1
|
Nguyen CDH, Amoroso G, Ventura T, Elizur A. Assessing the Pyloric Caeca and Distal Gut Microbiota Correlation with Flesh Color in Atlantic Salmon ( Salmo salar L., 1758). Microorganisms 2020; 8:microorganisms8081244. [PMID: 32824332 PMCID: PMC7464769 DOI: 10.3390/microorganisms8081244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 01/19/2023] Open
Abstract
The Atlantic salmon (Salmo salar L., 1758) is a temperate fish species native to the northern Atlantic Ocean. The distinctive pink–red flesh color (i.e., pigmentation) significantly affects the market price. Flesh paleness leads to customer dissatisfaction, a loss of competitiveness, a drop in product value and, consequently, severe economic losses. This work extends our knowledge on salmonid carotenoid dynamics to include the interaction between the gut microbiota and flesh color. A significant association between the flesh color and abundance of specific bacterial communities in the gut microbiota suggests that color may be affected either by seeding resilient beneficial bacteria or by inhibiting the negative effect of pathogenic bacteria. We sampled 96 fish, which covered all phenotypes of flesh color, including the average color and the evenness of color of different areas of the fillet, at both the distal intestine and the pyloric caeca of each individual, followed by 16S rRNA sequencing at the V3-V4 region. The microbiota profiles of these two gut regions were significantly different; however, there was a consistency in the microbiota, which correlated with the flesh color. Moreover, the pyloric caeca microbiota also showed high correlation with the evenness of the flesh color (beta diversity index, PERMANOVA, p = 0.002). The results from the pyloric caeca indicate that Carnobacterium, a group belonging to the lactic acid bacteria, is strongly related to the flesh color and the evenness of the color between the flesh areas.
Collapse
Affiliation(s)
- Chan D. H. Nguyen
- Genecology Research Centre and School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; (C.D.H.N.); (G.A.)
| | - Gianluca Amoroso
- Genecology Research Centre and School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; (C.D.H.N.); (G.A.)
- Petuna Aquaculture, East Devonport, Tasmania 7310, Australia
| | - Tomer Ventura
- Genecology Research Centre and School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; (C.D.H.N.); (G.A.)
- Correspondence: (T.V.); (A.E.)
| | - Abigail Elizur
- Genecology Research Centre and School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; (C.D.H.N.); (G.A.)
- Correspondence: (T.V.); (A.E.)
| |
Collapse
|
2
|
Bassi D, Gazzola S, Sattin E, Dal Bello F, Simionati B, Cocconcelli PS. Lactic Acid Bacteria Adjunct Cultures Exert a Mitigation Effect against Spoilage Microbiota in Fresh Cheese. Microorganisms 2020; 8:E1199. [PMID: 32781677 PMCID: PMC7464123 DOI: 10.3390/microorganisms8081199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Lactic acid bacteria (LAB) have a strong mitigation potential as adjunct cultures to inhibit undesirable bacteria in fermented foods. In fresh cheese with low salt concentration, spoilage and pathogenic bacteria can affect the shelf life with smear on the surface and packaging blowing. In this work, we studied the spoilage microbiota of an Italian fresh cheese to find tailor-made protective cultures for its shelf life improvement. On 14-tested LAB, three of them, namely Lacticaseibacillus rhamnosus LRH05, Latilactobacillus sakei LSK04, and Carnobacterium maltaromaticum CNB06 were the most effective in inhibiting Gram-negative bacteria. These cultures were assessed by the cultivation-dependent and DNA metabarcoding approach using in vitro experiments and industrial trials. Soft cheese with and without adjunct cultures were prepared and stored at 8 and 14 °C until the end of the shelf life in modified atmosphere packaging. Data demonstrated that the use of adjunct cultures reduce and/or modulate the growth of spoilage microbiota at both temperatures. Particularly, during industrial experiments, C. maltaromaticum CNB06 and Lcb. rhamnosus RH05 lowered psychrotrophic bacteria of almost 3 Log CFU/g in a 5-week stored cheese. On the contrary, Llb. sakei LSK04 was able to colonize the cheese but it was not a good candidate for its inhibition capacity. The combined approach applied in this work allowed to evaluate the protective potential of LAB strains against Gram-negative communities.
