Chlorophenoxyacetic Acid by the Pseudomonas sp. 36DCP Strain. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819020169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Wang JP, Zhang WM, Chao HJ, Zhou NY. PnpM, a LysR-Type Transcriptional Regulator Activates the Hydroquinone Pathway in para-Nitrophenol Degradation in Pseudomonas sp. Strain WBC-3. Front Microbiol 2017; 8:1714. [PMID: 28959240 PMCID: PMC5603801 DOI: 10.3389/fmicb.2017.01714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/24/2017] [Indexed: 11/17/2022] Open
Abstract
A LysR-type transcriptional regulator (LTTR), PnpR, has previously been shown to activate the transcription of operons pnpA, pnpB, and pnpCDEFG for para-nitrophenol (PNP) degradation in Pseudomonas sp. strain WBC-3. Further preliminary evidence suggested the possible presence of an LTTR additional binding site in the promoter region of pnpCDEFG. In this study, an additional LTTR PnpM, which shows 44% homology to PnpR, was determined to activate the expression of pnpCDEFG. Interestingly, a pnpM-deleted WBC-3 strain was unable to grow on PNP but accumulating hydroquinone (HQ), which is the catabolic product from PNP degradation by PnpAB and the substrate for PnpCD. Through electrophoretic mobility shift assays (EMSAs) and promoter activity detection, only PnpR was involved in the activation of pnpA and pnpB, but both PnpR and PnpM were involved in the activation of pnpCDEFG. DNase I footprinting analysis suggested that PnpR and PnpM shared the same DNA-binding regions of 27 bp in the pnpCDEFG promoter. In the presence of PNP, the protection region increased to 39 bp by PnpR and to 38 bp by PnpM. Our data suggested that both PnpR and PnpM were involved in activating pnpCDEFG expression, in which PNP rather than the substrate hydroquinone for PnpCD is the inducer. Thus, during the PNP catabolism in Pseudomonas sp. strain WBC-3, pnpA and pnpB operons for the initial two reactions were controlled by PnpR, while the third operon (pnpCDEFG) for HQ degradation was activated by PnpM and PnpR. This study builds upon our previous findings and shows that two LTTRs PnpR and PnpM are involved in the transcriptional activation of these three catabolic operons. Specifically, our identification that an LTTR, PnpM, regulates pnpCDEFG expression provides new insights in an intriguing regulation system of PNP catabolism that is controlled by two regulators.
Collapse
Affiliation(s)
- Jin-Pei Wang
- Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China.,University of Chinese Academy of SciencesBeijing, China
| | - Wen-Mao Zhang
- Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China
| | - Hong-Jun Chao
- Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China
| | - Ning-Yi Zhou
- Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China.,State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
14
|
Functional Metagenomics of a Biostimulated Petroleum-Contaminated Soil Reveals an Extraordinary Diversity of Extradiol Dioxygenases. Appl Environ Microbiol 2016; 82:2467-2478. [PMID: 26896130 DOI: 10.1128/aem.03811-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/19/2016] [Indexed: 12/26/2022] Open
Abstract
A metagenomic library of a petroleum-contaminated soil was constructed in a fosmid vector that allowed heterologous expression of metagenomic DNA. The library, consisting of 6.5 Gb of metagenomic DNA, was screened for extradiol dioxygenase (Edo) activity using catechol and 2,3-dihydroxybiphenyl as the substrates. Fifty-eight independent clones encoding extradiol dioxygenase activity were identified. Forty-one different Edo-encoding genes were identified. The population of Edo genes was not dominated by a particular gene or by highly similar genes; rather, the genes had an even distribution and high diversity. Phylogenetic analyses revealed that most of the genes could not be ascribed to previously defined subfamilies of Edos. Rather, the Edo genes led to the definition of 10 new subfamilies of type I Edos. Phylogenetic analysis of type II enzymes defined 7 families, 2 of which harbored the type II Edos that were found in this work. Particularly striking was the diversity found in family I.3 Edos; 15 out of the 17 sequences assigned to this family belonged to 7 newly defined subfamilies. A strong bias was found that depended on the substrate used for the screening: catechol mainly led to the detection of Edos belonging to the I.2 family, while 2,3-dihydroxybiphenyl led to the detection of most other Edos. Members of the I.2 family showed a clear substrate preference for monocyclic substrates, while those from the I.3 family showed a broader substrate range and high activity toward 2,3-dihydroxybiphenyl. This metagenomic analysis has substantially increased our knowledge of the existing biodiversity of Edos.
