1
|
Davignon G, Pietrosemoli N, Benaroudj N, Soupé-Gilbert ME, Cagliero J, Turc É, Picardeau M, Guentas L, Goarant C, Thibeaux R. Leptospira interrogans biofilm transcriptome highlights adaption to starvation and general stress while maintaining virulence. NPJ Biofilms Microbiomes 2024; 10:95. [PMID: 39349472 PMCID: PMC11442865 DOI: 10.1038/s41522-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/15/2024] [Indexed: 10/02/2024] Open
Abstract
Life-threatening Leptospira interrogans navigate a dual existence: surviving in the environment and infecting mammalian hosts. Biofilm formation is presumably an important survival strategy to achieve this process. Understanding the relation between biofilm and virulence might improve our comprehension of leptospirosis epidemiology. Our study focused on elucidating Leptospira's adaptations and regulations involved in such complex microenvironments. To determine the transcriptional profile of Leptospira in biofilm, we compared the transcriptomes in late biofilms and in exponential planktonic cultures. While genes for motility, energy production, and metabolism were downregulated, those governing general stress response, defense against metal stress, and redox homeostasis showed a significant upsurge, hinting at a tailored defensive strategy against stress. Further, despite a reduced metabolic state, biofilm disruption swiftly restored metabolic activity. Crucially, bacteria in late biofilms or resulting from biofilm disruption retained virulence in an animal model. In summary, our study highlights Leptospira's adaptive equilibrium in biofilms: minimizing energy expenditure, potentially aiding in withstanding stresses while maintaining pathogenicity. These insights are important for explaining the survival strategies of Leptospira, revealing that a biofilm lifestyle may confer an advantage in maintaining virulence, an understanding essential for managing leptospirosis across both environmental and mammalian reservoirs.
Collapse
Affiliation(s)
- Grégoire Davignon
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
- Exact and Applied Sciences Institute (ISEA), University of New Caledonia, BP R4, 98851, Nouméa, New Caledonia
| | - Natalia Pietrosemoli
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Nadia Benaroudj
- Biology of Spirochetes, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, F-75015, Paris, France
| | - Marie-Estelle Soupé-Gilbert
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
| | - Julie Cagliero
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
| | - Élodie Turc
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, F-75015, Paris, France
| | - Mathieu Picardeau
- Biology of Spirochetes, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, F-75015, Paris, France
| | - Linda Guentas
- Exact and Applied Sciences Institute (ISEA), University of New Caledonia, BP R4, 98851, Nouméa, New Caledonia
| | - Cyrille Goarant
- Pacific Community SPC - Public Health Division - B.P. D5, Nouméa, New Caledonia
| | - Roman Thibeaux
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia.
| |
Collapse
|
2
|
Hayashida N, Urano-Tashiro Y, Horie T, Saiki K, Yamanaka Y, Takahashi Y. Transcriptome and metabolome analyses of Streptococcus gordonii DL1 under acidic conditions. J Oral Biosci 2024; 66:112-118. [PMID: 38135272 DOI: 10.1016/j.job.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVES Streptococcus gordonii is associated with the formation of biofilms, especially those that comprise dental plaque. Notably, S. gordonii DL1 causes infective endocarditis (IE). Colonization of this bacterium requires a mechanism that can tolerate a drop in environmental pH by producing acid via its own sugar metabolism. The ability to survive acidic environmental conditions might allow the bacterium to establish vegetative colonization even in the endocardium due to inflammation-induced lowering of pH, increasing the risk of IE. At present, the mechanism by which S. gordonii DL1 survives under acidic conditions is not thoroughly elucidated. The present study was thus conducted to elucidate the mechanism(s) by which S. gordonii DL1 survives under acidic conditions. METHODS We analyzed dynamic changes in gene transcription and intracellular metabolites in S. gordonii DL1 exposed to acidic conditions, using transcriptome and metabolome analyses. RESULTS Transcriptome analysis revealed upregulation of genes involved in heat shock response and glycolysis, and down regulation of genes involved in phosphotransferase systems and biosynthesis of amino acids. The most upregulated genes were a beta-strand repeat protein of unknown function (SGO_RS06325), followed by copper-translocating P-type ATPase (SGO_RS09470) and malic enzyme (SGO_RS01850). The latter two of these contribute to cytoplasmic alkalinization. S. gordonii mutant strains lacking each of these genes showed significantly reduced survival under acidic conditions. Metabolome analysis revealed that cytoplasmic levels of several amino acids were reduced. CONCLUSIONS S. gordonii survives the acidic conditions by recovering the acidic cytoplasm using the various activities, which are regulated at the transcriptional level.
Collapse
Affiliation(s)
- Naoto Hayashida
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| | - Yumiko Urano-Tashiro
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| | - Tetsuro Horie
- Research Center for Odontology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| | - Keitarou Saiki
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| | - Yuki Yamanaka
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| | - Yukihiro Takahashi
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| |
Collapse
|
3
|
Zheng T, Jing M, Gong T, Yan J, Wang X, Xu M, Zhou X, Zeng J, Li Y. Regulatory mechanisms of exopolysaccharide synthesis and biofilm formation in Streptococcus mutans. J Oral Microbiol 2023; 15:2225257. [PMID: 37346997 PMCID: PMC10281425 DOI: 10.1080/20002297.2023.2225257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Background Dental caries is a chronic, multifactorial and biofilm-mediated oral bacterial infection affecting almost every age group and every geographical region. Streptococcus mutans is considered an important pathogen responsible for the initiation and development of dental caries. It produces exopolysaccharides in situ to promote the colonization of cariogenic bacteria and coordinate dental biofilm development. Objective The understanding of the regulatory mechanism of S. mutans biofilm formation can provide a theoretical basis for the prevention and treatment of caries. Design At present, an increasing number of studies have identified many regulatory systems in S. mutans that regulate biofilm formation, including second messengers (e.g. c-di-AMP, Ap4A), transcription factors (e.g. EpsR, RcrR, StsR, AhrC, FruR), two-component systems (e.g. CovR, VicR), small RNA (including sRNA0426, srn92532, and srn133489), acetylation modifications (e.g. ActG), CRISPR-associated proteins (e.g. Cas3), PTS systems (e.g. EIIAB), quorum-sensing signaling system (e.g. LuxS), enzymes (including Dex, YidC, CopZ, EzrA, lmrB, SprV, RecA, PdxR, MurI) and small-molecule metabolites. Results This review summarizes the recent progress in the molecular regulatory mechanisms of exopolysaccharides synthesis and biofilm formation in S. mutans.
Collapse
Affiliation(s)
- Ting Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiling Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiangchuan Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mai Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Mutations in troABCD against Copper Overload in a copA Mutant of Streptococcus suis. Appl Environ Microbiol 2023; 89:e0184122. [PMID: 36475883 PMCID: PMC9888204 DOI: 10.1128/aem.01841-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Streptococcus suis is a major swine pathogen that is increasingly recognized as a porcine zoonotic pathogen that threatens the health of both pigs and humans. Metal homeostasis plays a critical role during the process of bacterial infection. In this study, RNA sequencing was used to identify potential candidate genes involved in the maintenance of intracellular copper homeostasis. CopA was identified as the primary copper exporter in S. suis. The copA deletion mutant strain was found to be more sensitive to copper and accumulated more intracellular copper than the wild-type (WT) parent strain. In addition, adding manganese increased the ability of S. suis to resist copper, and the manganese transporter, TroABCD, was involved in tolerance to copper. The copA deletion mutant strain accumulated less copper when supplemented with manganese. Furthermore, when cultured with copper, the double deletion mutant (ΔcopAΔtroA) exhibited improved growth compared to the copA deletion mutant strain. In addition, the double deletion mutant (ΔcopAΔtroA) accumulated less copper than the copA deletion mutant strain. These data were consistent with a model wherein defective TroABCD resulted in decreased cellular copper accumulation and protected the strain against copper poisoning. IMPORTANCE Metal homeostasis plays a critical role during the process of bacterial infection. We identified three important potential candidate genes involved in maintenance of intracellular copper homeostasis. CopA was demonstrated to be the main copper exporter in Streptococcus suis, and manganese increased the tolerance of S. suis to copper. The double deletion mutant (ΔcopAΔtroA) improved growth ability over the copA deletion mutant strain in the presence of high concentrations of copper and accumulated less copper. These findings are consistent with a model wherein defective TroABCD resulted in decreased cellular accumulation of copper and protected the strain against copper poisoning.