Collapse
Affiliation(s)
- Daniela Bassi
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-Alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Simona Gazzola
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-Alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | | | | | | | - Pier Sandro Cocconcelli
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-Alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| |
Collapse
|
3
|
Draft Genome Sequences of Five Carnobacterium sp. Strains Isolated from Freshwater Ponds in Belgium. Microbiol Resour Announc 2020; 9:9/25/e00955-19. [PMID: 32554785 PMCID: PMC7303419 DOI: 10.1128/mra.00955-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains belonging to the genus Carnobacterium are Gram-positive bacteria that are widely distributed in the environment. Here, we report the draft genome sequences of five Carnobacterium strains isolated from freshwater ponds located in Flanders, Belgium, and sequenced on an Illumina HiSeq 4000 platform. Strains belonging to the genus Carnobacterium are Gram-positive bacteria that are widely distributed in the environment. Here, we report the draft genome sequences of five Carnobacterium strains isolated from freshwater ponds located in Flanders, Belgium, and sequenced on an Illumina HiSeq 4000 platform.
Collapse
|
4
|
Zhou L, Bai C, Cai J, Hu Y, Shao K, Gao G, Jeppesen E, Tang X. Bio-cord plays a similar role as submerged macrophytes in harboring bacterial assemblages in an eco-ditch. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26550-26561. [PMID: 29992414 DOI: 10.1007/s11356-018-2697-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Artificial carriers are widely used to enhance the formation of biofilm and improve pollutants' removal efficiency in agricultural wastewater treatment ditches (eco-ditches), yet comprehensive insight into their bacterial community is scarce. In this study, bacterial diversities in four different habitats-the water column, surface sediments, submerged macrophytes (Myriophyllum verticillatum L.), and the artificial carriers (bio-cord)-were compared in a Chinese eco-ditch. Comparable richness and evenness of bacterial communities were observed on M. verticillatum and bio-cord, both being higher than for free-living bacteria in the water column but lower than for bacteria in the surface sediment. The highest similarity of bacterial community composition and structure also occurred between M. verticillatum and the bio-cord, dominated by α- and γ-proteobacteria, Verrucomicrobia, and Bacteroidetes. Firmicutes and Planctomycetes, respectively, were the exclusive abundant phyla in M. verticillatum and the bio-cord, probably indicating the unique interaction between M. verticillatum and their epiphytic bacteria. Some abundant genera, such as Roseomonas, Pseudomonas, and Rhodopirellula, which were exclusively observed in M. verticillatum or the bio-cord, have been reported to have the same capacity to remove nitrogen and organic matter in wastewater treatment systems. In conclusion, in the studied eco-ditch, the bio-cord was found to play a similar role as submerged macrophytes in harboring bacterial assemblages, and we therefore propose that bio-cord may be a good alternative or supplement to enhance wastewater treatment in agricultural ditches.
Collapse
Affiliation(s)
- Lei Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengrong Bai
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Cai
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Hu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People's Republic of China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People's Republic of China
| | - Erik Jeppesen
- Department of Bioscience and Arctic Research Centre, Aarhus University, DK-8600, Silkeborg, Denmark
- Sino-Danish Centre for Education and Research, Beijing, 100190, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
5
|
Iskandar CF, Borges F, Taminiau B, Daube G, Zagorec M, Remenant B, Leisner JJ, Hansen MA, Sørensen SJ, Mangavel C, Cailliez-Grimal C, Revol-Junelles AM. Comparative Genomic Analysis Reveals Ecological Differentiation in the Genus Carnobacterium. Front Microbiol 2017; 8:357. [PMID: 28337181 PMCID: PMC5341603 DOI: 10.3389/fmicb.2017.00357] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/21/2017] [Indexed: 02/01/2023] Open
Abstract
Lactic acid bacteria (LAB) differ in their ability to colonize food and animal-associated habitats: while some species are specialized and colonize a limited number of habitats, other are generalist and are able to colonize multiple animal-linked habitats. In the current study, Carnobacterium was used as a model genus to elucidate the genetic basis of these colonization differences. Analyses of 16S rRNA gene meta-barcoding data showed that C. maltaromaticum followed by C. divergens are the most prevalent species in foods derived from animals (meat, fish, dairy products), and in the gut. According to phylogenetic analyses, these two animal-adapted species belong to one of two deeply branched lineages. The second lineage contains species isolated from habitats where contact with animal is rare. Genome analyses revealed that members of the animal-adapted lineage harbor a larger secretome than members of the other lineage. The predicted cell-surface proteome is highly diversified in C. maltaromaticum and C. divergens with genes involved in adaptation to the animal milieu such as those encoding biopolymer hydrolytic enzymes, a heme uptake system, and biopolymer-binding adhesins. These species also exhibit genes for gut adaptation and respiration. In contrast, Carnobacterium species belonging to the second lineage encode a poorly diversified cell-surface proteome, lack genes for gut adaptation and are unable to respire. These results shed light on the important genomics traits required for adaptation to animal-linked habitats in generalist Carnobacterium.
