1
|
Cortés-Martín A, Buttimer C, Pozhydaieva N, Hille F, Shareefdeen H, Bolocan AS, Draper LA, Shkoporov AN, Franz CMAP, Höfer K, Ross RP, Hill C. Isolation and characterization of Septuagintavirus; a novel clade of Escherichia coli phages within the subfamily Vequintavirinae. Microbiol Spectr 2024; 12:e0059224. [PMID: 39101714 PMCID: PMC11370258 DOI: 10.1128/spectrum.00592-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Escherichia coli is a commensal inhabitant of the mammalian gut microbiota, frequently associated with various gastrointestinal diseases. There is increasing interest in comprehending the variety of bacteriophages (phages) that target this bacterium, as such insights could pave the way for their potential use in therapeutic applications. Here, we report the isolation and characterization of four newly identified E. coli infecting tailed phages (W70, A7-1, A5-4, and A73) that were found to constitute a novel genus, Septuagintavirus, within the subfamily Vequintavirinae. Genomes of these phages ranged from 137 kbp to 145 kbp, with a GC content of 41 mol%. They possess a maximum nucleotide similarity of 30% with phages of the closest phylogenetic genus, Certrevirus, while displaying limited homology to other genera of the Vequintavirinae family. Host range analysis showed that these phages have limited activity against a panel of E. coli strains, infecting 6 out of 16 tested isolates, regardless of their phylotype. Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) was performed on the virion of phage W70, allowing the identification of 28 structural proteins, 19 of which were shared with phages of other genera of Vequintavirinae family. The greatest diversity was identified with proteins forming tail fiber structures, likely indicating the adaptation of virions of each phage genus of this subfamily for the recognition of their target receptor on host cells. The findings of this study provide greater insights into the phages of the subfamily Vequintavirinae, contributing to the pool of knowledge currently known about these phages. IMPORTANCE Escherichia coli is a well-known bacterium that inhabits diverse ecological niches, including the mammalian gut microbiota. Certain strains are associated with gastrointestinal diseases, and there is a growing interest in using bacteriophages, viruses that infect bacteria, to combat bacterial infections. Here, we describe the isolation and characterization of four novel E. coli bacteriophages that constitute a new genus, Septuagintavirus, within the subfamily Vequintavirinae. We conducted mass spectrometry on virions of a representative phage of this novel clade and compared it to other phages within the subfamily. Our analysis shows that virion structure is highly conserved among all phages, except for proteins related to tail fiber structures implicated in the host range. These findings provide greater insights into the phages of the subfamily Vequintavirinae, contributing to the existing pool of knowledge about these phages.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Buttimer
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | | | - Frank Hille
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Hiba Shareefdeen
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Andrei S. Bolocan
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Lorraine A. Draper
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Andrey N. Shkoporov
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | | | - Katharina Höfer
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - R. Paul Ross
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Naligama KN, Halmillawewa AP. Pectobacterium carotovorum Phage vB_PcaM_P7_Pc Is a New Member of the Genus Certrevirus. Microbiol Spectr 2022; 10:e0312622. [PMID: 36346243 PMCID: PMC9769974 DOI: 10.1128/spectrum.03126-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Pectobacterium carotovorum is an economically important phytopathogen and has been identified as the major causative agent of bacterial soft rot in carrots. Control of this phytopathogen is vital to minimizing carrot harvest losses. As fully efficient control measures to successfully avoid the disease are unavailable, the phage-mediated biocontrol of the pathogen has recently gained scientific attention. In this study, we present a comprehensive characterization of the P. carotovorum phage vB_PcaM_P7_Pc (abbreviated as P7_Pc) that was isolated from infected carrot samples with characteristic soft rot symptoms, which were obtained from storage facilities at market places in Gampaha District, Sri Lanka. P7_Pc is a myovirus, and it exhibits growth characteristics of an exclusively lytic life cycle. It showed visible lysis against four of the tested P. carotovorum strains and one Pectobacterium aroidearum strain. This phage also showed a longer latent period (125 min) than other related phages; however, this did not affect its high phage titter (>1010 PFU/mL). The final assembled genome of P7_Pc is 147,299 bp in length with a G+C content of 50.34%. Of the 298 predicted open reading frames (ORFs) of the genome of P7_Pc, putative functions were assigned to 53 ORFs. Seven tRNA-coding genes were predicted in the genome, while the genome lacked any major genes coding for lysogeny-related products, confirming its virulent nature. The P7_Pc genome shares 96.12% and 95.74% average nucleotide identities with Cronobacter phages CR8 and PBES02, respectively. Phylogenetic and phylogenomic analyses of the genome revealed that P7_Pc clusters well within the clade with