1
|
Gomaa B, Lu J, Abdelhamed H, Banes M, Pechanova O, Pechan T, Arick MA, Karsi A, Lawrence ML. Identification of Protein Biomarkers for Differentiating Listeria monocytogenes Genetic Lineage III. Foods 2024; 13:1302. [PMID: 38731673 PMCID: PMC11083783 DOI: 10.3390/foods13091302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Listeria monocytogenes is the causative agent of listeriosis, a severe foodborne illness characterized by septicemia, meningitis, encephalitis, abortions, and occasional death in infants and immunocompromised individuals. L. monocytogenes is composed of four genetic lineages (I, II, III, and IV) and fourteen serotypes. The aim of the current study was to identify proteins that can serve as biomarkers for detection of genetic lineage III strains based on simple antibody-based methods. Liquid chromatography (LC) with electrospray ionization tandem mass spectrometry (ESI MS/MS) followed by bioinformatics and computational analysis were performed on three L. monocytogenes strains (NRRL B-33007, NRRL B-33014, and NRRL B-33077), which were used as reference strains for lineages I, II, and III, respectively. Results from ESI MS/MS revealed 42 unique proteins present in NRRL B-33077 and absent in NRRL B-33007 and NRRL B-33014 strains. BLAST analysis of the 42 proteins against a broader panel of >80 sequenced strains from lineages I and II revealed four proteins [TM2 domain-containing protein (NRRL B-33077_2770), DUF3916 domain-containing protein (NRRL B-33077_1897), DNA adenine methylase (NRRL B-33077_1926), and protein RhsA (NRRL B-33077_1129)] that have no homology with any sequenced strains in lineages I and II. The four genes that encode these proteins were expressed in Escherichia coli strain DE3 and purified. Polyclonal antibodies were prepared against purified recombinant proteins. ELISA using the polyclonal antibodies against 12 L. monocytogenes lineage I, II, and III isolates indicated that TM2 protein and DNA adenine methylase (Dam) detected all lineage III strains with no reaction to lineage I and II strains. In conclusion, two proteins including TM2 protein and Dam are potentially useful biomarkers for detection and differentiation of L. monocytogenes lineage III strains in clinical, environmental, and food processing facilities. Furthermore, these results validate the approach of using a combination of proteomics and bioinformatics to identify useful protein biomarkers.
Collapse
Affiliation(s)
- Basant Gomaa
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (B.G.); (J.L.); (H.A.); (M.B.); (A.K.)
| | - Jingjun Lu
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (B.G.); (J.L.); (H.A.); (M.B.); (A.K.)
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (B.G.); (J.L.); (H.A.); (M.B.); (A.K.)
| | - Michelle Banes
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (B.G.); (J.L.); (H.A.); (M.B.); (A.K.)
| | - Olga Pechanova
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA; (O.P.); (T.P.); (M.A.A.II)
| | - Tibor Pechan
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA; (O.P.); (T.P.); (M.A.A.II)
| | - Mark A. Arick
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA; (O.P.); (T.P.); (M.A.A.II)
| | - Attila Karsi
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (B.G.); (J.L.); (H.A.); (M.B.); (A.K.)
| | - Mark L. Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (B.G.); (J.L.); (H.A.); (M.B.); (A.K.)
| |
Collapse
|
2
|
Ma J, Sun M, Dong W, Pan Z, Lu C, Yao H. PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ Microbiol 2017; 19:345-360. [PMID: 27871130 DOI: 10.1111/1462-2920.13621] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/05/2016] [Accepted: 11/10/2016] [Indexed: 11/27/2022]
Abstract
The type VI secretion system (T6SS) of bacteria plays a key role in competing for specific niches by the contact-dependent killing of competitors. Recently, Rhs proteins with polymorphic C-terminal toxin-domains that inhibit or kill neighboring cells were identified. In this report, we identified a novel Rhs with an MPTase4 (Metallopeptidase-4) domain (designated as Rhs-CT1) that showed an antibacterial effect via T6SS in Escherichia coli. We managed to develop a specific strategy by matching the diagnostic domain-architecture of Rhs-CT1 (Rhs with an N-terminal PAAR-motif and a C-terminal toxin domain) for effector retrieval and discovered a series of Rhs-CTs in E. coli. Indeed, the screened Rhs-CT3 with a REase-3 (Restriction endonuclease-3) domain also mediated interbacterial antagonism. Further analysis revealed that vgrGO1 and eagR/DUF1795 (upstream of rhs-ct) were required for the delivery of Rhs-CTs, suggesting eagR as a potential T6SS chaperone. In addition to chaperoned Rhs-CTs, neighborless Rhs-CTs could be classified into a distinct family (Rhs-Nb) sharing close evolutionary relationship with T6SS2-Rhs (encoded in the T6SS2 cluster of E. coli). Notably, the Rhs-Nb-CT5 was confirmed bioinformatically and experimentally to mediate interbacterial antagonism via Hcp2B-VgrG2 module. In a further retrieval analysis, we discovered various toxin/immunity pairs in extensive bacterial species that could be systematically classified into eight referential clans, suggesting that Rhs-CTs greatly diversify the antibacterial pathways of T6SS.