Collapse
|
15
|
Crombie AT, Khawand ME, Rhodius VA, Fengler KA, Miller MC, Whited GM, McGenity TJ, Murrell JC. Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle. Environ Microbiol 2015; 17:3314-29. [PMID: 25727256 PMCID: PMC4676930 DOI: 10.1111/1462-2920.12793] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/26/2015] [Indexed: 01/25/2023]
Abstract
Emissions of biogenic volatile organic compounds (VOCs) form an important part of the global carbon cycle, comprising a significant proportion of net ecosystem productivity. They impact atmospheric chemistry and contribute directly and indirectly to greenhouse gases. Isoprene, emitted largely from plants, comprises one third of total VOCs, yet in contrast to methane, which is released in similar quantities, we know little of its biodegradation. Here, we report the genome of an isoprene degrading isolate, Rhodococcus sp. AD45, and, using mutagenesis shows that a plasmid-encoded soluble di-iron centre isoprene monooxygenase (IsoMO) is essential for isoprene metabolism. Using RNA sequencing (RNAseq) to analyse cells exposed to isoprene or epoxyisoprene in a substrate-switch time-course experiment, we show that transcripts from 22 contiguous genes, including those encoding IsoMO, were highly upregulated, becoming among the most abundant in the cell and comprising over 25% of the entire transcriptome. Analysis of gene transcription in the wild type and an IsoMO-disrupted mutant strain showed that epoxyisoprene, or a subsequent product of isoprene metabolism, rather than isoprene itself, was the inducing molecule. We provide a foundation of molecular data for future research on the environmental biological consumption of this important, climate-active compound.
Collapse
Affiliation(s)
| | | | - Virgil A Rhodius
- DuPont Industrial Biosciences925 Page Mill Road, Palo Alto, CA, 94304, USA
| | | | - Michael C Miller
- DuPont Industrial Biosciences925 Page Mill Road, Palo Alto, CA, 94304, USA
| | - Gregg M Whited
- DuPont Industrial Biosciences925 Page Mill Road, Palo Alto, CA, 94304, USA
| | | | | |
Collapse
|
16
|
Simultaneous biodegradation of bisphenol A and a biogenic substrate in semi-continuous activated sludge reactors. Biodegradation 2015; 26:183-95. [DOI: 10.1007/s10532-015-9726-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
|
17
|
Mancini S, Abicht HK, Gonskikh Y, Solioz M. A copper-induced quinone degradation pathway provides protection against combined copper/quinone stress inLactococcus lactis IL1403. Mol Microbiol 2014; 95:645-59. [DOI: 10.1111/mmi.12889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Stefano Mancini
- Department Clinical Research; University of Bern; Murtenstrasse 35 3010 Bern Switzerland
| | - Helge K. Abicht
- Department Clinical Research; University of Bern; Murtenstrasse 35 3010 Bern Switzerland
| | - Yulia Gonskikh
- Department Clinical Research; University of Bern; Murtenstrasse 35 3010 Bern Switzerland
- Department of Plant Physiology and Biotechnology; Tomsk State University; Prospect Lenina 36 634050 Tomsk Russia
| | - Marc Solioz
- Department Clinical Research; University of Bern; Murtenstrasse 35 3010 Bern Switzerland
- Department of Plant Physiology and Biotechnology; Tomsk State University; Prospect Lenina 36 634050 Tomsk Russia
| |
Collapse
|
18
|