Collapse
|
5
|
Yun Z, Xianghong L, Qianhua G, Qin D. Copper ions inhibit Streptococcus mutans-Veillonella parvula dual biofilm by activating Streptococcus mutans reactive nitrogen species. BMC Oral Health 2023; 23:48. [PMID: 36709299 PMCID: PMC9883903 DOI: 10.1186/s12903-023-02738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND To investigate the inhibition mechanism of copper ions on Streptococcus mutans-Veillonella parvula dual biofilm. METHODS S. mutans-V. parvula dual biofilm was constructed and copper ions were added at different concentrations. After the biofilm was collected, RNA-seq and qRT-PCR were then performed to get gene information. RESULTS The coculture of S. mutans and V. parvula formed a significantly better dual biofilm of larger biomass than S. mutans mono biofilm. And copper ions showed a more significant inhibitory effect on S. mutans-V. parvula dual biofilm than on S. mutans mono biofilm when copper ions concentration reached 100 µM, and copper ions showed a decreased inhibitory effect on S. gordonii-V. parvula dual biofilm and S. sanguis-V.parvula dual biofilm than on the two mono biofilms as the concentration of copper ions increased. And common trace elements such as iron, magnesium, and zinc showed no inhibitory effect difference on S. mutans-V. parvula dual biofilm. The RNA-seq results showed a significant difference in the expression of a new ABC transporter SMU_651c, SMU_652c, SMU_653c, and S. mutans copper chaperone copYAZ. SMU_651c, SMU_652c, and SMU_653c were predicted to function as nitrite/nitrate transporter-related proteins, which suggested the specific inhibition of copper ions on S. mutans-V. parvula dual biofilm may be caused by the activation of S. mutans reactive nitrogen species. CONCLUSIONS Streptococcus mutans and Veillonella parvula are symbiotic, forming a dual biofilm of larger biomass to better resist the external antibacterial substances, which may increase the virulence of S. mutans. While common trace elements such as iron, magnesium, and zinc showed no specific inhibitory effect on S. mutans-V. parvula dual biofilm, copper ion had a unique inhibitory effect on S. mutans-V. parvula dual biofilm which may be caused by activating S. mutans RNS when copper ions concentration reached 250 µM.
Collapse
Affiliation(s)
- Zhang Yun
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041 Sichuan China ,grid.13291.380000 0001 0807 1581Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan China
| | - Liu Xianghong
- grid.54549.390000 0004 0369 4060Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
| | - Gao Qianhua
- grid.54549.390000 0004 0369 4060Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
| | - Du Qin
- grid.54549.390000 0004 0369 4060Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
| |
Collapse
|
6
|
Chen J, Chen J, Wang Z, Chen C, Zheng J, Yu Z, Deng Q, Zhao Y, Wen Z. 20S-ginsenoside Rg3 inhibits the biofilm formation and haemolytic activity of Staphylococcus aureus by inhibiting the SaeR/SaeS two-component system. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction.
Staphylococcus aureus
is a major cause of chronic diseases and biofilm formation is a contributing factor. 20S-ginsenoside Rg3 (Rg3) is a natural product extracted from the traditional Chinese medicine red ginseng.
Gap statement. The effects of Rg3 on biofilm formation and haemolytic activity as well as its antibacterial mechanism against
S. aureus
have not been reported.
Aim. This study aimed to investigate the effects of Rg3 on biofilm formation and haemolytic activity as well as its antibacterial action against clinical
S. aureus
isolates.
Methodology. The effect of Rg3 on biofilm formation of clinical
S. aureus
isolates was studied by crystal violet staining. Haemolytic activity analysis was carried out. Furthermore, the influence of Rg3 on the proteome profile of
S. aureus
was studied by quantitative proteomics to clarify the mechanism underlying its antibacterial action and further verified by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR).
Results. Rg3 significantly inhibited biofilm formation and haemolytic activity in clinical
S. aureus
isolates. A total of 63 with >1.5-fold changes in expression were identified, including 34 upregulated proteins and 29 downregulated proteins. Based on bioinformatics analysis, the expression of several virulence factors and biofilm-related proteins, containing CopZ, CspA, SasG, SaeR/SaeS two-component system and SaeR/SaeS-regulated proteins, including leukocidin-like protein 2, immunoglobulin-binding protein G (Sbi) and fibrinogen-binding protein, in the
S. aureu
s of the Rg3-treated group was downregulated. RT-qPCR confirmed that Rg3 inhibited the regulation of SaeR/SaeS and decreased the transcriptional levels of the biofilm-related genes CopZ, CspA and SasG.
Conclusions. Rg3 reduces the formation of biofilm by reducing cell adhesion and aggregation. Further, Rg3 can inhibit the SaeR/SaeS two-component system, which acts as a crucial signal transduction system for the anti-virulence activity of Rg3 against clinical
S. aureus
isolates.
Collapse
Affiliation(s)
- Junwen Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Jinlian Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Zhanwen Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Chengchun Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Jinxin Zheng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Zhijian Yu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Qiwen Deng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Yuxi Zhao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| |
Collapse
|
7
|
Chen R, Du M, Liu C. Strategies for dispersion of cariogenic biofilms: applications and mechanisms. Front Microbiol 2022; 13:981203. [PMID: 36134140 PMCID: PMC9484479 DOI: 10.3389/fmicb.2022.981203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022] Open
Abstract
Bacteria residing within biofilms are more resistant to drugs than planktonic bacteria. They can thus play a significant role in the onset of chronic infections. Dispersion of biofilms is a promising avenue for the treatment of biofilm-associated diseases, such as dental caries. In this review, we summarize strategies for dispersion of cariogenic biofilms, including biofilm environment, signaling pathways, biological therapies, and nanovehicle-based adjuvant strategies. The mechanisms behind these strategies have been discussed from the components of oral biofilm. In the future, these strategies may provide great opportunities for the clinical treatment of dental diseases. Graphical Abstract.
