1
|
Williams MD, Smith L. Streptococcus salivarius and Ligilactobacillus salivarius: Paragons of Probiotic Potential and Reservoirs of Novel Antimicrobials. Microorganisms 2025; 13:555. [PMID: 40142448 PMCID: PMC11944278 DOI: 10.3390/microorganisms13030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
This review highlights several basic problems associated with bacterial drug resistance, including the decreasing efficacy of commercially available antimicrobials as well as the related problem of microbiome irregularity and dysbiosis. The article explains that this present situation is addressable through LAB species, such as Streptococcus salivarius and Ligilactobacillus salivarius, which are well established synthesizers of both broad- and narrow-spectrum antimicrobials. The sheer number of antimicrobials produced by LAB species and the breadth of their biological effects, both in terms of their bacteriostatic/bactericidal abilities and their immunomodulation, make them prime candidates for new probiotics and antibiotics. Given the ease with which several of the molecules can be biochemically engineered and the fact that many of these compounds target evolutionarily constrained target sites, it seems apparent that these compounds and their producing organisms ought to be looked at as the next generation of robust dual action symbiotic drugs.
Collapse
Affiliation(s)
| | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
- Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77808, USA
| |
Collapse
|
2
|
Ju M, Joseph T, Hansanant N, Geng M, Williams M, Cothrell A, Buhrow AR, Austin F, Smith L. Evaluation of analogs of mutacin 1140 in systemic and cutaneous methicillin-resistant Staphylococcus aureus infection models in mice. Front Microbiol 2022; 13:1067410. [PMID: 36590413 PMCID: PMC9794991 DOI: 10.3389/fmicb.2022.1067410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Mutacin 1140 (Mu1140) is a potent antibiotic against Gram-positive bacteria, such as Staphylococcus aureus. The antibiotic is produced by the oral bacterium Streptococcus mutans and is a member of the epidermin family of type AI lantibiotics. The antibiotic exerts its inhibitory activity by binding to the cell wall precursor lipid II, blocking cell wall synthesis, and by disrupting bacterial membranes. In previous studies, the novel K2A and R13A analogs of Mu1140 have been identified to have superior pharmacokinetic properties compared to native Mu1140. In this study, the use of a combined formulation of the Mu1140 K2A and R13A analogs was shown to be more effective at treating MRSA bacteremia than the native Mu1140 or vancomycin. The analogs were also shown to be effective in treating an MRSA skin infection. The use of K2A and R13A analogs may provide a future alternative for treating serious Gram-positive bacterial infections. In a previous study, the Mu1140 analogs were shown to have significantly longer drug clearance times, leading to higher plasma concentrations over time. These properties warranted further testing to determine whether the analogs are effective for the treatment of systemic MRSA and acute skin infections. In this study, Mu1140 analogs were shown to be more effective than currently available treatments for systemic and skin MRSA infections. Further, the study clearly shows that the new analogs are superior to native Mu1140 for the treatment of a systemic MRSA infection. These findings support continued drug product development efforts using the K2A and R13A Mu1140 analogs, and that these analogs may ameliorate the outcome of serious bacterial infections.
Collapse
Affiliation(s)
- Min Ju
- Antimicrobial Division, Sano Chemicals Inc., Bryan, TX, United States
| | - Thushinari Joseph
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Nopakorn Hansanant
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Mengxin Geng
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - McKinley Williams
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Andrew Cothrell
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Andrew Riley Buhrow
- Antimicrobial Division, Sano Chemicals Inc., Bryan, TX, United States,Department of Biology, Texas A&M University, College Station, TX, United States
| | - Frank Austin
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Leif Smith
- Antimicrobial Division, Sano Chemicals Inc., Bryan, TX, United States,Department of Biology, Texas A&M University, College Station, TX, United States,*Correspondence: Leif Smith,
| |
Collapse
|
3
|
Zaidi S, Bhardwaj T, Somvanshi P, Khan AU. Proteomic Characterization and Target Identification Against Streptococcus mutans Under Bacitracin Stress Conditions Using LC-MS and Subtractive Proteomics. Protein J 2022; 41:166-178. [PMID: 34989956 PMCID: PMC8733428 DOI: 10.1007/s10930-021-10038-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2021] [Indexed: 11/24/2022]
Abstract
The aim of the present study, is to identify potential targets against the highly pathogenic bacteria Streptococcus mutans that causes dental caries as well as the deadly infection of endocarditis. The powerful and highly sensitive technique of liquid chromatography-mass spectrometry (LC–MS/MS) identified 321 proteins of S. mutans when grown under stressful conditions induced by the antibiotic bacitracin. These 321 proteins were subjected to the insilico method of subtractive proteomics to screen out potential targets by utilizing different analyses like CD-HIT, non-homologous sequence screening, KEGG pathway, essentiality screening, gut-flora non-homology, and codon usage analysis. A database of essential proteins was employed to find sequence homology of non-paralogous proteins to determine proteins which are essential for bacterial survival. Cellular localization analysis of the selected proteins was done to localize them inside the cell along with physico-chemical characterization and druggability analysis. Using computational tools, 22 proteins out of 321, that are functionally distinguishable from their human counterparts and passed the criterion of a potential therapeutic candidate were identified. The selected proteins comprise central energy metabolic proteins, virulence factors, proteins of the sortase family, and essentiality factors. The presented analyses identified proteins of the sortase family, which appear as key therapeutic targets against caries infection. These proteins regulate a number of virulence factors, thus can be simultaneously inhibited to obstruct multiple virulence pathways.
