1
|
Rivera K, Tanaka KJ, Buechel ER, Origel O, Harrison A, Mason KM, Pinkett HW. Antimicrobial Peptide Recognition Motif of the Substrate Binding Protein SapA from Nontypeable Haemophilus influenzae. Biochemistry 2024; 63:294-311. [PMID: 38189237 PMCID: PMC10851439 DOI: 10.1021/acs.biochem.3c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen associated with respiratory diseases, including otitis media and exacerbations of chronic obstructive pulmonary disease. NTHi exhibits resistance to killing by host antimicrobial peptides (AMPs) mediated by SapA, the substrate binding protein of the sensitivity to antimicrobial peptides (Sap) transporter. However, the specific mechanisms by which SapA selectively binds various AMPs such as defensins and cathelicidin are unknown. In this study, we report mutational analyses of both defensin AMPs and the SapA binding pocket to define the specificity of AMP recognition. Bactericidal assays revealed that NTHi lacking SapA are more susceptible to human beta defensins and LL-37, while remaining highly resistant to a human alpha defensin. In contrast to homologues, our research underscores the distinct specificity of NTHi SapA, which selectively recognizes and binds to peptides containing the charged-hydrophobic motif PKE and RRY. These findings provide valuable insight into the divergence of SapA among bacterial species and NTHi SapA's ability to selectively interact with specific AMPs to mediate resistance.
Collapse
Affiliation(s)
- Kristen
G. Rivera
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Kari J. Tanaka
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Evan R. Buechel
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Octavio Origel
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Alistair Harrison
- The
Center for Microbial Pathogenesis, The Abigail Wexner Research Institute
at Nationwide Children’s Hospital and College of Medicine,
Department of Pediatrics, The Ohio State
University, Columbus, Ohio 43205, United States
| | - Kevin M. Mason
- The
Center for Microbial Pathogenesis, The Abigail Wexner Research Institute
at Nationwide Children’s Hospital and College of Medicine,
Department of Pediatrics, The Ohio State
University, Columbus, Ohio 43205, United States
| | - Heather W. Pinkett
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Law WWH, Kanelis V, Zamble DB. Biochemical studies highlight determinants for metal selectivity in the Escherichia coli periplasmic solute binding protein NikA. Metallomics 2022; 14:mfac084. [PMID: 36255398 PMCID: PMC9671101 DOI: 10.1093/mtomcs/mfac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/15/2022] [Indexed: 11/12/2022]
Abstract
Nickel is an essential micronutrient for the survival of many microbes. On account of the toxicity of nickel and its scarcity in the environment, microbes have evolved specific systems for uptaking and delivering nickel to enzymes. NikA, the solute binding protein for the ATP-binding cassette (ABC) importer NikABCDE, plays a vital role in the nickel homeostasis of Escherichia coli by selectively binding nickel over other metals in the metabolically complex periplasm. While the endogenous ligand for NikA is known to be the Ni(II)-(L-His)2 complex, the molecular basis by which NikA selectively binds Ni(II)-(L-His)2 is unclear, especially considering that NikA can bind multiple metal-based ligands with comparable affinity. Here we show that, regardless of its promiscuous binding activity, NikA preferentially interacts with Ni(II)-(L-His)2, even over other metal-amino acid ligands with an identical coordination geometry for the metal. Replacing both the Ni(II) and the L-His residues in Ni(II)-(L-His)2 compromises binding of the ligand to NikA, in part because these alterations affect the degree by which NikA closes around the ligand. Replacing H416, the only NikA residue that ligates the Ni(II), with other potential metal-coordinating amino acids decreases the binding affinity of NikA for Ni(II)-(L-His)2 and compromises uptake of Ni(II) into E. coli cells, likely due to altered metal selectivity of the NikA mutants. Together, the biochemical and in vivo studies presented here define key aspects of how NikA selects for Ni(II)-(L-His)2 over other metal complexes, and can be used as a reference for studies into the metal selectivity of other microbial solute binding proteins.
Collapse
Affiliation(s)
- Wayne W H Law
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Bioinformatics analysis and biochemical characterisation of ABC transporter-associated periplasmic substrate-binding proteins ModA and MetQ from Helicobacter pylori strain SS1. Biophys Chem 2021; 272:106577. [PMID: 33756269 DOI: 10.1016/j.bpc.2021.106577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022]
Abstract
The human gastric pathogen Helicobacter pylori relies on the uptake of host-provided nutrients for its proliferation and pathogenicity. ABC transporters that mediate import of small molecules into the cytoplasm of H. pylori employ their cognate periplasmic substrate-binding proteins (SBPs) for ligand capture in the periplasm. The genome of the mouse-adapted strain SS1 of H. pylori encodes eight ABC transporter-associated SBPs, but little is known about their specificity or structure. In this study, we demonstrated that the SBP annotated as ModA binds molybdate (MoO42-, KD = 3.8 nM) and tungstate (WO42-, KD = 7.8 nM). In addition, we showed that MetQ binds D-methionine (KD = 9.5 μM), but not L-methionine, which suggests the existence of as yet unknown pathway for L-methionine uptake. Homology modelling has led to identification of the ligand-binding residues.