Kumar A, Trefault N, Olaniran AO. Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit Rev Microbiol 2014; 42:194-208. [DOI: 10.3109/1040841x.2014.917068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Seyfried M, Boschung A, Miffon F, Ohleyer E, Chaintreau A. Elucidation of the upper pathway of alicyclic musk Romandolide degradation in OECD screening tests with activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 21:9487-9494. [PMID: 24277432 DOI: 10.1007/s11356-013-2347-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 11/04/2013] [Indexed: 06/02/2023]
Abstract
The degradation of Romandolide ([1-(3',3'-dimethyl-1'-cyclohexyl)ethoxycarbonyl] methyl propanoate), a synthetic alicyclic musk, by activated sludge inocula was investigated using both the manometric respirometry test OECD 301F and the CO₂ evolution test. In addition to measuring its biodegradability, key steps of the upper part of the metabolic pathway responsible for Romandolide degradation were identified using extracts at different time points of incubation. Early metabolism of Romandolide yielded ester hydrolysis products, including Cyclademol (1-(3,3-dimethylcyclohexyl)ethanol). The principal metabolites after 31 days were identified as 3,3-dimethyl cyclohexanone and 3,3-dimethyl cyclohexyl acetate. Formation of 3,3-dimethyl cyclohexanone from Cyclademol by sludge was confirmed in subsequent experiments using Cyclademol as a substrate, indicating the involvement of an oxygen insertion reminiscent of a Baeyer-Villiger oxidation. Further mineralization of 3,3-dimethyl cyclohexanone was also confirmed in subsequent studies. Three steps were thus required for complete biodegradation of the alicyclic musk: (1) successive ester hydrolyses leading to the formation of Cyclademol with concomitant degradation of the resulting acids, (2) conversion of Cyclademol into 3,3-dimethyl cyclohexanone, and (3) further mineralization via ring cleavage.
Collapse
Affiliation(s)
- M Seyfried
- Firmenich SA, Route des Jeunes 1, 1211, Geneva, Switzerland,
| | | | | | | | | |
Collapse
|
20
|
Hydroquinone: environmental pollution, toxicity, and microbial answers. BIOMED RESEARCH INTERNATIONAL 2013; 2013:542168. [PMID: 23936816 PMCID: PMC3727088 DOI: 10.1155/2013/542168] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/20/2013] [Indexed: 12/12/2022]
Abstract
Hydroquinone is a major benzene metabolite, which is a well-known haematotoxic and carcinogenic agent associated with malignancy in occupational environments. Human exposure to hydroquinone can occur by dietary, occupational, and environmental sources. In the environment, hydroquinone showed increased toxicity for aquatic organisms, being less harmful for bacteria and fungi. Recent pieces of evidence showed that hydroquinone is able to enhance carcinogenic risk by generating DNA damage and also to compromise the general immune responses which may contribute to the impaired triggering of the host immune reaction. Hydroquinone bioremediation from natural and contaminated sources can be achieved by the use of a diverse group of microorganisms, ranging from bacteria to fungi, which harbor very complex enzymatic systems able to metabolize hydroquinone either under aerobic or anaerobic conditions. Due to the recent research development on hydroquinone, this review underscores not only the mechanisms of hydroquinone biotransformation and the role of microorganisms and their enzymes in this process, but also its toxicity.