the members representing the genus Certrevirus. Currently, there are only 4 characterized Pectobacterium phages (P. atrosepticum phages phiTE and CB7 and Pectobacterium phages DU_PP_I and DU_PP_IV) that are classified under the genus, making the phage P7_Pc the first reported member of the genus isolated using the host bacterium P. carotovorum. The results of this study provide a detailed characterization of the phage P7_Pc, enabling its careful classification into the genus Certrevirus. The knowledge gathered on the phage based on the shared biology of the genus will further aid in the future selection of phage P7_Pc as a biocontrol agent. IMPORTANCE Bacterial soft rot disease, caused by Pectobacterium spp., can lead to significant losses in carrot yields. As current control measures involving the use of chemicals or antibiotics are not recommended in many countries, bacteriophage-mediated biocontrol strategies are being explored for the successful control of these phytopathogens. The successful implementation of such biocontrol strategies relies heavily upon the proper understanding of the growth characteristics and genomic properties of the phage. Further, the selection of taxonomically different phages for the formulation of phage cocktails in biocontrol applications is critical to combat potential bacterial resistance development. This study was conducted to carefully characterize and resolve the phylogenetic placement of the P. carotovorum phage vB_PcaM_P7_Pc by using its biological and genomic properties. Phage P7_Pc has a myovirus morphotype with an exclusively lytic life cycle, and the absence of genes related to lysogeny, toxin production, and antibiotic resistance in its genome confirmed its suitability to be used in environmental applications. Furthermore, P7_Pc is classified under the genus Certrevirus, making it the first reported phage of the genus of the host species, P. carotovorum.
Collapse
Affiliation(s)
- Kishani N. Naligama
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | | |
Collapse
|
3
|
Greenberg A, Simon I. S Phase Duration Is Determined by Local Rate and Global Organization of Replication. BIOLOGY 2022; 11:718. [PMID: 35625446 PMCID: PMC9139170 DOI: 10.3390/biology11050718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
The duration of the cell cycle has been extensively studied and a wide degree of variability exists between cells, tissues and organisms. However, the duration of S phase has often been neglected, due to the false assumption that S phase duration is relatively constant. In this paper, we describe the methodologies to measure S phase duration, summarize the existing knowledge about its variability and discuss the key factors that control it. The local rate of replication (LRR), which is a combination of fork rate (FR) and inter-origin distance (IOD), has a limited influence on S phase duration, partially due to the compensation between FR and IOD. On the other hand, the organization of the replication program, specifically the amount of replication domains that fire simultaneously and the degree of overlap between the firing of distinct replication timing domains, is the main determinant of S phase duration. We use these principles to explain the variation in S phase length in different tissues and conditions.
Collapse
Affiliation(s)
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| |
Collapse
|
4
|
Buttimer C, Lynch C, Hendrix H, Neve H, Noben JP, Lavigne R, Coffey A. Isolation and Characterization of Pectobacterium Phage vB_PatM_CB7: New Insights into the Genus Certrevirus. Antibiotics (Basel) 2020; 9:E352. [PMID: 32575906 PMCID: PMC7344957 DOI: 10.3390/antibiotics9060352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
To date, Certrevirus is one of two genera of bacteriophage (phage), with phages infecting Pectobacterium atrosepticum, an economically important phytopathogen that causes potato blackleg and soft rot disease. This study provides a detailed description of Pectobacterium phage CB7 (vB_PatM_CB7), which specifically infects P. atrosepticum. Host range, morphology, latent period, burst size and stability at different conditions of temperature and pH were examined. Analysis of its genome (142.8 kbp) shows that the phage forms a new species of Certrevirus, sharing sequence similarity with other members, highlighting conservation within the genus. Conserved elements include a putative early promoter like that of the Escherichia coli sigma70 promoter, which was found to be shared with other genus members. A number of dissimilarities were observed, relating to DNA methylation and nucleotide metabolism. Some members do not have homologues of a cytosine methylase and anaerobic nucleotide reductase subunits NrdD and NrdG, respectively. Furthermore, the genome of CB7 contains one of the largest numbers of homing endonucleases described in a single phage genome in the literature to date, with a total of 23 belonging to the HNH and LAGLIDADG families. Analysis by RT-PCR of the HNH homing endonuclease residing within introns of genes for the large terminase, DNA polymerase, ribonucleotide reductase subunits NrdA and NrdB show that they are splicing competent. Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) was also performed on the virion of CB7, allowing the identification of 26 structural proteins-20 of which were found to be shared with the type phages of the genera of Vequintavirus and Seunavirus. The results of this study provide greater insights into the phages of the Certrevirus genus as well as the subfamily Vequintavirinae.