Collapse
Affiliation(s)
- Sahar Zaidi
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Tulika Bhardwaj
- School of Computational & Integrative Sciences (SC&IS), Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pallavi Somvanshi
- School of Computational & Integrative Sciences (SC&IS), Jawaharlal Nehru University, New Delhi, 110067, India.,Special Centre of Systems Medicine (SCSM), Jawaharlal Nehru University, New Delhi, 110067, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, 202002, India.
| |
Collapse
|
4
|
O'Sullivan JN, O'Connor PM, Rea MC, Field D, Hill C, Ross RP. Nisin variants from Streptococcus and Staphylococcus successfully express in NZ9800. J Appl Microbiol 2021; 131:2223-2234. [PMID: 33876507 DOI: 10.1111/jam.15107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/11/2021] [Accepted: 04/11/2021] [Indexed: 12/28/2022]
Abstract
AIMS Increases in antimicrobial resistance have meant that the antimicrobial potential of lantibiotics is now being investigated irrespective of the nature of the producing organism. The aim of this study was to investigate whether natural nisin variants produced by non-Generally Recognized as Safe (GRAS) strains, such as nisin H, nisin J and nisin P, could be expressed in a well-characterized GRAS host. METHODS AND RESULTS This study involved cloning the nisin A promoter and leader sequence fused to nisin H, nisin J or nisin P structural gene sequences originally produced by Streptococcus hyointestinalis DPC 6484, Staphylococcus capitis APC 2923 and Streptococcus agalactiae DPC 7040, respectively. This resulted in their expression in Lactococcus lactis NZ9800, a genetically modified strain that does not produce nisin A. CONCLUSIONS Induction of the nisin controlled gene expression system demonstrates that these three nisin variants could be acted on by nisin A machinery provided by the host strain. SIGNIFICANCE AND IMPACT OF THE STUDY Describes the first successful heterologous production of three natural nisin variants by a GRAS strain, and demonstrates how such systems could be harnessed not only for lantibiotic production but also in the expansion of their structural diversity and development for use as future biotherapeutics.
Collapse
Affiliation(s)
- J N O'Sullivan
- Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - P M O'Connor
- Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - M C Rea
- Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - D Field
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - C Hill
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R P Ross
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Lagedroste M, Smits SHJ, Schmitt L. Importance of the leader peptide sequence on the lanthipeptide secretion level. FEBS J 2021; 288:4348-4363. [PMID: 33482024 DOI: 10.1111/febs.15724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/27/2020] [Accepted: 01/21/2021] [Indexed: 11/29/2022]
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides. Their precursor peptide comprises of an N-terminal leader peptide and a C-terminal core peptide. Here, the leader peptide is crucial for enzyme recognition especially for the modification enzymes and acts furthermore as a secretion signal for the lanthipeptide exporter. The core peptide is the target site for the posttranslational modifications and contains dehydrated amino acids and lanthionine rings. Nisin produced by the Gram-positive bacterium Lactococcus lactis is one of the best-studied lanthipeptides and used as a model system to study their modification and secretion processes. Nisin is secreted as a precursor peptide. Here, we present an in vivo secretion analysis of NisT in the absence of the modification machinery allowing the secretion of leader peptide mutants and their impact solely on the secretion activity of NisT. Additionally, we created leader peptide hybrids to provide new insights, how the secretion is effected by unnatural leader peptides. The focus on the secretion activity of the transporter alone enabled us to determine the recognition site of NisT within the leader peptide of nisin.