Collapse
|
4
|
Qin QL, Wang ZB, Su HN, Chen XL, Miao J, Wang XJ, Li CY, Zhang XY, Li PY, Wang M, Fang J, Lidbury I, Zhang W, Zhang XH, Yang GP, Chen Y, Zhang YZ. Oxidation of trimethylamine to trimethylamine N-oxide facilitates high hydrostatic pressure tolerance in a generalist bacterial lineage. SCIENCE ADVANCES 2021; 7:7/13/eabf9941. [PMID: 33771875 PMCID: PMC7997507 DOI: 10.1126/sciadv.abf9941] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/05/2021] [Indexed: 06/01/2023]
Abstract
High hydrostatic pressure (HHP) is a characteristic environmental factor of the deep ocean. However, it remains unclear how piezotolerant bacteria adapt to HHP. Here, we identify a two-step metabolic pathway to cope with HHP stress in a piezotolerant bacterium. Myroides profundi D25T, obtained from a deep-sea sediment, can take up trimethylamine (TMA) through a previously unidentified TMA transporter, TmaT, and oxidize intracellular TMA into trimethylamine N-oxide (TMAO) by a TMA monooxygenase, MpTmm. The produced TMAO is accumulated in the cell, functioning as a piezolyte, improving both growth and survival at HHP. The function of the TmaT-MpTmm pathway was further confirmed by introducing it into Escherichia coli and Bacillus subtilis Encoded TmaT-like and MpTmm-like sequences extensively exist in marine metagenomes, and other marine Bacteroidetes bacteria containing genes encoding TmaT-like and MpTmm-like proteins also have improved HHP tolerance in the presence of TMA, implying the universality of this HHP tolerance strategy in marine Bacteroidetes.
Collapse
Affiliation(s)
- Qi-Long Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Zhi-Bin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Miao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiu-Juan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chun-Yang Li
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Ian Lidbury
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Weipeng Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
5
|
Krypotou E, Scortti M, Grundström C, Oelker M, Luisi BF, Sauer-Eriksson AE, Vázquez-Boland J. Control of Bacterial Virulence through the Peptide Signature of the Habitat. Cell Rep 2020; 26:1815-1827.e5. [PMID: 30759392 PMCID: PMC6389498 DOI: 10.1016/j.celrep.2019.01.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/09/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
To optimize fitness, pathogens selectively activate their virulence program upon host entry. Here, we report that the facultative intracellular bacterium Listeria monocytogenes exploits exogenous oligopeptides, a ubiquitous organic N source, to sense the environment and control the activity of its virulence transcriptional activator, PrfA. Using a genetic screen in adsorbent-treated (PrfA-inducing) medium, we found that PrfA is functionally regulated by the balance between activating and inhibitory nutritional peptides scavenged via the Opp transport system. Activating peptides provide essential cysteine precursor for the PrfA-inducing cofactor glutathione (GSH). Non-cysteine-containing peptides cause promiscuous PrfA inhibition. Biophysical and co-crystallization studies reveal that peptides inhibit PrfA through steric blockade of the GSH binding site, a regulation mechanism directly linking bacterial virulence and metabolism. L. monocytogenes mutant analysis in macrophages and our functional data support a model in which changes in the balance of antagonistic Opp-imported oligopeptides promote PrfA induction intracellularly and PrfA repression outside the host. Listeria PrfA virulence regulation is controlled by antagonistic nutritional peptides Opp-imported peptides regulate PrfA upstream of the activating cofactor GSH PrfA is activated by peptides that provide essential cysteine for GSH biosynthesis Blockade of PrfA’s GSH binding site by peptides inhibits virulence gene activation
Collapse
Affiliation(s)
- Emilia Krypotou
- Microbial Pathogenesis Group, Infection Medicine, Edinburgh Medical School (Biomedical Sciences) and The Roslin Institute, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Mariela Scortti
- Microbial Pathogenesis Group, Infection Medicine, Edinburgh Medical School (Biomedical Sciences) and The Roslin Institute, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Christin Grundström
- Department of Chemistry and Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Melanie Oelker
- Department of Chemistry and Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | - José Vázquez-Boland
- Microbial Pathogenesis Group, Infection Medicine, Edinburgh Medical School (Biomedical Sciences) and The Roslin Institute, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
6
|
Molecular Basis of Unexpected Specificity of ABC Transporter-Associated Substrate-Binding Protein DppA from Helicobacter pylori. J Bacteriol 2019; 201:JB.00400-19. [PMID: 31358613 DOI: 10.1128/jb.00400-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