Collapse
|
21
|
Isolation and characterization of a novel Rhodococcus strain with switchable carbonyl reductase and para-acetylphenol hydroxylase activities. ACTA ACUST UNITED AC 2013; 40:11-20. [DOI: 10.1007/s10295-012-1199-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/10/2012] [Indexed: 12/22/2022]
Abstract
Abstract
In the search for an effective biocatalyst for the reduction of acetophenones with unprotected hydroxy group on the benzene ring, a microorganism, which reduced para-acetylphenol to S-(−)-1-(para-hydroxyphenyl)ethanol under anaerobic conditions, was isolated from soil samples and the 16S rDNA study showed that it was phylogenetically affiliated with species of the genus Rhodococcus and was most similar to Rhodococcus pyridinivorans. Unexpectedly, this strain also hydroxylated para-acetylphenol to give 4-acetylcatechol in presence of oxygen, possessing para-acetylphenol hydroxylase activity. While the reduction of para-acetylphenol had an optimal reaction pH at 7 and a broad optimal temperature range (35–45 °C), the hydroxylation reached the maximum conversion at the pH range of 7–8 and 35 °C. This study identified for the first time a Rhodococcus strain with para-acetylphenol hydroxylase activity, which also contains highly enantioselective carbonyl reductase activity with potential applications for the asymmetric reduction of these less-explored but important ketones such as α-aminoacetophenone, 3′-hydroxyacetophenone and 4′-hydroxyacetophenone. The para-acetylphenol hydroxylase and carbonyl reductase activity are switchable by the reaction conditions.
Collapse
|
22
|
Two enzymes of a complete degradation pathway for linear alkylbenzenesulfonate (LAS) surfactants: 4-sulfoacetophenone Baeyer-Villiger monooxygenase and 4-sulfophenylacetate esterase in Comamonas testosteroni KF-1. Appl Environ Microbiol 2012; 78:8254-63. [PMID: 23001656 DOI: 10.1128/aem.02412-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complete biodegradation of the surfactant linear alkylbenzenesulfonate (LAS) is accomplished by complex bacterial communities in two steps. First, all LAS congeners are degraded into about 50 sulfophenylcarboxylates (SPC), one of which is 3-(4-sulfophenyl)butyrate (3-C(4)-SPC). Second, these SPCs are mineralized. 3-C(4)-SPC is mineralized by Comamonas testosteroni KF-1 in a process involving 4-sulfoacetophenone (SAP) as a metabolite and an unknown inducible Baeyer-Villiger monooxygenase (BVMO) to yield 4-sulfophenyl acetate (SPAc) from SAP (SAPMO enzyme); hydrolysis of SPAc to 4-sulfophenol and acetate is catalyzed by an unknown inducible esterase (SPAc esterase). Transcriptional analysis showed that one of four candidate genes for BVMOs in the genome of strain KF-1, as well as an SPAc esterase candidate gene directly upstream, was inducibly transcribed during growth with 3-C(4)-SPC. The same genes were identified by enzyme purification and peptide fingerprinting-mass spectrometry when SAPMO was enriched and SPAc esterase purified to homogeneity by protein chromatography. Heterologously overproduced pure SAPMO converted SAP to SPAc and was active with phenylacetone and 4-hydroxyacetophenone but not with cyclohexanone and progesterone. SAPMO showed the highest sequence homology to the archetypal phenylacetone BVMO (57%), followed by steroid BVMO (55%) and 4-hydroxyacetophenone BVMO (30%). Finally, the two pure enzymes added sequentially, SAPMO with NADPH and SAP, and then SPAc esterase, catalyzed the conversion of SAP via SPAc to 4-sulfophenol and acetate in a 1:1:1:1 molar ratio. Hence, the first two enzymes of a complete LAS degradation pathway were identified, giving evidence for the recruitment of members of the very versatile type I BVMO and carboxylester hydrolase enzyme families for the utilization of a xenobiotic compound by bacteria.