Collapse
Affiliation(s)
- Colin Buttimer
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland; (C.B.); (C.L.)
- APC Microbiome Institute, University College, T12 YT20 Cork, Ireland
| | - Caoimhe Lynch
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland; (C.B.); (C.L.)
| | - Hanne Hendrix
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (H.H.); (R.L.)
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany;
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, 3590 Hasselt, Belgium;
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (H.H.); (R.L.)
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland; (C.B.); (C.L.)
- APC Microbiome Institute, University College, T12 YT20 Cork, Ireland
| |
Collapse
|
5
|
Buetti-Dinh A, Herold M, Christel S, El Hajjami M, Delogu F, Ilie O, Bellenberg S, Wilmes P, Poetsch A, Sand W, Vera M, Pivkin IV, Friedman R, Dopson M. Reverse engineering directed gene regulatory networks from transcriptomics and proteomics data of biomining bacterial communities with approximate Bayesian computation and steady-state signalling simulations. BMC Bioinformatics 2020; 21:23. [PMID: 31964336 PMCID: PMC6975020 DOI: 10.1186/s12859-019-3337-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Network inference is an important aim of systems biology. It enables the transformation of OMICs datasets into biological knowledge. It consists of reverse engineering gene regulatory networks from OMICs data, such as RNAseq or mass spectrometry-based proteomics data, through computational methods. This approach allows to identify signalling pathways involved in specific biological functions. The ability to infer causality in gene regulatory networks, in addition to correlation, is crucial for several modelling approaches and allows targeted control in biotechnology applications. METHODS We performed simulations according to the approximate Bayesian computation method, where the core model consisted of a steady-state simulation algorithm used to study gene regulatory networks in systems for which a limited level of details is available. The simulations outcome was compared to experimentally measured transcriptomics and proteomics data through approximate Bayesian computation. RESULTS The structure of small gene regulatory networks responsible for the regulation of biological functions involved in biomining were inferred from multi OMICs data of mixed bacterial cultures. Several causal inter- and intraspecies interactions were inferred between genes coding for proteins involved in the biomining process, such as heavy metal transport, DNA damage, replication and repair, and membrane biogenesis. The method also provided indications for the role of several uncharacterized proteins by the inferred connection in their network context. CONCLUSIONS The combination of fast algorithms with high-performance computing allowed the simulation of a multitude of gene regulatory networks and their comparison to experimentally measured OMICs data through approximate Bayesian computation, enabling the probabilistic inference of causality in gene regulatory networks of a multispecies bacterial system involved in biomining without need of single-cell or multiple perturbation experiments. This information can be used to influence biological functions and control specific processes in biotechnology applications.
Collapse
Affiliation(s)
- Antoine Buetti-Dinh
- Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Via Giuseppe Buffi 13, Lugano, CH-6900 Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment Genopode, Lausanne, CH-1015 Switzerland
- Department of Chemistry and Biomedical Sciences, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
- Linnæus University Centre for Biomaterials Chemistry, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
- Centre for Ecology and Evolution in Microbial Model Systems, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
| | - Malte Herold
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Stephan Christel
- Centre for Ecology and Evolution in Microbial Model Systems, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
| | | | - Francesco Delogu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Oslo, Norway
| | - Olga Ilie
- Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Via Giuseppe Buffi 13, Lugano, CH-6900 Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment Genopode, Lausanne, CH-1015 Switzerland
| | - Sören Bellenberg
- Centre for Ecology and Evolution in Microbial Model Systems, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
- Center for Marine and Molecular Biotechnology, QNLM, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wolfgang Sand
- Faculty of Chemistry, Essen, Germany
- College of Environmental Science and Engineering, Donghua University, Shanghai, People’s Republic of China
- Mining Academy and Technical University Freiberg, Freiberg, Germany
| | - Mario Vera
- Institute for Biological and Medical Engineering. Schools of Engineering, Medicine & Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Hydraulic & Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Igor V. Pivkin
- Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Via Giuseppe Buffi 13, Lugano, CH-6900 Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment Genopode, Lausanne, CH-1015 Switzerland
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
- Linnæus University Centre for Biomaterials Chemistry, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