Collapse
|
8
|
ZccE is a Novel P-type ATPase That Protects Streptococcus mutans Against Zinc Intoxication. PLoS Pathog 2022; 18:e1010477. [PMID: 35939512 PMCID: PMC9387928 DOI: 10.1371/journal.ppat.1010477] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/18/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022] Open
Abstract
Zinc is a trace metal that is essential to all forms of life, but that becomes toxic at high concentrations. Because it has both antimicrobial and anti-inflammatory properties and low toxicity to mammalian cells, zinc has been used as a therapeutic agent for centuries to treat a variety of infectious and non-infectious conditions. While the usefulness of zinc-based therapies in caries prevention is controversial, zinc is incorporated into toothpaste and mouthwash formulations to prevent gingivitis and halitosis. Despite this widespread use of zinc in oral healthcare, the mechanisms that allow Streptococcus mutans, a keystone pathogen in dental caries and prevalent etiological agent of infective endocarditis, to overcome zinc toxicity are largely unknown. Here, we discovered that S. mutans is inherently more tolerant to high zinc stress than all other species of streptococci tested, including commensal streptococci associated with oral health. Using a transcriptome approach, we uncovered several potential strategies utilized by S. mutans to overcome zinc toxicity. Among them, we identified a previously uncharacterized P-type ATPase transporter and cognate transcriptional regulator, which we named ZccE and ZccR respectively, as responsible for the remarkable high zinc tolerance of S. mutans. In addition to zinc, we found that ZccE, which was found to be unique to S. mutans strains, mediates tolerance to at least three additional metal ions, namely cadmium, cobalt, and copper. Loss of the ability to maintain zinc homeostasis when exposed to high zinc stress severely disturbed zinc:manganese ratios, leading to heightened peroxide sensitivity that was alleviated by manganese supplementation. Finally, we showed that the ability of the ΔzccE strain to stably colonize the rat tooth surface after topical zinc treatment was significantly impaired, providing proof of concept that ZccE and ZccR are suitable targets for the development of antimicrobial therapies specifically tailored to kill S. mutans. Dental caries is an overlooked infectious disease affecting more than 50% of the adult population. While several bacteria that reside in dental plaque have been associated with caries development and progression, Streptococcus mutans is deemed a keystone caries pathogen due to its capacity to modify the dental plaque environment in a way that is conducive with disease development. Zinc is an essential trace metal to life but toxic when encountered at high concentrations, to the point that it has been used as an antimicrobial for centuries. Despite the widespread use of zinc in oral healthcare products, little is known about the mechanisms utilized by oral bacteria to overcome its toxic effects. In this study, we discovered that S. mutans can tolerate exposure to much higher levels of zinc than closely related streptococcal species, including species that antagonize S. mutans and are associated with oral health. In this study, we identified a new metal transporter, named ZccE, as directly responsible for the inherently high zinc tolerance of S. mutans. Because ZccE is not present in other bacteria, our findings provide a new target for the development of a zinc-based therapy specifically tailored to kill S. mutans.
Collapse
|
9
|
Abstract
Streptococcus mutans is a primary cariogenic pathogen in humans. Arginine metabolism is required for bacterial growth. In S. mutans, however, the involvement of transcription factors in regulating arginine metabolism is unclear. The purpose of this study was to investigate the function and mechanism of ArgR family transcription factors in S. mutans. Here, we identified an ArgR (arginine repressor) family transcription factor named AhrC, which negatively regulates arginine biosynthesis and biofilm formation in S. mutans. The ahrC in-frame deletion strain exhibited slow growth and significantly increased intracellular arginine content. The strain overexpressing ahrC showed reduced intracellular arginine content, decreased biofilm biomass, reduced production of water-insoluble exopolysaccharides (EPS), and different biofilm structures. Furthermore, global gene expression profiles revealed differential expression levels of 233 genes in the ahrC-deficient strain, among which genes related to arginine biosynthesis (argJ, argB, argC, argD, argF, argG, argH) were significantly upregulated. In the ahrC overexpression strain, there are 89 differentially expressed genes, mostly related to arginine biosynthesis. The conserved DNA patterns bound by AhrC were identified by electrophoretic mobility shift assay (EMSA) and DNase I footprinting. In addition, the analysis of β-galactosidase activity showed that AhrC acted as a negative regulator. Taken together, our findings suggest that AhrC is an important transcription factor that regulates arginine biosynthesis gene expression and biofilm formation in S. mutans. These findings add new aspects to the complexity of regulating the expression of genes involved in arginine biosynthesis and biofilm formation in S. mutans. IMPORTANCE Arginine metabolism is essential for bacterial growth. The regulation of intracellular arginine metabolism in Streptococcus mutans, one of the major pathogens of dental caries, is unclear. In this study, we found that the transcription factor AhrC can directly and negatively regulate the expression of N-acetyl-gamma-glutamyl-phosphate reductase (argC), thus regulating arginine biosynthesis in S. mutans. In addition, the ahrC overexpression strain exhibited a significant decrease in biofilm and water-insoluble extracellular polysaccharides (EPS). This study adds new support to our understanding of the regulation of intracellular arginine metabolism in S. mutans.
Collapse
|
10
|
Ma X, Zhou S, Xu X, Du Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Front Surg 2022; 9:905892. [PMID: 35990090 PMCID: PMC9388913 DOI: 10.3389/fsurg.2022.905892] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Copper has been used as an antimicrobial agent long time ago. Nowadays, copper-containing nanoparticles (NPs) with antimicrobial properties have been widely used in all aspects of our daily life. Copper-containing NPs may also be incorporated or coated on the surface of dental materials to inhibit oral pathogenic microorganisms. This review aims to detail copper-containing NPs' antimicrobial mechanism, cytotoxic effect and their application in dentistry.
Collapse
Affiliation(s)
- Xinru Ma
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Stomatology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (West China Hospital Sichuan University Tibet Chengdu Branch Hospital), Chengdu, China
| | - Shiyu Zhou
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoling Xu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qin Du
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Mao M, Zhang W, Huang Z, Huang J, Wang J, Li W, Gu S. Graphene Oxide-Copper Nanocomposites Suppress Cariogenic Streptococcus mutans Biofilm Formation. Int J Nanomedicine 2021; 16:7727-7739. [PMID: 34824531 PMCID: PMC8610231 DOI: 10.2147/ijn.s303521] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/26/2021] [Indexed: 01/22/2023] Open
Abstract
Introduction Dental caries is a biofilm-dependent disease that largely relies on the ability of Streptococcus mutans to synthesize exopolysaccharide matrix. Graphene oxide-based metal nanomaterials, as the derivatives of graphene, are potent agents against pathogens by their impressive antibacterial and anti-biofilm biofunctions. Previously, we fabricated the novel graphene oxide-copper nanocomposites (GO-Cu), maintaining a long-term release of copper nanoparticles. Here, the biofunctionalization of GO-Cu nanocomposites against cariogenic S. mutans is investigated. Methods Growth curve observation and colony forming units counting were applied to detect the antibacterial effect of GO-Cu nanocomposites on S. mutans. Scanning electron microscopy and the crystal violet assay were used to detect nanocomposite effects on biofilm forming ability. The production and distribution of exopolysaccharides within biofilm was analyzed and the expression of genes required for biofilm formation was explored. Moreover, the regulatory landscape of GO-Cu nanocomposites on S. mutans pathogenicity was probed. Results It has been found that GO-Gu nanocomposites were antibacterial to S. mutans and 10 μg/mL GO-Cu nanocomposites could inhibit the bacteria bioactivity instead of killing them. The biomass of S. mutans biofilm was significantly reduced when treated with 10 μg/mL GO-Cu nanocomposites. Also, 10 μg/mL GO-Cu nanocomposites could alter the biofilm architecture and impair exopolysaccharides production and distribution, and dysregulated the expression of exopolysaccharide-associated genes. Conclusion In all, we found low-dose GO-Cu nanocomposites could disrupt exopolysaccharide matrix assembly and further impair optimal biofilm development with minimal cytotoxicity. Therefore, GO-Cu nanocomposites can open up a new avenue for the development of alternative anti-caries biomaterials.