Collapse
Affiliation(s)
- Marcel Lagedroste
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
6
|
Rahman IR, Acedo JZ, Liu XR, Zhu L, Arrington J, Gross ML, van der Donk WA. Substrate Recognition by the Class II Lanthipeptide Synthetase HalM2. ACS Chem Biol 2020; 15:1473-1486. [PMID: 32293871 DOI: 10.1021/acschembio.0c00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class II lanthipeptides belong to a diverse group of natural products known as ribosomally synthesized and post-translationally modified peptides (RiPPs). Most RiPP precursor peptides contain an N-terminal recognition sequence known as the leader peptide, which is typically recognized by biosynthetic enzymes that catalyze modifications on the C-terminal core peptide. For class II lanthipeptides, these are carried out by a bifunctional lanthipeptide synthetase (LanM) that catalyzes dehydration and cyclization reactions on peptidic substrates to generate thioether-containing, macrocyclic molecules. Some lanthipeptide synthetases are extraordinarily substrate tolerant, making them promising candidates for biotechnological applications such as combinatorial biosynthesis and cyclic peptide library construction. In this study, we characterized the mode of leader peptide recognition by HalM2, the lanthipeptide synthetase responsible for the production of the antimicrobial peptide haloduracin β. Using NMR spectroscopic techniques, in vitro binding assays, and enzyme activity assays, we identified substrate residues that are important for binding to HalM2 and for post-translational modification of the peptide substrates. Additionally, we provide evidence of the binding site on the enzyme using binding assays with truncated enzyme variants, hydrogen-deuterium exchange mass spectrometry, and photoaffinity labeling. Understanding the mechanism by which lanthipeptide synthetases recognize their substrate will facilitate their use in biotechnology, as well as further our general understanding of how RiPP enzymes recognize their substrates.
Collapse
Affiliation(s)
- Imran R. Rahman
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jeella Z. Acedo
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Xiaoran Roger Liu
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Justine Arrington
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Abstract
Covering1993 up to May 2020 Linaridins, defined as linear, dehydrated (arid) peptides, are a small but growing family of natural products belonging to the ribosomally synthesized and post-translationally modified peptide (RiPP) superfamily. To date, only a few members of the linaridin family have been characterized; however, in silico analysis has shown that this family of RiPPs is widespread in nature with high structural diversity. Unlike the case of most of the dehydroamino acid-containing RiPPs, such as lanthipeptides and thiopeptides, in which dehydroamino acids are produced by lanthipeptide dehydratase-like enzymes, in linaridins, dehydroamino acids are produced by a distinct set of enzymes with still unknown biochemistry. In this Highlight we have discussed the structural features, classification, biosynthesis, engineering, and widespread occurrence of linaridins and highlighted several intriguing issues in the maturation of this RiPP family.
Collapse
Affiliation(s)
- Suze Ma
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Abdel Monaim SAH, Somboro AM, El-Faham A, de la Torre BG, Albericio F. Bacteria Hunt Bacteria through an Intriguing Cyclic Peptide. ChemMedChem 2018; 14:24-51. [PMID: 30394699 DOI: 10.1002/cmdc.201800597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/10/2018] [Indexed: 12/15/2022]
Abstract
In the last few decades, peptides have been victorious over small molecules as therapeutics due to their broad range of applications, high biological activity, and high specificity. However, the main challenges to overcome if peptides are to become effective drugs is their low oral bioavailability and instability under physiological conditions. Cyclic peptides play a vital role in this context because they show higher stability under physiological conditions, higher membrane permeability, and greater oral bioavailability than that of their corresponding linear analogues. In this regard, cyclic antimicrobial peptides (AMPs) have gained considerable attention in the field of novel antibiotic development. Bacterial strains produce cyclic AMPs through two pathways: ribosomal and nonribosomal. This review provides an overview of the chemical classification of cyclic AMPs isolated from bacteria, and provides a description of their biological activity and mode of action.