Collapse
|
23
|
Zhang S, Sun W, Xu L, Zheng X, Chu X, Tian J, Wu N, Fan Y. Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in Peudomonas sp. 1-7. BMC Microbiol 2012; 12:27. [PMID: 22380602 PMCID: PMC3324391 DOI: 10.1186/1471-2180-12-27] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 03/02/2012] [Indexed: 11/10/2022] Open
Abstract
Background para-Nitrophenol (PNP), a priority environmental pollutant, is hazardous to humans and animals. However, the information relating to the PNP degradation pathways and their enzymes remain limited. Results Pseudomonas sp.1-7 was isolated from methyl parathion (MP)-polluted activated sludge and was shown to degrade PNP. Two different intermediates, hydroquinone (HQ) and 4-nitrocatechol (4-NC) were detected in the catabolism of PNP. This indicated that Pseudomonas sp.1-7 degraded PNP by two different pathways, namely the HQ pathway, and the hydroxyquinol (BT) pathway (also referred to as the 4-NC pathway). A gene cluster (pdcEDGFCBA) was identified in a 10.6 kb DNA fragment of a fosmid library, which cluster encoded the following enzymes involved in PNP degradation: PNP 4-monooxygenase (PdcA), p-benzoquinone (BQ) reductase (PdcB), hydroxyquinol (BT) 1,2-dioxygenase (PdcC), maleylacetate (MA) reductase (PdcF), 4-hydroxymuconic semialdehyde (4-HS) dehydrogenase (PdcG), and hydroquinone (HQ) 1,2-dioxygenase (PdcDE). Four genes (pdcDEFG) were expressed in E. coli and the purified pdcDE, pdcG and pdcF gene products were shown to convert HQ to 4-HS, 4-HS to MA and MA to β-ketoadipate respectively by in vitro activity assays. Conclusions The cloning, sequencing, and characterization of these genes along with the functional PNP degradation studies identified 4-NC, HQ, 4-HS, and MA as intermediates in the degradation pathway of PNP by Pseudomonas sp.1-7. This is the first conclusive report for both 4-NC and HQ- mediated degradation of PNP by one microorganism.
Collapse
Affiliation(s)
- Shuangyu Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100081, PR China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
An unexpected gene cluster for downstream degradation of alkylphenols in Sphingomonas sp. strain TTNP3. Appl Microbiol Biotechnol 2011; 93:1315-24. [DOI: 10.1007/s00253-011-3451-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
|
25
|
Kolvenbach BA, Lenz M, Benndorf D, Rapp E, Fousek J, Vlcek C, Schäffer A, Gabriel FLP, Kohler HPE, Corvini PFX. Purification and characterization of hydroquinone dioxygenase from Sphingomonas sp. strain TTNP3. AMB Express 2011; 1:8. [PMID: 21906340 PMCID: PMC3222310 DOI: 10.1186/2191-0855-1-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/27/2011] [Indexed: 11/11/2022] Open
Abstract
Hydroquinone-1,2-dioxygenase, an enzyme involved in the degradation of alkylphenols in Sphingomonas sp. strain TTNP3 was purified to apparent homogeneity. The extradiol dioxygenase catalyzed the ring fission of hydroquinone to 4-hydroxymuconic semialdehyde and the degradation of chlorinated and several alkylated hydroquinones. The activity of 1 mg of the purified enzyme with unsubstituted hydroquinone was 6.1 μmol per minute, the apparent Km 2.2 μM. ICP-MS analysis revealed an iron content of 1.4 moles per mole enzyme. The enzyme lost activity upon exposure to oxygen, but could be reactivated by Fe(II) in presence of ascorbate. SDS-PAGE analysis of the purified enzyme yielded two bands of an apparent size of 38 kDa and 19 kDa, respectively. Data from MALDI-TOF analyses of peptides of the respective bands matched with the deduced amino acid sequences of two neighboring open reading frames found in genomic DNA of Sphingomonas sp strain TTNP3. The deduced amino acid sequences showed 62% and 47% identity to the large and small subunit of hydroquinone dioxygenase from Pseudomonas fluorescens strain ACB, respectively. This heterotetrameric enzyme is the first of its kind found in a strain of the genus Sphingomonas sensu latu.