Collapse
Affiliation(s)
- Mengying Mao
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| | - Wenjie Zhang
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China.,Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| | - Jing Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| | - Jia Wang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| | - Weiping Li
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| | - Shensheng Gu
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| |
Collapse
|
12
|
徐 丽, 刘 姗, 王 敏, 刘 芳, 张 容, 张 凯. [Regulatory role of small RNA srn821978 in mutacin IV expression in Streptococcus mutans]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1725-1732. [PMID: 34916201 PMCID: PMC8685694 DOI: 10.12122/j.issn.1673-4254.2021.11.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To analyze the role of small RNA srn821798 in posttranscriptional regulation of mutacin IV expression in Streptococcus mutans. METHODS The potential target genes of srn821978 were predicted using RNAhybrid, RNAPredator and IntaRNA. We collected 10 Streptococcus mutans (S.muans) strains with high expression of mutacin IV and another 10 S.muans strains that did not express mutacin IV screened by inhibition zone test, and the expression levels of srn821798 and the candidate target genes in these strains were detected by qPCR. Using synthesized mimics and inhibitors of srn821798, we constructed S.muans strains with high or low srn821798 expression via electroporation based on the standard strain of S.muans UA159, and analyzed the expression levels of srn821798 and its candidate target genes in these strains. We also examined the binding ability of srn821798 to its target gene sepM using electrophoresis and a dual- luciferase reporter system. RESULTS The expression levels of the candidate target genes of srn821798 including sepM, comD, comE, nlmA and nlmB were significantly higher while the expression level of srn821798 was significantly lower in clinical S.muans strains with high expression of mutacin IV than in those without mutacin IV expression (P < 0.05). Although the expression levels of the candidate target genes in strains with up- regulated or down- regulated srn821798 expression did not differ significantly from those in the standard strain, the expression level of sepM showed a trend of differential distribution, and srn821798 was predicted to have a strong binding ability to sepM action site. CONCLUSION srn821798 may play a regulatory role in the expression of mutacin IV in S.muans, but the underlying mechanism remains to be explored.
Collapse
Affiliation(s)
- 丽 徐
- 蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu233004, China
| | - 姗姗 刘
- 蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu233004, China
| | - 敏 王
- 蚌埠医学院第二附属医院口腔科,安徽 蚌埠 233040Department of Stomatology, Second Affiliated Hospital of Bengbu Medical College, Bengbu233040, China
| | - 芳 刘
- 蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu233004, China
| | - 容秀 张
- 蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu233004, China
| | - 凯 张
- 蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu233004, China
| |
Collapse
|
13
|
Pan Y, Chen Y, Chen J, Ma Q, Gong T, Yu S, Zhang Q, Zou J, Li Y. The Adc regulon mediates zinc homeostasis in Streptococcus mutans. Mol Oral Microbiol 2021; 36:278-290. [PMID: 34351080 DOI: 10.1111/omi.12350] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023]
Abstract
Zinc (Zn2+ ) is an essential divalent trace metal for living cells. Intracellular zinc homeostasis is critical to the survival and virulence of bacteria. Thus, the frequent fluctuations of salivary zinc, caused by the low physiological level and the frequent exogenous zinc introduction, present a serious challenge for bacteria colonizing the oral cavity. However, the regulation strategies to keep intracellular Zn2+ homeostasis in Streptococcus mutans, an important causative pathogen of dental caries, are unknown. Because zinc uptake is primarily mediated by an ATP-binding ABC transporter AdcABC in Streptococcus strains, we examined the function of AdcABC and transcription factor AdcR in S. mutans in this study. The results demonstrated that deletion of either adcA or adcCB gene impaired the growth but enhanced the extracellular polymeric matrix production in S. mutans, both of which could be relieved after excessive Zn2+ supplementation. Using RNA sequencing analysis, quantitative reverse transcription polymerase chain reaction examination, LacZ-reporter studies, and electrophoretic mobility shift assay, we showed that a MarR (multiple antibiotic resistance regulator) family transcription factor, AdcR, negatively regulates the expression of the genes adcR, adcC, adcB, and adcA by acting on the adcRCB and adcA promoters in response to Zn2+ concentration in their environmental niches. The deletion of adcR increases the sensitivity of S. mutans to excessive Zn2+ supply. Taken together, our findings suggest that Adc regulon, which consists of a Zn2+ uptake transporter AdcCBA and a Zn2+ -responsive repressor AdcR, plays a prominent role in the maintenance of intracellular zinc homeostasis of S. mutans.
Collapse
Affiliation(s)
- Yangyang Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yang Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiamin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuxing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Rules of Expansion: an Updated Consensus Operator Site for the CopR-CopY Family of Bacterial Copper Exporter System Repressors. mSphere 2020; 5:5/3/e00411-20. [PMID: 32461276 PMCID: PMC7253601 DOI: 10.1128/msphere.00411-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many Gram-positive bacteria respond to copper stress by upregulating a copper export system controlled by a copper-sensitive repressor, CopR-CopY. The previous operator sequence for this family of proteins had been identified as TACANNTGTA. Here, using several recombinant proteins and mutations in various DNA fragments, we define those 10 bases as necessary but not sufficient for binding and in doing so, refine the cop operon operator to the 16-base sequence RNYKACANNTGTMRNY. Due to the sheer number of repressors that have been said to bind to the original 10 bases, including many antibiotic resistance repressors such as BlaI and MecI, we feel that this study highlights the need to reexamine many of these sites of the past and use added stringency for verifying operators in the future. Copper is broadly toxic to bacteria. As such, bacteria have evolved specialized copper export systems (cop operons) often consisting of a DNA-binding/copper-responsive regulator (which can be a repressor or activator), a copper chaperone, and a copper exporter. For those bacteria using DNA-binding copper repressors, few studies have examined the regulation of this operon regarding the operator DNA sequence needed for repressor binding. In Streptococcus pneumoniae (the pneumococcus), CopY is the copper repressor for the cop operon. Previously, homologs of pneumococcal CopY have been characterized to bind a 10-base consensus sequence T/GACANNTGTA known as the cop box. Using this motif, we sought to determine whether genes outside the cop operon are also regulated by the CopY repressor, which was previously shown in Lactococcus lactis. We found that S. pneumoniae CopY did not bind to cop operators upstream of these candidate genes in vitro. During this process, we found that the cop box sequence is necessary but not sufficient for CopY binding. Here, we propose an updated operator sequence for the S. pneumoniaecop operon to be ATTGACAAATGTAGAT binding CopY with a dissociation constant (Kd) of ∼28 nM. We demonstrate strong cross-species interaction between some CopY proteins and CopY operators, suggesting strong evolutionary conservation. Taken together with our binding studies and bioinformatics data, we propose the consensus operator RNYKACANNYGTMRNY for the bacterial CopR-CopY copper repressor homologs. IMPORTANCE Many Gram-positive bacteria respond to copper stress by upregulating a copper export system controlled by a copper-sensitive repressor, CopR-CopY. The previous operator sequence for this family of proteins had been identified as TACANNTGTA. Here, using several recombinant proteins and mutations in various DNA fragments, we define those 10 bases as necessary but not sufficient for binding and in doing so, refine the cop operon operator to the 16-base sequence RNYKACANNTGTMRNY. Due to the sheer number of repressors that have been said to bind to the original 10 bases, including many antibiotic resistance repressors such as BlaI and MecI, we feel that this study highlights the need to reexamine many of these sites of the past and use added stringency for verifying operators in the future.