Collapse
Affiliation(s)
- Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture, Key Lab of Animal Bacteriology, Nanjing, 210095, China
| | - Min Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture, Key Lab of Animal Bacteriology, Nanjing, 210095, China
| | - Wenyang Dong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture, Key Lab of Animal Bacteriology, Nanjing, 210095, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture, Key Lab of Animal Bacteriology, Nanjing, 210095, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture, Key Lab of Animal Bacteriology, Nanjing, 210095, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture, Key Lab of Animal Bacteriology, Nanjing, 210095, China
| |
Collapse
|
3
|
Abstract
Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low prediction accuracies due to the lack of training data. In this article, we propose semi-supervised methods for GRN prediction by utilizing two machine learning algorithms, namely, support vector machines (SVM) and random forests (RF). The semi-supervised methods make use of unlabelled data for training. We investigated inductive and transductive learning approaches, both of which adopt an iterative procedure to obtain reliable negative training data from the unlabelled data. We then applied our semi-supervised methods to gene expression data of Escherichia coli and Saccharomyces cerevisiae, and evaluated the performance of our methods using the expression data. Our analysis indicated that the transductive learning approach outperformed the inductive learning approach for both organisms. However, there was no conclusive difference identified in the performance of SVM and RF. Experimental results also showed that the proposed semi-supervised methods performed better than existing supervised methods for both organisms.
Collapse
|
4
|
Castro D, Cordeiro IB, Taquita P, Eberlin MN, Garcia JS, Souza GHMF, Arruda MAZ, Andrade EV, Filho SA, Crainey JL, Lozano LL, Nogueira PA, Orlandi PP. Proteomic analysis of Chromobacterium violaceum and its adaptability to stress. BMC Microbiol 2015; 15:272. [PMID: 26627076 PMCID: PMC4666173 DOI: 10.1186/s12866-015-0606-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/24/2015] [Indexed: 12/15/2022] Open
Abstract
Background Chromobacterium violaceum (C. violaceum) occurs abundantly in a variety of ecosystems, including ecosystems that place the bacterium under stress. This study assessed the adaptability of C. violaceum by submitting it to nutritional and pH stresses and then analyzing protein expression using bi-dimensional electrophoresis (2-DE) and Maldi mass spectrometry. Results Chromobacterium violaceum grew best in pH neutral, nutrient-rich medium (reference conditions); however, the total protein mass recovered from stressed bacteria cultures was always higher than the total protein mass recovered from our reference culture. The diversity of proteins expressed (repressed by the number of identifiable 2-DE spots) was seen to be highest in the reference cultures, suggesting that stress reduces the overall range of proteins expressed by C. violaceum. Database comparisons allowed 43 of the 55 spots subjected to Maldi mass spectrometry to be characterized as containing a single identifiable protein. Stress-related expression changes were noted for C. violaceum proteins related to the previously characterized bacterial proteins: DnaK, GroEL-2, Rhs, EF-Tu, EF-P; MCP, homogentisate 1,2-dioxygenase, Arginine deiminase and the ATP synthase β-subunit protein as well as for the ribosomal protein subunits L1, L3, L5 and L6. The ability of C. violaceum to adapt its cellular mechanics to sub-optimal growth and protein production conditions was well illustrated by its regulation of ribosomal protein subunits. With the exception of the ribosomal subunit L3, which plays a role in protein folding and maybe therefore be more useful in stressful conditions, all the other ribosomal subunit proteins were seen to have reduced expression in stressed cultures. Curiously, C. violeaceum cultures were also observed to lose their violet color under stress, which suggests that the violacein pigment biosynthetic pathway is affected by stress. Conclusions Analysis of the proteomic signatures of stressed C. violaceum indicates that nutrient-starvation and pH stress can cause changes in the expression of the C. violaceum receptors, transporters, and proteins involved with biosynthetic pathways, molecule recycling, energy production. Our findings complement the recent publication of the C. violeaceum genome sequence and could help with the future commercial exploitation of C. violeaceum. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0606-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diogo Castro
- Instituto Leônidas e Maria Deane - ILMD- Fiocruz, 476 Teresina St., 69057-070, Manaus, AM, Brazil. .,Universidade Estadual do Amazonas, 3578 Djalma Batista Av., 69050-010, Manaus, AM, Brazil.