Collapse
Affiliation(s)
- Shimaa A H Abdel Monaim
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.,Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Anou M Somboro
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria, 12321, Egypt
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa.,Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
9
|
Antibacterial activity and lantibiotic post-translational modification genes in Streptococcus spp. isolated from ruminal fluid. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1407-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Sandiford SK. Current developments in lantibiotic discovery for treating Clostridium difficile infection. Expert Opin Drug Discov 2018; 14:71-79. [PMID: 30479173 DOI: 10.1080/17460441.2019.1549032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Clostridium difficile is a major cause of healthcare-associated diarrhea linked to the misuse of antimicrobials and the corresponding deleterious impact they have on the protective microbiota of the gut. Resistance to agents used to treat C. difficile including metronizadole and vancomycin has been reported highlighting the need for novel agents. Lantibiotics represent a novel class of agents that many studies have highlighted as effective against C. difficile. Areas covered: In this review lantibiotics including nisin, actagardine, mersacidin, NAI-107 and MU-1140 that exhibit good activity against C.difficile, all of which are currently in the preclinical phase of investigation are discussed. The lantibiotic NVB302, which has completed phase I clinical trials for the treatment of C. difficile, is also described. Expert opinion: Lantibiotics represent promising candidates for the treatment of C. difficile infections due to their novel mode of action, which is thought to decrease the potential of resistance developing and the fact they often possess a less deleterious effect on the protective gut microbiota when compared to traditional agents. They are also extremely amenable to bioengineering approaches and the incorporation of synthetic biology to produce more potent variants.
Collapse
|
11
|
Efficacious Analogs of the Lantibiotic Mutacin 1140 against a Systemic Methicillin-Resistant Staphylococcus aureus Infection. Antimicrob Agents Chemother 2018; 62:AAC.01626-18. [PMID: 30275083 DOI: 10.1128/aac.01626-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/21/2018] [Indexed: 11/20/2022] Open
Abstract
Mutacin 1140, a member of the epidermin family of type AI lantibiotics, has a broad spectrum of activity against Gram-positive bacteria. It blocks cell wall synthesis by binding to lipid II. Although it has rapid bactericidal effects and potent activity against Gram-positive pathogens, its rapid clearance and short half-life in vivo limit its development in the clinic. In this study, we evaluated the effect of charged and dehydrated residues on the pharmacokinetics of mutacin 1140. The dehydrated residues were determined to contribute to the stability of mutacin 1140, while alanine substitutions for the lysine or arginine residues improved the pharmacological properties of the antibiotic. Analogs K2A and R13A had significantly lower clearances, leading to higher plasma concentrations over time. They also had improved bioactivities against several pathogenic bacteria. In a murine systemic methicillin-resistant Staphylococcus aureus (MRSA) infection model, a 10-mg/kg single intravenous bolus injection of the K2A and R13A analogs (1:1 ratio) protected 100% of the infected mice, while a 2.5-mg/kg dose resulted in 50% survival. The 10-mg/kg treatment group had a significant reduction in bacteria load in the livers and kidneys compared to that in the vehicle control group. The study provides lead compounds for the future development of antibiotics used to treat systemic Gram-positive infections.
Collapse
|
12
|
Kers JA, Sharp RE, Muley S, Mayo M, Colbeck J, Zhu Y, DeFusco AW, Park JH, Handfield M. Blueprints for the rational design of therapeutic mutacin 1140 variants. Chem Biol Drug Des 2018; 92:1940-1953. [DOI: 10.1111/cbdd.13365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Johan A. Kers
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | - R. Eryl Sharp
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | - Sheela Muley
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | - Melissa Mayo
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | - Jeffrey Colbeck
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | - Yihui Zhu
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | | | | | | |
Collapse
|
13
|
Modifying the Lantibiotic Mutacin 1140 for Increased Yield, Activity, and Stability. Appl Environ Microbiol 2018; 84:AEM.00830-18. [PMID: 29776930 DOI: 10.1128/aem.00830-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/15/2018] [Indexed: 01/31/2023] Open
Abstract