Collapse
Affiliation(s)
- Christelle F. Iskandar
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Frédéric Borges
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Bernard Taminiau
- Laboratory of Food Microbiology, Department of Food Science, Fundamental and Applied Research for Animal and Health, University of LiègeLiège, Belgium
| | - Georges Daube
- Laboratory of Food Microbiology, Department of Food Science, Fundamental and Applied Research for Animal and Health, University of LiègeLiège, Belgium
| | | | | | - Jørgen J. Leisner
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Martin A. Hansen
- Molecular Microbial Ecology Group, University of CopenhagenCopenhagen, Denmark
| | - Søren J. Sørensen
- Molecular Microbial Ecology Group, University of CopenhagenCopenhagen, Denmark
| | - Cécile Mangavel
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Catherine Cailliez-Grimal
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Anne-Marie Revol-Junelles
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| |
Collapse
|
6
|
Nicholson WL, Davis CL, Shapiro N, Huntemann M, Clum A, Reddy TBK, Pillay M, Markowitz V, Varghese N, Pati A, Ivanova N, Kyrpides N, Woyke T. An improved high-quality draft genome sequence of Carnobacterium inhibens subsp. inhibens strain K1(T). Stand Genomic Sci 2016; 11:65. [PMID: 27617056 PMCID: PMC5016993 DOI: 10.1186/s40793-016-0193-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 08/31/2016] [Indexed: 11/24/2022] Open
Abstract
Despite their ubiquity and their involvement in food spoilage, the genus Carnobacterium remains rather sparsely characterized at the genome level. Carnobacterium inhibens K1(T) is a member of the Carnobacteriaceae family within the class Bacilli. This strain is a Gram-positive, rod-shaped bacterium isolated from the intestine of an Atlantic salmon. The present study determined the genome sequence and annotation of Carnobacterium inhibens K1(T). The genome comprised 2,748,608 bp with a G + C content of 34.85 %, which included 2621 protein-coding genes and 116 RNA genes. The strain contained five contigs corresponding to presumptive plasmids of sizes: 19,036; 24,250; 26,581; 65,272; and 65,904 bp.
Collapse
Affiliation(s)
- Wayne L. Nicholson
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Merritt Island, FL 32953 USA
| | - Christina L. Davis
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Merritt Island, FL 32953 USA
| | | | | | - Alicia Clum
- DOE Joint Genome Institute, Walnut Creek, CA USA
| | | | - Manoj Pillay
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | | | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, CA USA
| | | | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, CA USA
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA USA
| |
Collapse
|
7
|
Kelesidis T. Origin of de novo daptomycin non susceptible enterococci. World J Clin Infect Dis 2015; 5:30-36. [DOI: 10.5495/wjcid.v5.i2.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/01/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
The emergence of daptomycin non-susceptible enterococci (DNSE) poses both treatment and infection control challenges. Clinicians should be vigilant that DNSE may be isolated from patients with or without (de novo DNSE) prior use of daptomycin. Recent epidemiological data suggest the presence of a community reservoir for DNSE which may be associated with environmental, foodborne and agricultural exposures. The mechanisms of nonsusceptibility to daptomycin have not been well characterized and may not parallel those for Staphylococcus aureus. The identification of daptomycin resistance genes in anaerobes, in farm animals and in an ecosystem that has been isolated for million years, suggest that the environmental reservoir for de novo DNSE may be larger than previously thought. Herein, the limited available scientific evidence regarding the possible origin of de novo DNSE is discussed. The current existing evidence is not sufficient to draw firm conclusions on the origin of DNSE. Further studies to determine the mechanisms of de novo daptomycin nonsusceptibility among enterococci are needed.
Collapse
|
8
|
Kelesidis T. The zoonotic potential of daptomycin non-susceptible enterococci. Zoonoses Public Health 2013; 62:1-6. [PMID: 24274811 DOI: 10.1111/zph.12091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Indexed: 11/30/2022]
Abstract
Daptomycin non-susceptible Enterococcus (DNSE) is an emerging clinical problem. Little is known about how de novo DNSE infections develop or the risk factors associated with them. Determining risk factors associated with de novo DNSE infections will aid in understanding the mechanisms of daptomycin non-susceptibility. Humans in contact with animals worldwide are at risk of carriage of multidrug-resistant bacteria. Herein, I review the scientific evidence that supports the hypothesis that transport of daptomycin non-susceptibility genes between animals and humans may be a possible mechanism for development of de novo daptomycin non-susceptibility in enterococci.