| | - Isabelle Bezerra Cordeiro
- Universidade Estadual de Campinas, Institute of Chemistry, Thomson Mass Spectrometry Laboratory PO and Spectrometry, Sample Preparation and Mechanization Group (GEPAM), 13084-971, Campinas, SP, Brazil. .,Universidade Estadual do Amazonas, 3578 Djalma Batista Av., 69050-010, Manaus, AM, Brazil.
| | - Paula Taquita
- Instituto Leônidas e Maria Deane - ILMD- Fiocruz, 476 Teresina St., 69057-070, Manaus, AM, Brazil.
| | - Marcos Nogueira Eberlin
- Universidade Estadual de Campinas, Institute of Chemistry, Thomson Mass Spectrometry Laboratory PO and Spectrometry, Sample Preparation and Mechanization Group (GEPAM), 13084-971, Campinas, SP, Brazil.
| | - Jerusa Simone Garcia
- Universidade Estadual de Campinas, Institute of Chemistry, Thomson Mass Spectrometry Laboratory PO and Spectrometry, Sample Preparation and Mechanization Group (GEPAM), 13084-971, Campinas, SP, Brazil.
| | | | - Marco Aurélio Zezzi Arruda
- Universidade Estadual de Campinas, Institute of Chemistry, Thomson Mass Spectrometry Laboratory PO and Spectrometry, Sample Preparation and Mechanization Group (GEPAM), 13084-971, Campinas, SP, Brazil.
| | - Edmar V Andrade
- Universidade Estadual do Amazonas, 3578 Djalma Batista Av., 69050-010, Manaus, AM, Brazil.
| | - Spartaco A Filho
- Universidade Estadual do Amazonas, 3578 Djalma Batista Av., 69050-010, Manaus, AM, Brazil.
| | - J Lee Crainey
- Instituto Leônidas e Maria Deane - ILMD- Fiocruz, 476 Teresina St., 69057-070, Manaus, AM, Brazil.
| | - Luis Lopez Lozano
- Biotechnology Laboratory/ Universidade Federal do Amazonas, 3000 Rodrigo Octávio Av., 69077-000, Manaus, AM, Brazil.
| | - Paulo A Nogueira
- Instituto Leônidas e Maria Deane - ILMD- Fiocruz, 476 Teresina St., 69057-070, Manaus, AM, Brazil.
| | - Patrícia P Orlandi
- Instituto Leônidas e Maria Deane - ILMD- Fiocruz, 476 Teresina St., 69057-070, Manaus, AM, Brazil.
| |
Collapse
|
5
|
Chromosomal directionality of DNA mismatch repair in Escherichia coli. Proc Natl Acad Sci U S A 2015; 112:9388-93. [PMID: 26170312 DOI: 10.1073/pnas.1505370112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defects in DNA mismatch repair (MMR) result in elevated mutagenesis and in cancer predisposition. This disease burden arises because MMR is required to correct errors made in the copying of DNA. MMR is bidirectional at the level of DNA strand polarity as it operates equally well in the 5' to 3' and the 3' to 5' directions. However, the directionality of MMR with respect to the chromosome, which comprises parental DNA strands of opposite polarity, has been unknown. Here, we show that MMR in Escherichia coli is unidirectional with respect to the chromosome. Our data demonstrate that, following the recognition of a 3-bp insertion-deletion loop mismatch, the MMR machinery searches for the first hemimethylated GATC site located on its origin-distal side, toward the replication fork, and that resection then proceeds back toward the mismatch and away from the replication fork. This study provides support for a tight coupling between MMR and DNA replication.