Mutacin 1140 belongs to the epidermin family of type AI lantibiotics. This family has a broad spectrum of activity against Gram-positive bacteria. The binding of mutacin 1140 to lipid II leads to the inhibition of cell wall synthesis. Pharmacokinetic experiments with type AI lantibiotics are generally discouraging for clinical applications due to the short half-life of these compounds. The unprotected dehydrated and protease-susceptible residues outside the lanthionine rings may play a role in the short half-life in physiological settings. Previous mutagenesis work on mutacin 1140 has been limited to the lanthionine-forming residues, the C-terminally decarboxylated residue, and single amino acid substitutions at residues Phe1, Trp4, Dha5, and Arg13. To study the importance of the dehydrated (Dha5 and Dhb14) and protease-susceptible (Lys2 and Arg13) residues within mutacin 1140 for stability and bioactivity, each of these residues was evaluated for its impact on production and inhibitory activity. More than 15 analogs were purified, enabling direct comparison of the activities against a select panel of Gram-positive bacteria. The efficiency of the posttranslational modification (PTM) machinery of mutacin 1140 is highly restricted on its substrate. Analogs in the various intermediate stages of PTMs were observed as minor products following single point mutations at the 2nd, 5th, 13th, and 14th positions. The combination of alanine substitutions at the Dha5 and Dhb14 positions abolished mutacin 1140 production, while the production was restored by substitution of a Gly residue at one of these positions. Analogs with improved activity, productivity, and proteolytic stability were identified.IMPORTANCE Our findings show that the efficiency of mutacin 1140 PTMs is highly dependent on the core peptide sequence. Analogs in various intermediate stages of PTMs can be transported by the bacterium, which indicates that PTMs and transport are finely tuned for the native mutacin 1140 core peptide. Only certain combinations of amino acid substitutions at the Dha5 and Dhb14 dehydrated residue positions were tolerated. Observation of glutamylated core peptide analogs shows that dehydrations occur in a glutamate-dependent manner. Interestingly, mutations at positions outside rings A and B, the lipid II binding domain, would interfere with lipid II binding. Purified mutacin 1140 analogs have various activities and selectivities against different genera of bacteria, supporting the effort to generate analogs with higher specificity against pathogenic bacteria. The discovery of analogs with improved inhibitory activity against pathogenic bacteria, increased stability in the presence of protease, and higher product yields may promote the clinical development of this unique antimicrobial compound.
Collapse
|
14
|
Diversified transporters and pathways for bacteriocin secretion in gram-positive bacteria. Appl Microbiol Biotechnol 2018; 102:4243-4253. [DOI: 10.1007/s00253-018-8917-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
|
15
|
Carboxyl Analogue of Mutacin 1140, a Scaffold for Lead Antibacterial Discovery. Appl Environ Microbiol 2017; 83:AEM.00668-17. [PMID: 28500042 DOI: 10.1128/aem.00668-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/01/2017] [Indexed: 11/20/2022] Open
Abstract
Mutacin 1140 belongs to the epidermin group of lantibiotics. Epidermin class lantibiotics are ribosomally synthesized and posttranslationally modified antibiotics with potent activity against Gram-positive bacteria. In particular, this class is effective at targeting drug-resistant Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA), Mycobacterium tuberculosis, and Clostridium difficile A C-terminal S-[(Z)-2-aminovinyl]-d-cysteine (AviCys) residue is derived from a decarboxylation of a terminal cysteine that is involved in lanthionine ring formation. Studies on mutacin 1140 have revealed new insight into the structural importance of the C-terminal AviCys residue. A C-terminal carboxyl analogue of mutacin 1140 was engineered. Capping the C-terminal carboxyl group with a primary amine restores bioactivity and affords a novel opportunity to synthesize new analogues. A C-terminal fluorescein-labeled mutacin 1140 analogue traps lipid II into a large lipid II lantibiotic complex, similar to that observed in vivo for the lantibiotic nisin. A C-terminal carboxyl analogue of mutacin 1140 competitively inhibits the activity of native mutacin 1140 and nisin. The presence of a C-terminal carboxyl group prevents the formation of the large lipid II lantibiotic complexes but does not prevent the binding of the lantibiotic to lipid II.IMPORTANCE This study addressed the importance of the C-terminal S-[(Z)-2-aminovinyl]-d-cysteine (AviCys) residue for antibacterial activity. We have learned that the posttranslational modification for making the AviCys residue is presumably important for the lateral assembly mechanism of activity that traps lipid II into a large complex. The C-terminal carboxyl analogue of this class of lantibiotics is agreeable to the addition of a wide variety of substrates. The addition of fluorescein enabled in vivo visualization of the epidermin class of lantibiotics in action. These results are significant because, as we demonstrate, the presence of the AviCys residue is not essential for bioactivity, but, more importantly, the removal of the carboxyl group is essential. The ability to make a C-terminal carboxyl analogue that is modifiable will facilitate the synthesis of novel analogues of the epidermin class of lantibiotics that can be developed for new applications.