Collapse
Affiliation(s)
- T Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
9
|
Complete Chromosome Sequence of Carnobacterium maltaromaticum LMA 28. GENOME ANNOUNCEMENTS 2013; 1:genomeA00115-12. [PMID: 23405327 PMCID: PMC3569318 DOI: 10.1128/genomea.00115-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/19/2012] [Indexed: 11/20/2022]
Abstract
Within the lactic acid bacterium genus Carnobacterium, Carnobacterium maltaromaticum is one of the most frequently isolated species from natural environments and food. It potentially plays a major role in food product biopreservation. We report here on the 3.649-Mb chromosome sequence of C. maltaromaticum LMA 28, which was isolated from ripened soft cheese.
Collapse
|
10
|
Petrova P, Petrov K, Stoyancheva G. Starch-modifying enzymes of lactic acid bacteria - structures, properties, and applications. STARCH-STARKE 2012. [DOI: 10.1002/star.201200192] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Afzal MI, Delaunay S, Paris C, Borges F, Revol-Junelles AM, Cailliez-Grimal C. Identification of metabolic pathways involved in the biosynthesis of flavor compound 3-methylbutanal from leucine catabolism by Carnobacterium maltaromaticum LMA 28. Int J Food Microbiol 2012; 157:332-9. [DOI: 10.1016/j.ijfoodmicro.2012.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 04/30/2012] [Accepted: 05/09/2012] [Indexed: 11/29/2022]
|
12
|
Schaffer PA, Lifland B, Sommeran SV, Casper DR, Davis CR. Meningoencephalitis Associated With Carnobacterium maltaromaticum–Like Bacteria in Stranded Juvenile Salmon Sharks (Lamna ditropis). Vet Pathol 2012; 50:412-7. [DOI: 10.1177/0300985812441033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Juvenile salmon sharks beach yearly along the California coast, primarily during late summer and early fall. Fresh, frozen, and formalin-fixed tissues from 19 stranded salmon sharks were collected for examination. Histopathology revealed meningitis or meningoencephalitis in 18 of 19 shark brains with intralesional bacteria observed in 6 of the affected brains. Bacterial culture of fresh or frozen brain, liver, and/or heart blood from 13 sharks yielded pure cultures characterized molecularly and/or biochemically as belonging to the genus Carnobacterium. The 16s ribosomal DNA sequence of 7 tissue isolates from 7 separate sharks was 99% homologous to C. maltaromaticum (GenBank FJ656722.1). Sequence of the large ribosomal DNA intergenic spacer region (ISR) was 97% homologous to C. maltaromaticum (AF374295.1). This is the first report of Carnobacterium infection in any shark species, and the authors posit that brain infection caused by Carnobacterium is a significant cause of morbidity and mortality in juvenile salmon sharks found stranded along the Pacific coast of California.
Collapse
Affiliation(s)
- P. A. Schaffer
- Department of Microbiology, Immunology & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - B. Lifland
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - D. R. Casper
- Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA, USA
| | - C. R. Davis
- Charles River Laboratories, Longley Lane, Reno, NV, USA
| |
Collapse
|
13
|
Martínez-Rosales C, Fullana N, Musto H, Castro-Sowinski S. Antarctic DNA moving forward: genomic plasticity and biotechnological potential. FEMS Microbiol Lett 2012; 331:1-9. [PMID: 22360528 DOI: 10.1111/j.1574-6968.2012.02531.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/09/2012] [Accepted: 02/18/2012] [Indexed: 02/06/2023] Open
Abstract
Antarctica is the coldest, driest, and windiest continent, where only cold-adapted organisms survive. It has been frequently cited as a pristine place, but it has a highly diverse microbial community that is continually seeded by nonindigenous microorganisms. In addition to the intromission of 'alien' microorganisms, global warming strongly affects microbial Antarctic communities, changing the genes (qualitatively and quantitatively) potentially available for horizontal gene transfer. Several mobile genetic elements have been described in Antarctic bacteria (including plasmids, transposons, integrons, and genomic islands), and the data support that they are actively involved in bacterial evolution in the Antarctic environment. In addition, this environment is a genomic source for the identification of novel molecules, and many investigators have used culture-dependent and culture-independent approaches to identify cold-adapted proteins. Some of them are described in this review. We also describe studies for the design of new recombinant technologies for the production of 'difficult' proteins.
Collapse
|
14
|
Nelson OW, Garrity GM. Genome sequences published outside of Standards in Genomic Sciences, January – June 2011. Stand Genomic Sci 2011. [DOI: 10.4056/sigs.2044675] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Oranmiyan W. Nelson
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| | - George M. Garrity
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|