Collapse
|
6
|
Harmer CJ, Hall RM. The A to Z of A/C plasmids. Plasmid 2015; 80:63-82. [DOI: 10.1016/j.plasmid.2015.04.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 04/03/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
|
7
|
The Type VI Secretion System Modulates Flagellar Gene Expression and Secretion in Citrobacter freundii and Contributes to Adhesion and Cytotoxicity to Host Cells. Infect Immun 2015; 83:2596-604. [PMID: 25870231 DOI: 10.1128/iai.03071-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/27/2015] [Indexed: 11/20/2022] Open
Abstract
The type VI secretion system (T6SS) as a virulence factor-releasing system contributes to virulence development of various pathogens and is often activated upon contact with target cells. Citrobacter freundii strain CF74 has a complete T6SS genomic island (GI) that contains clpV, hcp-2, and vgr T6SS genes. We constructed clpV, hcp-2, vgr, and T6SS GI deletion mutants in CF74 and analyzed their effects on the transcriptome overall and, specifically, on the flagellar system at the levels of transcription and translation. Deletion of the T6SS GI affected the transcription of 84 genes, with 15 and 69 genes exhibiting higher and lower levels of transcription, respectively. Members of the cell motility class of downregulated genes of the CF74ΔT6SS mutant were mainly flagellar genes, including effector proteins, chaperones, and regulators. Moreover, the production and secretion of FliC were also decreased in clpV, hcp-2, vgr, or T6SS GI deletion mutants in CF74 and were restored upon complementation. In swimming motility assays, the mutant strains were found to be less motile than the wild type, and motility was restored by complementation. The mutant strains were defective in adhesion to HEp-2 cells and were restored partially upon complementation. Further, the CF74ΔT6SS, CF74ΔclpV, and CF74Δhcp-2 mutants induced lower cytotoxicity to HEp-2 cells than the wild type. These results suggested that the T6SS GI in CF74 regulates the flagellar system, enhances motility, is involved in adherence to host cells, and induces cytotoxicity to host cells. Thus, the T6SS plays a wide-ranging role in C. freundii.
Collapse
|
8
|
Root-Bernstein M, Root-Bernstein R. The ribosome as a missing link in the evolution of life. J Theor Biol 2014; 367:130-158. [PMID: 25500179 DOI: 10.1016/j.jtbi.2014.11.025] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/15/2014] [Accepted: 11/20/2014] [Indexed: 12/27/2022]
Abstract
Many steps in the evolution of cellular life are still mysterious. We suggest that the ribosome may represent one important missing link between compositional (or metabolism-first), RNA-world (or genes-first) and cellular (last universal common ancestor) approaches to the evolution of cells. We present evidence that the entire set of transfer RNAs for all twenty amino acids are encoded in both the 16S and 23S rRNAs of Escherichia coli K12; that nucleotide sequences that could encode key fragments of ribosomal proteins, polymerases, ligases, synthetases, and phosphatases are to be found in each of the six possible reading frames of the 16S and 23S rRNAs; and that every sequence of bases in rRNA has information encoding more than one of these functions in addition to acting as a structural component of the ribosome. Ribosomal RNA, in short, is not just a structural scaffold for proteins, but the vestigial remnant of a primordial genome that may have encoded a self-organizing, self-replicating, auto-catalytic intermediary between macromolecules and cellular life.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Biological Evolution
- Escherichia coli K12/enzymology
- Escherichia coli K12/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Probability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- Ribosomes/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Meredith Root-Bernstein
- School of Geography and the Environment, Oxford University, South Parks Road, Oxford, Oxfordshire OX1 3QY, United Kingdom
| | | |
Collapse
|
9
|
Ghequire MGK, De Mot R. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev 2014; 38:523-68. [PMID: 24923764 DOI: 10.1111/1574-6976.12079] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/05/2014] [Accepted: 05/16/2014] [Indexed: 12/26/2022] Open
Abstract
Members of the Pseudomonas genus produce diverse secondary metabolites affecting other bacteria, fungi or predating nematodes and protozoa but are also equipped with the capacity to secrete different types of ribosomally encoded toxic peptides and proteins, ranging from small microcins to large tailocins. Studies with the human pathogen Pseudomonas aeruginosa have revealed that effector proteins of type VI secretion systems are part of the antibacterial armamentarium deployed by pseudomonads. A novel class of antibacterial proteins with structural similarity to plant lectins was discovered by studying antagonism among plant-associated Pseudomonas strains. A genomic perspective on pseudomonad bacteriocinogeny shows that the modular architecture of S pyocins of P. aeruginosa is retained in a large diversified group of bacteriocins, most of which target DNA or RNA. Similar modularity is present in as yet poorly characterized Rhs (recombination hot spot) proteins and CDI (contact-dependent inhibition) proteins. Well-delimited domains for receptor recognition or cytotoxicity enable the design of chimeric toxins with novel functionalities, which has been applied successfully for S and R pyocins. Little is known regarding how these antibacterials are released and ultimately reach their targets. Other remaining issues concern the identification of environmental triggers activating these systems and assessment of their ecological impact in niches populated by pseudomonads.