Collapse
|
15
|
Evolution of Listeria monocytogenes in a Food Processing Plant Involves Limited Single-Nucleotide Substitutions but Considerable Diversification by Gain and Loss of Prophages. Appl Environ Microbiol 2020; 86:AEM.02493-19. [PMID: 31900305 PMCID: PMC7054086 DOI: 10.1128/aem.02493-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022] Open
Abstract
Knowledge about the genetic evolution of L. monocytogenes in food processing facilities over multiple years is generally lacking. This information is critical to interpret WGS findings involving food or food-associated isolates. This study suggests that L. monocytogenes that persists in processing facilities may evolve with a low single-nucleotide mutation rate mostly driven by negative (i.e., purifying) selection but with rapid diversification of prophages. Hence, isolation of L. monocytogenes with few single-nucleotide polymorphism (SNP) differences in different locations (e.g., supplier plants and receiving plants) is possible, highlighting the importance of epidemiological and detailed isolate metadata for interpreting WGS data in traceback investigation. Our study also shows how advanced WGS data analyses can be used to support root cause analysis efforts and may, for example, pinpoint the time when a persistence event started (which then potentially could be linked to facility changes, introduction of new equipment, etc.). Whole-genome sequencing (WGS) is becoming the standard method for subtyping Listeria monocytogenes. Interpretation of WGS data for isolates from foods and associated environments is, however, challenging due to a lack of detailed data on Listeria evolution in processing facilities. Here, we used previously collected WGS data for 40 L. monocytogenes isolates obtained from a cold-smoked salmon processing facility between 1998 and 2015 to probe the L. monocytogenes molecular evolution in this facility, combined with phenotypic assessment of selected isolates. Isolates represented three clusters (1, 2, and 3); cluster 3 isolates (n = 32) were obtained over 18 years. The average mutation rate for cluster 3 was estimated as 1.15 × 10−7 changes per nucleotide per year (∼0.35 changes per genome per year); the most recent common ancestors (MRCAs) of subclusters 3a and 3b were estimated to have occurred around 1958 and 1974, respectively, within the age of the facility, suggesting long-term persistence in this facility. Extensive prophage diversity was observed within subclusters 3a and 3b, which have one shared and six unique prophage profiles for each subcluster (with 16 prophage profiles found among all 40 isolates). The plasmid-borne sanitizer tolerance operon bcrABC was found in all cluster 2 and 3 isolates, while the transposon-borne sanitizer tolerance gene qacH was found in one cluster 1 isolate; presence of these genes was correlated with the ability to survive increased concentrations of sanitizers. Selected isolates showed significant variation in the ability to attach to surfaces, with persistent isolates attaching better than transient isolates at 21°C. IMPORTANCE Knowledge about the genetic evolution of L. monocytogenes in food processing facilities over multiple years is generally lacking. This information is critical to interpret WGS findings involving food or food-associated isolates. This study suggests that L. monocytogenes that persists in processing facilities may evolve with a low single-nucleotide mutation rate mostly driven by negative (i.e., purifying) selection but with rapid diversification of prophages. Hence, isolation of L. monocytogenes with few single-nucleotide polymorphism (SNP) differences in different locations (e.g., supplier plants and receiving plants) is possible, highlighting the importance of epidemiological and detailed isolate metadata for interpreting WGS data in traceback investigation. Our study also shows how advanced WGS data analyses can be used to support root cause analysis efforts and may, for example, pinpoint the time when a persistence event started (which then potentially could be linked to facility changes, introduction of new equipment, etc.).
Collapse
|
16
|
Liu S, Li H, Guo Z, Guan J, Sun Y, Zhang K. Insight into the Effect of Small RNA srn225147 on Mutacin IV in Streptococcus mutans. Indian J Microbiol 2019; 59:445-450. [PMID: 31762507 DOI: 10.1007/s12088-019-00820-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Streptococcus mutans (S. mutans) is a serious microbe causing dental caries. Mutacin IV is an effective bacteriocin produced by S. mutans to antagonize numerous non-mutans streptococcal species. However, the posttranscriptional regulation of mutacin IV remains unclear. This study aimed to analyze the effect of small RNA srn225147 on mutacin IV. The functional prediction suggested that srn225147 is involved in the production of mutacin IV, an important secondary metabolite. According to RNAhybrid and RNAPredator prediction, the mutacin IV formation-associated gene comD is a target of srn225147. We further analyzed the roles of srn225147 and comD in 20 S. mutans clinical strains with high production of mutacin IV (High-IV group) and lacking mutacin IV (None-IV group). Levels of comD expression were significantly higher in the High-IV group, whereas the Non-IV group showed relatively higher expression of srn225147, with a negative correlation observed between srn225147 and comD. Moreover, compared to the mimic negative control (NC) group, comD expression was decreased at 400-fold srn225147 overexpression but increased at approximately 1400-fold overexpression. Although the production of mutacin IV in the 1400-fold change srn225147 mimic group was larger than that in the 400-fold change mimic group, there was no significant difference in the production of mutacin IV between the srn225147 mimic group and mimic NC group. These results indicate that srn225147 has a two-way regulation effect on the expression of comD but that its regulation in the production of mutacin IV is weak.
Collapse
Affiliation(s)
- Shanshan Liu
- 1Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu, 233004 China
| | - Huihui Li
- 2Department of Microbiology and Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030 China
| | - Zhenfei Guo
- 1Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu, 233004 China
| | - Junchang Guan
- 2Department of Microbiology and Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030 China
| | - Yu Sun
- 3Department of Biochemistry and Molecular Biology, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030 China
| | - Kai Zhang
- 1Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu, 233004 China
| |
Collapse
|
17
|
CopA Protects Streptococcus suis against Copper Toxicity. Int J Mol Sci 2019; 20:ijms20122969. [PMID: 31216645 PMCID: PMC6628060 DOI: 10.3390/ijms20122969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 12/17/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen that causes great economic losses to the swine industry and severe threats to public health. A better understanding of its physiology would contribute to the control of its infections. Although copper is an essential micronutrient for life, it is toxic to cells when present in excessive amounts. Herein, we provide evidence that CopA is required for S. suis resistance to copper toxicity. Quantitative PCR analysis showed that copA expression was specifically induced by copper. Growth curve analyses and spot dilution assays showed that the ΔcopA mutant was defective in media supplemented with elevated concentrations of copper. Spot dilution assays also revealed that CopA protected S. suis against the copper-induced bactericidal effect. Using inductively coupled plasma-optical emission spectroscopy, we demonstrated that the role of CopA in copper resistance was mediated by copper efflux. Collectively, our data indicated that CopA protects S. suis against the copper-induced bactericidal effect via copper efflux.
Collapse
|
18
|
Renard A, Barbera L, Courtier-Martinez L, Dos Santos S, Valentin AS, Mereghetti L, Quentin R, van der Mee-Marquet NL. phiD12-Like Livestock-Associated Prophages Are Associated With Novel Subpopulations of Streptococcus agalactiae Infecting Neonates. Front Cell Infect Microbiol 2019; 9:166. [PMID: 31192160 PMCID: PMC6546898 DOI: 10.3389/fcimb.2019.00166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/03/2019] [Indexed: 01/14/2023] Open
Abstract
Group B Streptococcus (GBS) is a major cause of invasive disease in neonates worldwide. Monitoring data have revealed a continuing trend toward an increase in neonatal GBS infections, despite the introduction of preventive measures. We investigated this trend, by performing the first ever characterization of the prophage content for 106 GBS strains causing neonatal infections between 2002 and 2018. We determined whether the genome of each strain harbored prophages, and identified the insertion site of each of the prophages identified. We found that 71.7% of the strains carried at least one prophage, and that prophages genetically similar to livestock-associated phiD12, carrying genes potentially involved in GBS pathogenesis (e.g., genes encoding putative virulence factors and factors involved in biofilm formation, bacterial persistence, or adaptation to challenging environments) predominated. The phiD12-like prophages were (1) associated with CC17 and 1 strains (p = 0.002), (2) more frequent among strains recovered during the 2011–2018 period than among those from 2002–2010 (p < 0.001), and (3) located at two major insertion sites close to bacterial genes involved in host adaptation and colonization. Our data provide evidence for a recent increase in lysogeny in GBS, characterized by the acquisition, within the genome, of genetic features typical of animal-associated mobile genetic elements by GBS strains causing neonatal infection. We suggest that lysogeny and phiD12-like prophage genetic elements may have conferred an advantage on GBS strains for adaptation to or colonization of the maternal vaginal tract, or for pathogenicity, and that these factors are currently playing a key role in the increasing ability of GBS strains to infect neonates.