| |
Collapse
|
6
|
Babu VMP, Itsko M, Baxter JC, Schaaper RM, Sutton MD. Insufficient levels of the nrdAB-encoded ribonucleotide reductase underlie the severe growth defect of the Δhda E. coli strain. Mol Microbiol 2017; 104:377-399. [PMID: 28130843 DOI: 10.1111/mmi.13632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 11/28/2022]
Abstract
The ATP-bound form of the Escherichia coli DnaA replication initiator protein remodels the chromosomal origin of replication, oriC, to load the replicative helicase. The primary mechanism for regulating the activity of DnaA involves the Hda and β clamp proteins, which act together to dramatically stimulate the intrinsic DNA-dependent ATPase activity of DnaA via a process termed Regulatory Inactivation of DnaA. In addition to hyperinitiation, strains lacking hda function also exhibit cold sensitive growth at 30°C. Strains impaired for the other regulators of initiation (i.e., ΔseqA or ΔdatA) fail to exhibit cold sensitivity. The goal of this study was to gain insight into why loss of hda function impedes growth. We used a genetic approach to isolate 9 suppressors of Δhda cold sensitivity, and characterized the mechanistic basis by which these suppressors alleviated Δhda cold sensitivity. Taken together, our results provide strong support for the view that the fundamental defect associated with Δhda is diminished levels of DNA precursors, particularly dGTP and dATP. We discuss possible mechanisms by which the suppressors identified here may regulate dNTP pool size, as well as similarities in phenotypes between the Δhda strain and hda+ strains exposed to the ribonucleotide reductase inhibitor hydroxyurea.
Collapse
Affiliation(s)
- Vignesh M P Babu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mark Itsko
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jamie C Baxter
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Mark D Sutton
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
7
|
Saccà ML, Fajardo C, Martinez-Gomariz M, Costa G, Nande M, Martin M. Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri. PLoS One 2014; 9:e89677. [PMID: 24586957 PMCID: PMC3934913 DOI: 10.1371/journal.pone.0089677] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Nanotoxicological studies were performed in vitro using the common soil bacterium Pseudomonas stutzeri to assess the potentially toxic impact of commercial nano-sized zero-valent iron (nZVI) particles, which are currently used for environmental remediation projects. The phenotypic response of P. stutzeri to nZVI toxicity includes an initial insult to the cell wall, as evidenced by TEM micrographs. Transcriptional analyses using genes of particular relevance in cellular activity revealed that no significant changes occurred among the relative expression ratios of narG, nirS, pykA or gyrA following nZVI exposure; however, a significant increase in katB expression was indicative of nZVI-induced oxidative stress in P. stutzeri. A proteomic approach identified two major defence mechanisms that occurred in response to nZVI exposure: a downregulation of membrane proteins and an upregulation of proteins involved in reducing intracellular oxidative stress. These biomarkers served as early indicators of nZVI response in this soil bacterium, and may provide relevant information for environmental hazard assessment.
Collapse
Affiliation(s)
- Maria Ludovica Saccà
- Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
- Moncloa Campus of International Excellence, Madrid, Spain
- * E-mail:
| | - Carmen Fajardo
- Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Gonzalo Costa
- Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Mar Nande
- Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Margarita Martin
- Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Baxter JC, Sutton MD. Evidence for roles of the Escherichia coli Hda protein beyond regulatory inactivation of DnaA. Mol Microbiol 2012; 85:648-68. [PMID: 22716942 DOI: 10.1111/j.1365-2958.2012.08129.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ATP-bound form of the Escherichia coli DnaA protein binds 'DnaA boxes' present in the origin of replication (oriC) and operator sites of several genes, including dnaA, to co-ordinate their transcription with initiation of replication. The Hda protein, together with the β sliding clamp, stimulates the ATPase activity of DnaA via a process termed regulatory inactivation of DnaA (RIDA), to regulate the activity of DnaA in DNA replication. Here, we used the mutant dnaN159 strain, which expresses the β159 clamp protein, to gain insight into how the actions of Hda are co-ordinated with replication. Elevated expression of Hda impeded growth of the dnaN159 strain in a Pol II- and Pol IV-dependent manner, suggesting a role for Hda managing the actions of these Pols. In a wild-type strain, elevated levels of Hda conferred sensitivity to nitrofurazone, and suppressed the frequency of -1 frameshift mutations characteristic of Pol IV, while loss of hda conferred cold sensitivity. Using the dnaN159 strain, we identified 24 novel hda alleles, four of which supported E. coli viability despite their RIDA defect. Taken together, these findings suggest that although one or more Hda functions are essential for cell viability, RIDA may be dispensable.
Collapse
Affiliation(s)
- Jamie C Baxter
- Department of Biochemistry, The School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|