Collapse
|
10
|
Hayes CS, Koskiniemi S, Ruhe ZC, Poole SJ, Low DA. Mechanisms and biological roles of contact-dependent growth inhibition systems. Cold Spring Harb Perspect Med 2014; 4:4/2/a010025. [PMID: 24492845 DOI: 10.1101/cshperspect.a010025] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiA/CdiB family of two-partner secretion proteins. CDI(+) cells bind to susceptible target bacteria and deliver a toxic effector domain derived from the carboxyl terminus of CdiA (CdiA-CT). More than 60 distinct CdiA-CT sequence types have been identified, and all CDI toxins characterized thus far display RNase, DNase, or pore-forming activities. CDI systems also encode CdiI immunity proteins, which specifically bind and inactivate cognate CdiA-CT toxins to prevent autoinhibition. CDI activity appears to be limited to target cells of the same species, suggesting that these systems play a role in competition between closely related bacteria. Recent work on the CDI system from uropathogenic Escherichia coli (UPEC 536) has revealed that its CdiA-CT toxin binds tightly to a cysteine biosynthetic enzyme (CysK) in the cytoplasm of target cells. The unanticipated complexity in the UPEC CDI pathway raises the possibility that these systems perform other functions in addition to growth inhibition. Finally, we propose that the phenomenon of CDI is more widespread than previously appreciated. Rhs (rearrangement hotspot) systems encode toxin-immunity pairs, some of which share significant sequence identity with CdiA-CT/CdiI proteins. A number of recent observations suggest that Rhs proteins mediate a distinct form of CDI.
Collapse
Affiliation(s)
- Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9625
| | | | | | | | | |
Collapse
|
11
|
Abstract
Rearrangement hotspot (Rhs) and related YD-peptide repeat proteins are widely distributed in bacteria and eukaryotes, but their functions are poorly understood. Here, we show that Gram-negative Rhs proteins and the distantly related wall-associated protein A (WapA) from Gram-positive bacteria mediate intercellular competition. Rhs and WapA carry polymorphic C-terminal toxin domains (Rhs-CT/WapA-CT), which are deployed to inhibit the growth of neighboring cells. These systems also encode sequence-diverse immunity proteins (RhsI/WapI) that specifically neutralize cognate toxins to protect rhs(+)/wapA(+) cells from autoinhibition. RhsA and RhsB from Dickeya dadantii 3937 carry nuclease domains that degrade target cell DNA. D. dadantii 3937 rhs genes do not encode secretion signal sequences but are linked to hemolysin-coregulated protein and valine-glycine repeat protein G genes from type VI secretion systems. Valine-glycine repeat protein G is required for inhibitor cell function, suggesting that Rhs may be exported from D. dadantii 3937 through a type VI secretion mechanism. In contrast, WapA proteins from Bacillus subtilis strains appear to be exported through the general secretory pathway and deliver a variety of tRNase toxins into neighboring target cells. These findings demonstrate that YD-repeat proteins from phylogenetically diverse bacteria share a common function in contact-dependent growth inhibition.
Collapse
|
12
|
Hauser H, Richter DC, van Tonder A, Clark L, Preston A. Comparative genomic analyses of the Taylorellae. Vet Microbiol 2012; 159:195-203. [PMID: 22541164 DOI: 10.1016/j.vetmic.2012.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 03/01/2012] [Accepted: 03/26/2012] [Indexed: 11/25/2022]
|