Collapse
Affiliation(s)
- Adélaïde Renard
- Bactéries et Risque Materno-Foetal, UMR 1282, Infectiologie Santé Publique, Université de Tours, Tours, France
| | - Laurie Barbera
- Bactéries et Risque Materno-Foetal, UMR 1282, Infectiologie Santé Publique, Université de Tours, Tours, France
| | - Luka Courtier-Martinez
- Bactéries et Risque Materno-Foetal, UMR 1282, Infectiologie Santé Publique, Université de Tours, Tours, France
| | - Sandra Dos Santos
- Cellule Régionale d'Epidémiologie Nosocomiale, Centre d'Appui pour la Prévention des Infections Associées aux Soins CPias Centre val de Loire, Service de Bactériologie et Hygiène, Centre Hospitalier Universitaire, Tours, France
| | - Anne-Sophie Valentin
- Bactéries et Risque Materno-Foetal, UMR 1282, Infectiologie Santé Publique, Université de Tours, Tours, France
| | - Laurent Mereghetti
- Bactéries et Risque Materno-Foetal, UMR 1282, Infectiologie Santé Publique, Université de Tours, Tours, France.,Cellule Régionale d'Epidémiologie Nosocomiale, Centre d'Appui pour la Prévention des Infections Associées aux Soins CPias Centre val de Loire, Service de Bactériologie et Hygiène, Centre Hospitalier Universitaire, Tours, France
| | - Roland Quentin
- Bactéries et Risque Materno-Foetal, UMR 1282, Infectiologie Santé Publique, Université de Tours, Tours, France
| | - Nathalie L van der Mee-Marquet
- Bactéries et Risque Materno-Foetal, UMR 1282, Infectiologie Santé Publique, Université de Tours, Tours, France.,Cellule Régionale d'Epidémiologie Nosocomiale, Centre d'Appui pour la Prévention des Infections Associées aux Soins CPias Centre val de Loire, Service de Bactériologie et Hygiène, Centre Hospitalier Universitaire, Tours, France
| |
Collapse
|
19
|
Copper water swishing. Br Dent J 2019; 226:718. [DOI: 10.1038/s41415-019-0381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Renouf MJ, Cho YH, McPhee JB. Emergent Behavior of IBD-Associated Escherichia coli During Disease. Inflamm Bowel Dis 2019; 25:33-44. [PMID: 30321333 DOI: 10.1093/ibd/izy312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases are becoming increasingly common throughout the world, both in developed countries and increasingly in rapidly developing countries. Multiple lines of evidence point to a role for the microbial composition of the gastrointestinal tract in the etiology of IBD, but to date, attempts to define a specific microbial cause for IBD have proved unsuccessful. Microbial 16S rRNA profiling shows that IBD patients have elevated levels of Enterobacteriaceae, in particular Escherichia coli, and reduced levels of Faecalibacterium prausnitzii. The observed E. coli have been assigned to a specific pathovar, adherent-invasive E. coli (AIEC). Adherent-invasive E. coli are a genomically heterogenous group, and whereas many groups have attempted to identify specific genetic markers that differentiate AIEC from non-AIEC strains, very few concrete genetic associations have been uncovered. Here, we highlight the advantages of applying a phenotyping approach to the study of these organisms, rather than solely depending on a sequencing or genomic-based screening strategy because virulence-associated phenotypes exhibit behaviors of emergent systems. In this respect, attempts at genetic reductionism are prone to failure because there are numerous metabolic, regulatory or genetic paths that can underlie these virulence-associated behaviors. Here, we review these IBD-associated phenotypes in E. coli and make recommendations for experimental approaches to advance our understanding of IBD-associated bacteria more generally. With advances in high-throughput screening and nongenetically based metabolomic characterization of IBD-associated bacteria, we anticipate a fuller understanding of how altered microbial communities contribute to the development of IBD.
Collapse
Affiliation(s)
| | - Youn Hee Cho
- Department of Chemistry and Biology, Ryerson University, Toronto ON, Canada
| | - Joseph B McPhee
- Department of Chemistry and Biology, Ryerson University, Toronto ON, Canada
| |
Collapse
|
21
|
Parsons C, Lee S, Kathariou S. Heavy Metal Resistance Determinants of the Foodborne Pathogen Listeria monocytogenes. Genes (Basel) 2018; 10:genes10010011. [PMID: 30586907 PMCID: PMC6356457 DOI: 10.3390/genes10010011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes is ubiquitous in the environment and causes the disease listeriosis. Metal homeostasis is one of the key processes utilized by L. monocytogenes in its role as either a saprophyte or pathogen. In the environment, as well as within an animal host, L. monocytogenes needs to both acquire essential metals and mitigate toxic levels of metals. While the mechanisms associated with acquisition and detoxification of essential metals such as copper, iron, and zinc have been extensively studied and recently reviewed, a review of the mechanisms associated with non-essential heavy metals such as arsenic and cadmium is lacking. Resistance to both cadmium and arsenic is frequently encountered in L. monocytogenes, including isolates from human listeriosis. In addition, a growing body of work indicates the association of these determinants with other cellular functions such as virulence, suggesting the importance of further study in this area.
Collapse
Affiliation(s)
- Cameron Parsons
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695-7624, USA.
| | - Sangmi Lee
- Seoul National University, Seoul 08826, Korea.
| | - Sophia Kathariou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695-7624, USA.
| |
Collapse
|
22
|
Wu H, Zhao Y, Du Y, Miao S, Liu J, Li Y, Caiyin Q, Qiao J. Quantitative proteomics of Lactococcus lactis F44 under cross-stress of low pH and lactate. J Dairy Sci 2018; 101:6872-6884. [DOI: 10.3168/jds.2018-14594] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
|
23
|
Parsons C, Costolo B, Brown P, Kathariou S. Penicillin-binding protein encoded by pbp4 is involved in mediating copper stress in Listeria monocytogenes. FEMS Microbiol Lett 2018; 364:4329268. [PMID: 29029084 DOI: 10.1093/femsle/fnx207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes raises major food safety and public health concerns due to its potential for severe foodborne disease and persistent colonization of food processing facilities. Copper is often employed to control pathogens in agriculture and is increasingly used in healthcare facilities, but mechanisms mediating tolerance of L. monocytogenes to copper remain poorly understood. A mariner-based mutant library of L. monocytogenes 2011L-2858, implicated in the 2011 listeriosis outbreak via whole cantaloupe, was screened for growth at sublethal levels of copper yielding mutant G2B4 with decreased copper tolerance. The transposon was localized in pbp4 (lmo2229 homolog), encoding a penicillin-binding protein (PBP). In addition to reduced copper tolerance, G2B4 exhibited increased susceptibility to β-lactam antibiotics, reduced biofilm formation and reduced virulence in the Galleria mellonella model. Mutant phenotypes were fully restored upon genetic complementation of G2B4 with intact pbp4. Findings provide the first evidence for the role of a PBP in copper tolerance of L. monocytogenes and suggest that pbp4 may be a suitable target to enable the use of lower levels of copper or enhance the effectiveness of levels currently in use. Given the wide distribution of PBPs and their highly conserved nature, this could have profound impacts in regard to ecology and control of L. monocytogenes and other microorganisms.