Collapse
|
26
|
Leisch H, Morley K, Lau PCK. Baeyer−Villiger Monooxygenases: More Than Just Green Chemistry. Chem Rev 2011; 111:4165-222. [DOI: 10.1021/cr1003437] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hannes Leisch
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Krista Morley
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Peter C. K. Lau
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
27
|
Evans SK, Pearce AA, Ibezim PK, Primm TP, Gaillard AR. Select acetophenones modulate flagellar motility in chlamydomonas. Chem Biol Drug Des 2010; 75:333-7. [PMID: 20659114 DOI: 10.1111/j.1747-0285.2009.00933.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetophenones were screened for activity against positive phototaxis of Chlamydomonas cells, a process that requires co-ordinated flagellar motility. The structure-activity relationships of a series of acetophenones are reported, including acetophenones that affect flagellar motility and cell viability. Notably, 4-methoxyacetophenone, 3,4-dimethoxyacetophenone, and 4-hydroxyacetophenone induced negative phototaxis in Chlamydomonas, suggesting interference with activity of flagellar proteins and control of flagellar dominance.
Collapse
Affiliation(s)
- Shakila K Evans
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
| | | | | | | | | |
Collapse
|
28
|
The missing link in linear alkylbenzenesulfonate surfactant degradation: 4-sulfoacetophenone as a transient intermediate in the degradation of 3-(4-sulfophenyl)butyrate by Comamonas testosteroni KF-1. Appl Environ Microbiol 2009; 76:196-202. [PMID: 19915037 DOI: 10.1128/aem.02181-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biodegradation of the laundry surfactant linear alkylbenzenesulfonate (LAS) involves complex bacterial communities. The known heterotrophic community has two tiers. First, all LAS congeners are oxygenated and oxidized to about 50 sulfophenylcarboxylates (SPC). Second, the SPCs are mineralized. Comamonas testosteroni KF-1 mineralizes 3-(4-sulfophenyl)butyrate (3-C4-SPC). During growth of strain KF-1 with 3-C4-SPC, two transient intermediates were detected in the culture medium. One intermediate was identified as 4-sulfoacetophenone (SAP) (4-acetylbenzenesulfonate) by nuclear magnetic resonance (NMR). The other was 4-sulfophenol (SP). This information allowed us to postulate a degradation pathway that comprises the removal of an acetyl moiety from (derivatized) 3-C4-SPC, followed by a Baeyer-Villiger monooxygenation of SAP and subsequent ester cleavage to yield SP. Inducible NADPH-dependent SAP-oxygenase was detected in crude extracts of strain KF-1. The enzyme reaction involved transient formation of 4-sulfophenol acetate (SPAc), which was completely hydrolyzed to SP and acetate. SP was subject to NADH-dependent oxygenation in crude extract, and 4-sulfocatechol (SC) was subject to oxygenolytic ring cleavage. The first complete degradative pathway for an SPC can now be depicted with 3-C4-SPC: transport, ligation to a coenzyme A (CoA) ester, and manipulation to allow abstraction of acetyl-CoA to yield SAP, Baeyer-Villiger monooxygenation to SPAc, hydrolysis of the ester to acetate and SP, monooxygenation of SP to SC, the ortho ring-cleavage pathway with desulfonation, and sulfite oxidation.