The gastric pathogen Helicobacter pylori has limited ability to use carbohydrates as a carbon source, relying instead on exogenous amino acids and peptides. Uptake of certain peptides by H. pylori requires an ATP binding cassette (ABC) transporter annotated dipeptide permease (Dpp). The transporter specificity is determined by its cognate substrate-binding protein DppA, which captures ligands in the periplasm and delivers them to the permease. Here, we show that, unlike previously characterized DppA proteins, H. pylori DppA binds, with micromolar affinity, peptides of diverse amino acid sequences ranging between two and eight residues in length. We present analysis of the 1.45-Å-resolution crystal structure of its complex with the tetrapeptide STSA, which provides a structural rationale for the observed broad specificity. Analysis of the molecular surface revealed a ligand-binding pocket that is large enough to accommodate peptides of up to nine residues in length. The structure suggests that H. pylori DppA is able to recognize a wide range of peptide sequences by forming interactions primarily with the peptide main chain atoms. The loop that terminates the peptide-binding pocket in DppAs from other bacteria is significantly shorter in the H. pylori protein, providing an explanation for its ability to bind longer peptides. The subsites accommodating the two N-terminal residues of the peptide ligand make the greatest contribution to the protein-ligand binding energy, in agreement with the observation that dipeptides bind with affinity close to that of longer peptides.IMPORTANCE The World Health Organization listed Helicobacter pylori as a high-priority pathogen for antibiotic development. The potential of using peptide transporters in drug design is well recognized. We discovered that the substrate-binding protein of the ABC transporter for peptides, termed dipeptide permease, is an unusual member of its family in that it directly binds peptides of diverse amino acid sequences, ranging between two and eight residues in length. We also provided a structural rationale for the observed broad specificity. Since the ability to import peptides as a source of carbon is critical for H. pylori, our findings will inform drug design strategies based on inhibition or fusion of membrane-impermeant antimicrobials with peptides.
Collapse
|
7
|
McKinney DC, Bezdenejnih-Snyder N, Farrington K, Guo J, McLaughlin RE, Ruvinsky AM, Singh R, Basarab GS, Narayan S, Buurman ET. Illicit Transport via Dipeptide Transporter Dpp is Irrelevant to the Efficacy of Negamycin in Mouse Thigh Models of Escherichia coli Infection. ACS Infect Dis 2015; 1:222-30. [PMID: 27622650 DOI: 10.1021/acsinfecdis.5b00027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Negamycin is a hydrophilic antimicrobial translation inhibitor that crosses the lipophilic inner membrane of Escherichia coli via at least two transport routes to reach its intracellular target. In a minimal salts medium, negamycin's peptidic nature allows illicit entry via a high-affinity route by hijacking the Dpp dipeptide transporter. Transport via a second, low-affinity route is energetically driven by the membrane potential, seemingly without the direct involvement of a transport protein. In mouse thigh models of E. coli infection, no evidence for Dpp-mediated transport of negamycin was found. The implication is that for the design of new negamycin-based analogs, the physicochemical properties required for cell entry via the low-affinity route need to be retained to achieve clinical success in the treatment of infectious diseases. Furthermore, clinical resistance to such analogs due to mutations affecting their ribosomal target or transport is expected to be rare and similar to that of aminoglycosides.
Collapse
Affiliation(s)
- David C. McKinney
- Departments of Chemistry, ‡Biosciences, and §Drug Metabolism and Pharmacokinetics, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Natascha Bezdenejnih-Snyder
- Departments of Chemistry, ‡Biosciences, and §Drug Metabolism and Pharmacokinetics, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Krista Farrington
- Departments of Chemistry, ‡Biosciences, and §Drug Metabolism and Pharmacokinetics, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jian Guo
- Departments of Chemistry, ‡Biosciences, and §Drug Metabolism and Pharmacokinetics, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Robert E. McLaughlin
- Departments of Chemistry, ‡Biosciences, and §Drug Metabolism and Pharmacokinetics, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Anatoly M. Ruvinsky
- Departments of Chemistry, ‡Biosciences, and §Drug Metabolism and Pharmacokinetics, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Renu Singh
- Departments of Chemistry, ‡Biosciences, and §Drug Metabolism and Pharmacokinetics, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Gregory S. Basarab
- Departments of Chemistry, ‡Biosciences, and §Drug Metabolism and Pharmacokinetics, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Sridhar Narayan
- Departments of Chemistry, ‡Biosciences, and §Drug Metabolism and Pharmacokinetics, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ed T. Buurman
- Departments of Chemistry, ‡Biosciences, and §Drug Metabolism and Pharmacokinetics, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|