Collapse
Affiliation(s)
- Cameron Parsons
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Sullivan Dr, Raleigh, NC 27695, USA
| | - Ben Costolo
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Sullivan Dr, Raleigh, NC 27695, USA
| | - Phillip Brown
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Sullivan Dr, Raleigh, NC 27695, USA
| | - Sophia Kathariou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Sullivan Dr, Raleigh, NC 27695, USA
| |
Collapse
|
24
|
Zhu GY, Lu BY, Zhang TX, Zhang T, Zhang CL, Li Y, Peng Q. Antibiofilm effect of drug-free and cationic poly(D,L-lactide-co-glycolide) nanoparticles via nano–bacteria interactions. Nanomedicine (Lond) 2018; 13:1093-1106. [PMID: 29873582 DOI: 10.2217/nnm-2017-0391] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: Recently, nano–bio interactions and their biomedical impacts have drawn much attention, but nano–bacteria interaction and its function are unknown. Herein, we aim to synthesize drug-free and cationic nanoparticles (CNPs) and investigate CNP–bacteria interaction and its antibiofilm effect. Materials & methods: The bioactivity of CNPs against Streptococcus mutans was examined by colony-forming units counting and scanning electron microscopy. CNP–bacteria interaction force was measured by atomic force microscopy. Results: CNPs (217.7 nm, 14.7 mv) showed a concentration-dependent activity against bacteria. Particularly, CNPs at 200 μg/ml completely inhibited planktonic bacterial growth and biofilm formation, and disrupted ∼70% mature biofilm. CNP–bacteria interaction force was up to 184 nN. Conclusion: CNPs have great potentials for convenient local use for prevention and treatment of bacteria-related oral diseases.
Collapse
Affiliation(s)
- Guan-Yin Zhu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo-Yao Lu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tian-Xu Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chao-Liang Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Vincent M, Duval RE, Hartemann P, Engels-Deutsch M. Contact killing and antimicrobial properties of copper. J Appl Microbiol 2018; 124:1032-1046. [PMID: 29280540 DOI: 10.1111/jam.13681] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
With the emergence of antibiotic resistance, the interest for antimicrobial agents has recently increased again in public health. Copper was recognized in 2008 by the United States Environmental Protection Agency (EPA) as the first metallic antimicrobial agent. This led to many investigations of the various properties of copper as an antibacterial, antifungal and antiviral agent. This review summarizes the latest findings about 'contact killing', the mechanism of action of copper nanoparticles and the different ways micro-organisms develop resistance to copper.
Collapse
Affiliation(s)
- M Vincent
- CNRS, LEMTA, UMR 7563, Vandœuvre-lès-Nancy, France.,Université de Lorraine, LEMTA, UMR 7563, Vandœuvre-lès Nancy, France
| | - R E Duval
- CNRS, UMR 7565, SRSMC, Vandœuvre-lès-Nancy, France.,Université de Lorraine, UMR 7565, SRSMC, Nancy, France.,ABC Platform®, Nancy, France
| | - P Hartemann
- Faculté de Médecine, EA 7298, ERAMBO, DESP, Vandœuvre-lès-Nancy, France
| | - M Engels-Deutsch
- CNRS, LEMTA, UMR 7563, Vandœuvre-lès-Nancy, France.,Université de Lorraine, LEMTA, UMR 7563, Vandœuvre-lès Nancy, France.,Faculté de Médecine, EA 7298, ERAMBO, DESP, Vandœuvre-lès-Nancy, France
| |
Collapse
|
26
|
Mattos-Graner RO, Duncan MJ. Two-component signal transduction systems in oral bacteria. J Oral Microbiol 2017; 9:1400858. [PMID: 29209465 PMCID: PMC5706477 DOI: 10.1080/20002297.2017.1400858] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/01/2017] [Indexed: 01/03/2023] Open
Abstract
We present an overview of how members of the oral microbiota respond to their environment by regulating gene expression through two-component signal transduction systems (TCSs) to support conditions compatible with homeostasis in oral biofilms or drive the equilibrium toward dysbiosis in response to environmental changes. Using studies on the sub-gingival Gram-negative anaerobe Porphyromonas gingivalis and Gram-positive streptococci as examples, we focus on the molecular mechanisms involved in activation of TCS and species specificities of TCS regulons.
Collapse
Affiliation(s)
- Renata O. Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas – UNICAMP, São Paulo, Brazil
| | - Margaret J. Duncan
- Department of Oral Medicine, Infection and Immunity, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
27
|
Remodeling of the Streptococcus mutans proteome in response to LrgAB and external stresses. Sci Rep 2017; 7:14063. [PMID: 29070798 PMCID: PMC5656683 DOI: 10.1038/s41598-017-14324-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/09/2017] [Indexed: 11/24/2022] Open
Abstract
The Streptococcus mutans Cid/Lrg system represents an ideal model to study how this organism withstands various stressors encountered in the oral cavity. Mutation of lrgAB renders S. mutans more sensitive to oxidative, heat, and vancomycin stresses. Here, we have performed a comprehensive proteomics experiment using label-free quantitative mass spectrometry to compare the proteome changes of wild type UA159 and lrgAB mutant strains in response to these same stresses. Importantly, many of identified proteins showed either a strikingly large fold-change, or were completely suppressed or newly induced in response to a particular stress condition. Notable stress proteome changes occurred in a variety of functional categories, including amino acid biosynthesis, energy metabolism, protein synthesis, transport/binding, and transcriptional/response regulators. In the non-stressed growth condition, mutation of lrgAB significantly altered the abundance of 76 proteins (a fold change >1.4, or <0.6, p-value <0.05) and several of these matched the stress proteome of the wild type strain. Interestingly, the statistical correlation between the proteome changes and corresponding RNA-seq transcriptomic studies was relatively low (rho(ρ) <0.16), suggesting that adaptation to a new environment may require radical proteome turnover or metabolic remodeling. Collectively, this study reinforces the importance of LrgAB to the S. mutans stress response.
Collapse
|
28
|
Copper Chaperone CupA and Zinc Control CopY Regulation of the Pneumococcal cop Operon. mSphere 2017; 2:mSphere00372-17. [PMID: 29062896 PMCID: PMC5646241 DOI: 10.1128/msphere.00372-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/27/2017] [Indexed: 01/08/2023] Open
Abstract
As mechanisms of copper toxicity are emerging, bacterial processing of intracellular copper, specifically inside Streptococcus pneumoniae, remains unclear. In this study, we investigated two proteins encoded by the copper export operon: the repressor, CopY, and the copper chaperone, CupA. Zinc suppressed transcription of the copper export operon by increasing the affinity of CopY for DNA. Furthermore, CupA was able to chelate copper from CopY not bound to DNA and reduce it from Cu2+ to Cu1+. This reduced copper state is essential for bacterial copper export via CopA. In view of the fact that innate immune cells use copper to kill pathogenic bacteria, understanding the mechanisms of copper export could expose new small-molecule therapeutic targets that could work synergistically with copper against pathogenic bacteria. Any metal in excess can be toxic; therefore, metal homeostasis is critical to bacterial survival. Bacteria have developed specialized metal import and export systems for this purpose. For broadly toxic metals such as copper, bacteria have evolved only export systems. The copper export system (cop operon) usually consists of the operon repressor, the copper chaperone, and the copper exporter. In Streptococcus pneumoniae, the causative agent of pneumonia, otitis media, sepsis, and meningitis, little is known about operon regulation. This is partly due to the S. pneumoniae repressor, CopY, and copper chaperone, CupA, sharing limited homology to proteins of putative related function and confirmed established systems. In this study, we examined CopY metal crosstalk, CopY interactions with CupA, and how CupA can control the oxidation state of copper. We found that CopY bound zinc and increased the DNA-binding affinity of CopY by roughly an order of magnitude over that of the apo form of CopY. Once copper displaced zinc in CopY, resulting in operon activation, CupA chelated copper from CopY. After copper was acquired from CopY or other sources, if needed, CupA facilitated the reduction of Cu2+ to Cu1+, which is the exported copper state. Taken together, these data show novel mechanisms for copper processing in S. pneumoniae. IMPORTANCE As mechanisms of copper toxicity are emerging, bacterial processing of intracellular copper, specifically inside Streptococcus pneumoniae, remains unclear. In this study, we investigated two proteins encoded by the copper export operon: the repressor, CopY, and the copper chaperone, CupA. Zinc suppressed transcription of the copper export operon by increasing the affinity of CopY for DNA. Furthermore, CupA was able to chelate copper from CopY not bound to DNA and reduce it from Cu2+ to Cu1+. This reduced copper state is essential for bacterial copper export via CopA. In view of the fact that innate immune cells use copper to kill pathogenic bacteria, understanding the mechanisms of copper export could expose new small-molecule therapeutic targets that could work synergistically with copper against pathogenic bacteria.