Collapse
|
29
|
Pérez-Pantoja D, Donoso RA, Sánchez MA, González B. Genuine genetic redundancy in maleylacetate-reductase-encoding genes involved in degradation of haloaromatic compounds by Cupriavidus necator JMP134. Microbiology (Reading) 2009; 155:3641-3651. [DOI: 10.1099/mic.0.032086-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maleylacetate reductases (MAR) are required for biodegradation of several substituted aromatic compounds. To date, the functionality of two MAR-encoding genes (tfdF
I and tfdF
II) has been reported in Cupriavidus necator JMP134(pJP4), a known degrader of aromatic compounds. These two genes are located in tfd gene clusters involved in the turnover of 2,4-dichlorophenoxyacetate (2,4-D) and 3-chlorobenzoate (3-CB). The C. necator JMP134 genome comprises at least three other genes that putatively encode MAR (tcpD, hqoD and hxqD), but confirmation of their functionality and their role in the catabolism of haloaromatic compounds has not been assessed. RT-PCR expression analyses of C. necator JMP134 cells exposed to 2,4-D, 3-CB, 2,4,6-trichlorophenol (2,4,6-TCP) or 4-fluorobenzoate (4-FB) showed that tfdF
I and tfdF
II are induced by haloaromatics channelled to halocatechols as intermediates. In contrast, 2,4,6-TCP only induces tcpD, and any haloaromatic compounds tested did not induce hxqD and hqoD. However, the tcpD, hxqD and hqoD gene products showed MAR activity in cell extracts and provided the MAR function for 2,4-D catabolism when heterologously expressed in MAR-lacking strains. Growth tests for mutants of the five MAR-encoding genes in strain JMP134 showed that none of these genes is essential for degradation of the tested compounds. However, the role of tfdF
I/tfdF
II and tcpD genes in the expression of MAR activity during catabolism of 2,4-D and 2,4,6-TCP, respectively, was confirmed by enzyme activity tests in mutants. These results reveal a striking example of genetic redundancy in the degradation of aromatic compounds.
Collapse
Affiliation(s)
- Danilo Pérez-Pantoja
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Millennium Nucleus on Microbial Ecology and Environmental Microbiology and Biotechnology, NM-EMBA, Center for Advanced Studies in Ecology and Biodiversity, CASEB, Santiago, Chile
| | - Raúl A. Donoso
- Facultad de Ingeniería y Ciencia, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Miguel A. Sánchez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Millennium Nucleus on Microbial Ecology and Environmental Microbiology and Biotechnology, NM-EMBA, Center for Advanced Studies in Ecology and Biodiversity, CASEB, Santiago, Chile
| | - Bernardo González
- Facultad de Ingeniería y Ciencia, Universidad Adolfo Ibáñez, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Millennium Nucleus on Microbial Ecology and Environmental Microbiology and Biotechnology, NM-EMBA, Center for Advanced Studies in Ecology and Biodiversity, CASEB, Santiago, Chile
| |
Collapse
|
30
|
Rehdorf J, Zimmer CL, Bornscheuer UT. Cloning, expression, characterization, and biocatalytic investigation of the 4-hydroxyacetophenone monooxygenase from Pseudomonas putida JD1. Appl Environ Microbiol 2009; 75:3106-14. [PMID: 19251889 PMCID: PMC2681629 DOI: 10.1128/aem.02707-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 02/20/2009] [Indexed: 11/20/2022] Open
Abstract
While the number of available recombinant Baeyer-Villiger monooxygenases (BVMOs) has grown significantly over the last few years, there is still the demand for other BVMOs to expand the biocatalytic diversity. Most BVMOs that have been described are dedicated to convert efficiently cyclohexanone and related cyclic aliphatic ketones. To cover a broader range of substrate types and enantio- and/or regioselectivities, new BVMOs have to be discovered. The gene encoding a BVMO identified in Pseudomonas putida JD1 converting aromatic ketones (HAPMO; 4-hydroxyacetophenone monooxygenase) was amplified from genomic DNA using SiteFinding-PCR, cloned, and functionally expressed in Escherichia coli. Furthermore, four other open reading frames could be identified clustered around this HAPMO. It has been suggested that these proteins, including the HAPMO, might be involved in the degradation of 4-hydroxyacetophenone. Substrate specificity studies revealed that a large variety of other arylaliphatic ketones are also converted via Baeyer-Villiger oxidation into the corresponding esters, with preferences for para-substitutions at the aromatic ring. In addition, oxidation of aldehydes and some heteroaromatic compounds was observed. Cycloketones and open-chain ketones were not or poorly accepted, respectively. It was also found that this enzyme oxidizes aromatic ketones such as 3-phenyl-2-butanone with excellent enantioselectivity (E >>100).
