1
|
Postle K, Kopp D, Jana B. In vivo tests of the E. coli TonB system working model-interaction of ExbB with unknown proteins, identification of TonB-ExbD transmembrane heterodimers and PMF-dependent ExbD structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602958. [PMID: 39554141 PMCID: PMC11566014 DOI: 10.1101/2024.07.10.602958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The TonB system of Escherichia coli resolves the dilemma posed by its outer membrane that protects it from a variety of external threats, but also constitutes a diffusion barrier to nutrient uptake. Our working model involves interactions among a set of cytoplasmic membrane-bound proteins: tetrameric ExbB that serves as a scaffold for a dimeric TonB complex (ExbB 4 -TonB 2 ), and also engages dimeric ExbD (ExbB 4 -ExbD 2 ). Through a set of synchronized conformational changes and movements these complexes are proposed to cyclically transduce cytoplasmic membrane protonmotive force to energize active transport of nutrients through TonB-dependent transporters in the outer membrane (described in Gresock et al. , J. Bacteriol. 197:3433). In this work, we provide experimental validation of three important aspects of the model. The majority of ExbB is exposed to the cytoplasm, with an ∼90-residue cytoplasmic loop and an ∼50 residue carboxy terminal tail. Here we found for the first time, that the cytoplasmic regions of ExbB served as in vivo contacts for three heretofore undiscovered proteins, candidates to move ExbB complexes within the membrane. Support for the model also came from visualization of in vivo PMF-dependent conformational transitions in ExbD. Finally, we also show that TonB forms homodimers and heterodimers with ExbD through its transmembrane domain in vivo . This trio of in vivo observations suggest how and why solved in vitro structures of ExbB and ExbD differ significantly from the in vivo results and submit that future inclusion of the unknown ExbB-binding proteins may bring solved structures into congruence with proposed in vivo energy transduction cycle intermediates.
Collapse
|
2
|
Biou V, Adaixo RJD, Chami M, Coureux PD, Laurent B, Enguéné VYN, de Amorim GC, Izadi-Pruneyre N, Malosse C, Chamot-Rooke J, Stahlberg H, Delepelaire P. Structural and molecular determinants for the interaction of ExbB from Serratia marcescens and HasB, a TonB paralog. Commun Biol 2022; 5:355. [PMID: 35418619 PMCID: PMC9008036 DOI: 10.1038/s42003-022-03306-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/22/2022] [Indexed: 01/20/2023] Open
Abstract
ExbB and ExbD are cytoplasmic membrane proteins that associate with TonB to convey the energy of the proton-motive force to outer membrane receptors in Gram-negative bacteria for iron uptake. The opportunistic pathogen Serratia marcescens (Sm) possesses both TonB and a heme-specific TonB paralog, HasB. ExbBSm has a long periplasmic extension absent in other bacteria such as E. coli (Ec). Long ExbB's are found in several genera of Alphaproteobacteria, most often in correlation with a hasB gene. We investigated specificity determinants of ExbBSm and HasB. We determined the cryo-EM structures of ExbBSm and of the ExbB-ExbDSm complex from S. marcescens. ExbBSm alone is a stable pentamer, and its complex includes two ExbD monomers. We showed that ExbBSm extension interacts with HasB and is involved in heme acquisition and we identified key residues in the membrane domain of ExbBSm and ExbBEc, essential for function and likely involved in the interaction with TonB/HasB. Our results shed light on the class of inner membrane energy machinery formed by ExbB, ExbD and HasB.