Collapse
|
16
|
Ortega MA, Cogan DP, Mukherjee S, Garg N, Li B, Thibodeaux GN, Maffioli SI, Donadio S, Sosio M, Escano J, Smith L, Nair SK, van der Donk WA. Two Flavoenzymes Catalyze the Post-Translational Generation of 5-Chlorotryptophan and 2-Aminovinyl-Cysteine during NAI-107 Biosynthesis. ACS Chem Biol 2017; 12:548-557. [PMID: 28032983 DOI: 10.1021/acschembio.6b01031] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lantibiotics are ribosomally synthesized and post-translationally modified antimicrobial peptides containing thioether rings. In addition to these cross-links, the clinical candidate lantibiotic NAI-107 also possesses a C-terminal S-[(Z)-2-aminovinyl]-d-cysteine (AviCys) and a unique 5-chloro-l-tryptophan (ClTrp) moiety linked to its potent bioactivity. Bioinformatic and genetic analyses on the NAI-107 biosynthetic gene cluster identified mibH and mibD as genes encoding flavoenzymes responsible for the formation of ClTrp and AviCys, respectively. The biochemical basis for the installation of these modifications on NAI-107 and the substrate specificity of either enzyme is currently unknown. Using a combination of mass spectrometry, liquid chromatography, and bioinformatic analyses, we demonstrate that MibD is an FAD-dependent Cys decarboxylase and that MibH is an FADH2-dependent Trp halogenase. Most FADH2-dependent Trp halogenases halogenate free Trp, but MibH was only active when Trp was embedded within its cognate peptide substrate deschloro NAI-107. Structural comparison of the 1.88-Å resolution crystal structure of MibH with other flavin-dependent Trp halogenases revealed that subtle amino acid differences within the MibH substrate binding site generates a solvent exposed crevice presumably involved in determining the substrate specificity of this unusual peptide halogenase.
Collapse
Affiliation(s)
- Manuel A. Ortega
- Department
of Biochemistry, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Dillon P. Cogan
- Department
of Biochemistry, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Subha Mukherjee
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Neha Garg
- Department
of Biochemistry, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Bo Li
- Department
of Biochemistry, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Gabrielle N. Thibodeaux
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | | | | | | | - Jerome Escano
- Department of Biology, Texas A&M University, Butler Hall 100, 3258 TAMU, College Station, Texas 77843, United States
| | - Leif Smith
- Department of Biology, Texas A&M University, Butler Hall 100, 3258 TAMU, College Station, Texas 77843, United States
| | - Satish K. Nair
- Department
of Biochemistry, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
- Center
for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Biochemistry, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
- Howard Hughes
Medical Institute, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev 2017; 117:5457-5520. [PMID: 28135077 PMCID: PMC5408752 DOI: 10.1021/acs.chemrev.6b00591] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Lanthipeptides
are ribosomally synthesized and post-translationally
modified peptides (RiPPs) that display a wide variety of biological
activities, from antimicrobial to antiallodynic. Lanthipeptides that
display antimicrobial activity are called lantibiotics. The post-translational
modification reactions of lanthipeptides include dehydration of Ser
and Thr residues to dehydroalanine and dehydrobutyrine, a transformation
that is carried out in three unique ways in different classes of lanthipeptides.
In a cyclization process, Cys residues then attack the dehydrated
residues to generate the lanthionine and methyllanthionine thioether
cross-linked amino acids from which lanthipeptides derive their name.
The resulting polycyclic peptides have constrained conformations that
confer their biological activities. After installation of the characteristic
thioether cross-links, tailoring enzymes introduce additional post-translational
modifications that are unique to each lanthipeptide and that fine-tune
their activities and/or stability. This review focuses on studies
published over the past decade that have provided much insight into
the mechanisms of the enzymes that carry out the post-translational
modifications.