Collapse
Affiliation(s)
- Jessica Rehdorf
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| | | | | |
Collapse
|
31
|
Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3. J Bacteriol 2009; 191:2703-10. [PMID: 19218392 DOI: 10.1128/jb.01566-08] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pseudomonas sp. strain WBC-3 utilizes para-nitrophenol (PNP) as a sole source of carbon, nitrogen, and energy. In order to identify the genes involved in this utilization, we cloned and sequenced a 12.7-kb fragment containing a conserved region of NAD(P)H:quinone oxidoreductase genes. Of the products of the 13 open reading frames deduced from this fragment, PnpA shares 24% identity to the large component of a 3-hydroxyphenylacetate hydroxylase from Pseudomonas putida U and PnpB is 58% identical to an NAD(P)H:quinone oxidoreductase from Escherichia coli. Both PnpA and PnpB were purified to homogeneity as His-tagged proteins, and they were considered to be a monomer and a dimer, respectively, as determined by gel filtration. PnpA is a flavin adenine dinucleotide-dependent single-component PNP 4-monooxygenase that converts PNP to para-benzoquinone in the presence of NADPH. PnpB is a flavin mononucleotide-and NADPH-dependent p-benzoquinone reductase that catalyzes the reduction of p-benzoquinone to hydroquinone. PnpB could enhance PnpA activity, and genetic analyses indicated that both pnpA and pnpB play essential roles in PNP mineralization in strain WBC-3. Furthermore, the pnpCDEF gene cluster next to pnpAB shares significant similarities with and has the same organization as a gene cluster responsible for hydroquinone degradation (hapCDEF) in Pseudomonas fluorescens ACB (M. J. Moonen, N. M. Kamerbeek, A. H. Westphal, S. A. Boeren, D. B. Janssen, M. W. Fraaije, and W. J. van Berkel, J. Bacteriol. 190:5190-5198, 2008), suggesting that the genes involved in PNP degradation are physically linked.
Collapse
|
32
|
Hydroquinone dioxygenase from pseudomonas fluorescens ACB: a novel member of the family of nonheme-iron(II)-dependent dioxygenases. J Bacteriol 2008; 190:5199-209. [PMID: 18502867 DOI: 10.1128/jb.01945-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroquinone 1,2-dioxygenase (HQDO), an enzyme involved in the catabolism of 4-hydroxyacetophenone in Pseudomonas fluorescens ACB, was purified to apparent homogeneity. Ligandation with 4-hydroxybenzoate prevented the enzyme from irreversible inactivation. HQDO was activated by iron(II) ions and catalyzed the ring fission of a wide range of hydroquinones to the corresponding 4-hydroxymuconic semialdehydes. HQDO was inactivated by 2,2'-dipyridyl, o-phenanthroline, and hydrogen peroxide and inhibited by phenolic compounds. The inhibition with 4-hydroxybenzoate (K(i) = 14 microM) was competitive with hydroquinone. Online size-exclusion chromatography-mass spectrometry revealed that HQDO is an alpha2beta2 heterotetramer of 112.4 kDa, which is composed of an alpha-subunit of 17.8 kDa and a beta-subunit of 38.3 kDa. Each beta-subunit binds one molecule of 4-hydroxybenzoate and one iron(II) ion. N-terminal sequencing and peptide mapping and sequencing based on matrix-assisted laser desorption ionization--two-stage time of flight analysis established that the HQDO subunits are encoded by neighboring open reading frames (hapC and hapD) of a gene cluster, implicated to be involved in 4-hydroxyacetophenone degradation. HQDO is a novel member of the family of nonheme-iron(II)-dependent dioxygenases. The enzyme shows insignificant sequence identity with known dioxygenases.
Collapse
|