Collapse
|
29
|
Inhibitory capacity of Rhus coriaria L. extract and its major component methyl gallate on Streptococcus mutans biofilm formation by optical profilometry: Potential applications for oral health. Mol Med Rep 2017; 16:949-956. [PMID: 28586050 DOI: 10.3892/mmr.2017.6674] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/07/2017] [Indexed: 11/05/2022] Open
Abstract
Streptococcus mutans (S. mutans) bacterium is the most well recognized pathogen involved in pathogenesis of dental caries. Its virulence arises from its ability to produce a biofilm and acidogenicity, causing tooth decay. Discovery of natural products capable to inhibit biofilm formation is of high importance for developing health care products. To the best of our knowledge, in all previous scientific reports, a colorimetric assay was applied to test the effect of sumac and methyl gallate (MG) on S. mutans adherence. Quantitative assessment of the developed biofilm should be further performed by applying an optical profilometry assay, and by testing the effect on both surface roughness and thickness parameters of the biofilm. To the best of our knowledge, this is the first study to report the effect of sumac extract and its constituent MG on biofilm formation using an optical profilometry assay. Testing antibacterial activity of the sumac extract and its fractions revealed that MG is the most bioactive component against S. mutans bacteria. It reduced S. mutans biofilm biomass on the polystyrene surface by 68‑93%, whereas 1 mg/ml MG was able to decrease the biofilm roughness and thickness on the glass surface by 99%. MG also prevented a decrease in pH level by 97%. These bioactivities of MG occurred in a dose‑dependent manner and were significant vs. untreated bacteria. The findings are important for the development of novel pharmaceuticals and formulations of natural products and extracts that possess anti‑biofilm activities with primary applications for oral health, and in a broader context, for the treatment of various bacterial infections.
Collapse
|
30
|
Pleiotropic Regulation of Virulence Genes in Streptococcus mutans by the Conserved Small Protein SprV. J Bacteriol 2017; 199:JB.00847-16. [PMID: 28167518 DOI: 10.1128/jb.00847-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/30/2017] [Indexed: 12/27/2022] Open
Abstract
Streptococcus mutans, an oral pathogen associated with dental caries, colonizes tooth surfaces as polymicrobial biofilms known as dental plaque. S. mutans expresses several virulence factors that allow the organism to tolerate environmental fluctuations and compete with other microorganisms. We recently identified a small hypothetical protein (90 amino acids) essential for the normal growth of the bacterium. Inactivation of the gene, SMU.2137, encoding this protein caused a significant growth defect and loss of various virulence-associated functions. An S. mutans strain lacking this gene was more sensitive to acid, temperature, osmotic, oxidative, and DNA damage-inducing stresses. In addition, we observed an altered protein profile and defects in biofilm formation, bacteriocin production, and natural competence development, possibly due to the fitness defect associated with SMU.2137 deletion. Transcriptome sequencing revealed that nearly 20% of the S. mutans genes were differentially expressed upon SMU.2137 deletion, thereby suggesting a pleiotropic effect. Therefore, we have renamed this hitherto uncharacterized gene as sprV (streptococcal pleiotropic regulator of virulence). The transcript levels of several relevant genes in the sprV mutant corroborated the phenotypes observed upon sprV deletion. Owing to its highly conserved nature, inactivation of the sprV ortholog in Streptococcus gordonii also resulted in poor growth and defective UV tolerance and competence development as in the case of S. mutans Our experiments suggest that SprV is functionally distinct from its homologs identified by structure and sequence homology. Nonetheless, our current work is aimed at understanding the importance of SprV in the S. mutans biology.IMPORTANCEStreptococcus mutans employs several virulence factors and stress resistance mechanisms to colonize tooth surfaces and cause dental caries. Bacterial pathogenesis is generally controlled by regulators of fitness that are critical for successful disease establishment. Sometimes these regulators, which are potential targets for antimicrobials, are lost in the genomic context due to the lack of annotated homologs. This work outlines the regulatory impact of a small, highly conserved hypothetical protein, SprV, encoded by S. mutans We show that SprV affects the transcript levels of various virulence factors required for normal growth, biofilm formation, stress tolerance, genetic competence, and bacteriocin production.
Collapse
|
31
|
Baker JL, Faustoferri RC, Quivey RG. Acid-adaptive mechanisms of Streptococcus mutans-the more we know, the more we don't. Mol Oral Microbiol 2016; 32:107-117. [PMID: 27115703 DOI: 10.1111/omi.12162] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 01/19/2023]
Affiliation(s)
- J L Baker
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R C Faustoferri
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R G Quivey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
32
|
Fung DKC, Ma Y, Xia T, Luk JCH, Yan A. Signaling by the heavy-metal sensor CusS involves rearranged helical interactions in specific transmembrane regions. Mol Microbiol 2016; 100:774-87. [DOI: 10.1111/mmi.13348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Danny Ka Chun Fung
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| | - Yongzheng Ma
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| | - Tingying Xia
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| | | | - Aixin Yan
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
- Institute of Scientific and Industrial Research, Osaka University; Yamadaoka 1-1 Suita Osaka 565-0871 Japan
| |
Collapse
|
33
|
Garcia SS, Du Q, Wu H. Streptococcus mutans copper chaperone, CopZ, is critical for biofilm formation and competitiveness. Mol Oral Microbiol 2016; 31:515-525. [PMID: 27753272 DOI: 10.1111/omi.12150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/29/2022]
Abstract
The oral cavity is a dynamic environment characterized by hundreds of bacterial species, saliva, and an influx of nutrients and metal ions such as copper. Although there is a physiologic level of copper in the saliva, the oral cavity is often challenged with an influx of copper ions. At high concentrations copper is toxic and must therefore be strictly regulated by pathogens for them to persist and cause disease. The cariogenic pathogen Streptococcus mutans manages excess copper using the copYAZ operon that encodes a negative DNA-binding repressor (CopY), the P1-ATPase copper exporter (CopA), and the copper chaperone (CopZ). These hypothetical roles of the copYAZ operon in regulation and copper transport to receptors led us to investigate their contribution to S. mutans virulence. Mutants defective in the copper chaperone CopZ, but not CopY or CopA, were impaired in biofilm formation and competitiveness against commensal streptococci. Characterization of the CopZ mutant biofilm revealed a decreased secretion of glucosyltransferases and reduced expression of mutacin genes. These data suggest that the function of copZ on biofilm and competitiveness is independent of copper resistance and CopZ is a global regulator for biofilm and other virulence factors. Further characterization of CopZ may lead to the identification of new biofilm pathways.
Collapse
Affiliation(s)
- S S Garcia
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Q Du
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - H Wu
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|