Collapse
Affiliation(s)
- Lindsay M Repka
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan R Chekan
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Satish K Nair
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Collins FWJ, O'Connor PM, O'Sullivan O, Rea MC, Hill C, Ross RP. Formicin - a novel broad-spectrum two-component lantibiotic produced by Bacillus paralicheniformis APC 1576. MICROBIOLOGY-SGM 2016; 162:1662-1671. [PMID: 27450592 DOI: 10.1099/mic.0.000340] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteriocins represent a rather underutilized class of antimicrobials despite often displaying activity against many drug-resistant pathogens. Lantibiotics are a post-translationally modified class of bacteriocins, characterized by the presence of lanthionine and methyllanthionine bridges. In this study, a novel two-peptide lantibiotic was isolated and characterized. Formicin was isolated from Bacillus paralicheniformis APC 1576, an antimicrobial-producing strain originally isolated from the intestine of a mackerel. Genome sequencing allowed for the detection of the formicin operon and, from this, the formicin structural genes were identified, along with those involved in lantibiotic modification, transport and immunity. The identified bacteriocin was subsequently purified from the bacterial supernatant. Despite the degree of conservation seen amongst the entire class of two-peptide lantibiotics, the formicin peptides are unique in many respects. The formicin α peptide is far less hydrophobic than any of the equivalent lantibiotics, and with a charge of plus two, it is one of the most positively charged α peptides. The β peptide is unique in that it is the only such peptide with a negative charge due to the presence of an aspartic acid residue in the C-terminus, possibly indicating a slight variation to the mode of action of the bacteriocin. Formicin also displays a broad spectrum of inhibition against Gram-positive strains, inhibiting many clinically relevant pathogens such as Staphylococcus aureus, Clostridium difficile and Listeria monocytogenes. The range of inhibition displayed against many important pathogens indicates a potential therapeutic use against such strains where antibiotic resistance is such a growing concern.
Collapse
Affiliation(s)
- Fergus W J Collins
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - Paula M O'Connor
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland.,College of Science Engineering and Food Science, University College Cork, Cork, Ireland
| |
Collapse
|
19
|
Ongey EL, Neubauer P. Lanthipeptides: chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production. Microb Cell Fact 2016; 15:97. [PMID: 27267232 PMCID: PMC4897893 DOI: 10.1186/s12934-016-0502-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/01/2016] [Indexed: 01/15/2023] Open
Abstract
Lanthipeptides (also called lantibiotics for those with antibacterial activities) are ribosomally synthesized post-translationally modified peptides having thioether cross-linked amino acids, lanthionines, as a structural element. Lanthipeptides have conceivable potentials to be used as therapeutics, however, the lack of stable, high-yield, well-characterized processes for their sustainable production limit their availability for clinical studies and further pharmaceutical commercialization. Though many reviews have discussed the various techniques that are currently employed to produce lanthipeptides, a direct comparison between these methods to assess industrial applicability has not yet been described. In this review we provide a synoptic comparison of research efforts on total synthesis and in vivo biosynthesis aimed at fostering lanthipeptides production. We further examine current applications and propose measures to enhance product yields. Owing to their elaborate chemical structures, chemical synthesis of these biomolecules is economically less feasible for large-scale applications, and hence biological production seems to be the only realistic alternative.
Collapse
Affiliation(s)
- Elvis Legala Ongey
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany.
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany
| |
Collapse
|
20
|
Escano J, Smith L. Multipronged approach for engineering novel peptide analogues of existing lantibiotics. Expert Opin Drug Discov 2015; 10:857-70. [PMID: 26004576 DOI: 10.1517/17460441.2015.1049527] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Lantibiotics are a class of ribosomally and post-translationally modified peptide antibiotics that are active against a broad spectrum of Gram-positive bacteria. Great efforts have been made to promote the production of these antibiotics, so that they can one day be used in our antimicrobial arsenal to combat multidrug-resistant bacterial infections. AREAS COVERED This review provides a synopsis of lantibiotic research aimed at furthering our understanding of the structural limitation of lantibiotics as well as identifying structural regions that can be modified to improve the bioactivity. In vivo, in vitro and chemical synthesis of lantibiotics has been useful for engineering novel variants with enhanced activities. These approaches have provided novel ways to further our understanding of lantibiotic function and have advanced the objective to develop lantibiotics for the treatment of infectious diseases. EXPERT OPINION Synthesis of lantibiotics with enhanced activities will lead to the discovery of new promising drug candidates that will have a long lasting impact on the treatment of Gram-positive infections. The current body of literature for producing structural variants of lantibiotics has been more of a 'proof-of-principle' approach and the application of these methods has not yet been fully utilized.
Collapse
Affiliation(s)
- Jerome Escano
- Texas A&M University, Department of Biological Sciences, College Station , TX 77843 , USA
| | | |
Collapse
|