Collapse
Affiliation(s)
- Valérie Biou
- grid.508487.60000 0004 7885 7602Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, UMR 7099 CNRS, F-75005 Paris, France ,grid.450875.b0000 0004 0643 538XInstitut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Ricardo Jorge Diogo Adaixo
- grid.6612.30000 0004 1937 0642Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Mohamed Chami
- grid.6612.30000 0004 1937 0642Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Pierre-Damien Coureux
- grid.10877.390000000121581279Laboratoire de Biologie Structurale de la Cellule, BIOC, UMR7654 CNRS/Ecole polytechnique, Palaiseau, France
| | - Benoist Laurent
- grid.450875.b0000 0004 0643 538XInstitut de Biologie Physico-Chimique, F-75005 Paris, France ,grid.508487.60000 0004 7885 7602Plateforme de Bioinformatique, Université de Paris, FRC 550 CNRS, F-75005 Paris, France
| | - Véronique Yvette Ntsogo Enguéné
- grid.508487.60000 0004 7885 7602Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, UMR 7099 CNRS, F-75005 Paris, France ,grid.450875.b0000 0004 0643 538XInstitut de Biologie Physico-Chimique, F-75005 Paris, France ,grid.5335.00000000121885934Present Address: Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Gisele Cardoso de Amorim
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS, USR3756 Paris, France ,grid.8536.80000 0001 2294 473XPresent Address: Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brasil
| | - Nadia Izadi-Pruneyre
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS, USR3756 Paris, France
| | - Christian Malosse
- grid.428999.70000 0001 2353 6535Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, 75015 Paris, France
| | - Julia Chamot-Rooke
- grid.428999.70000 0001 2353 6535Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, 75015 Paris, France
| | - Henning Stahlberg
- grid.6612.30000 0004 1937 0642Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland ,grid.9851.50000 0001 2165 4204Present Address: Centre d’imagerie Dubochet UNIL-EPFL-UNIGE & Laboratoire de microscopie électronique biologique UNIL-EPFL, Lausanne, Switzerland
| | - Philippe Delepelaire
- grid.508487.60000 0004 7885 7602Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, UMR 7099 CNRS, F-75005 Paris, France ,grid.450875.b0000 0004 0643 538XInstitut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
3
|
Abstract
The Ton complex is a molecular motor at the inner membrane of Gram-negative bacteria that uses a proton gradient to apply forces on outer membrane (OM) proteins to permit active transport of nutrients into the periplasmic space. Recently, the structure of the ExbB–ExbD subcomplex was determined in several bacterial species, but the complete structure and stoichiometry of TonB have yet to be determined. The C-terminal end of TonB is known to cross the periplasm and interact with TonB-dependent outer membrane transport proteins with high affinity. Yet despite having significant knowledge of these transport proteins, it is not clear how the Ton motor opens a pathway across the outer membrane for nutrient import. Additionally, the mechanism by which energy is harnessed from the inner membrane subcomplex and transduced to the outer membrane via TonB is not well understood. In this review, we will discuss the gaps in the knowledge about the complete structure of the Ton motor complex and the relationship between ion flow used to generate mechanical work at the outer membrane and the nutrient transport process.
Collapse
|
4
|
Xu X, Rao ZM, Xu JZ, Zhang WG. Enhancement of l-Pipecolic Acid Production by Dynamic Control of Substrates and Multiple Copies of the pipA Gene in the Escherichia coli Genome. ACS Synth Biol 2022; 11:760-769. [PMID: 35073050 DOI: 10.1021/acssynbio.1c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
l-Pipecolic acid is an important rigid cyclic nonprotein amino acid, which is obtained through the conversion of l-lysine catalyzed by l-lysine cyclodeaminase (LCD). To directly produce l-pipecolic acid from glucose by microbial fermentation, in this study, a recombinant Escherichia coli strain with high efficiency of l-pipecolic acid production was constructed. This study involves the dynamic regulation of the substrate concentration and the expression level of the l-lysine cyclodeaminase-coding gene pipA. In terms of substrate concentration, we adopted the l-lysine riboswitch to dynamically regulate the expression of lysP and lysO genes. As a result, the l-pipecolic acid yield was increased about 1.8-fold as compared with the control. In addition, we used chemically inducible chromosomal evolution (CIChE) to realize the presence of multiple copies of the pipA gene on the genome. The resultant E. coli strain XQ-11-4 produced 61 ± 3.4 g/L l-pipecolic acid with a productivity of 1.02 ± 0.06 g/(L·h) and a glucose conversion efficiency (α) of 29.6% in fermentation. This is the first report that discovered multiple copies of pipA gene expression on the genome that improves the efficiency of l-pipecolic acid production in an l-lysine high-producing strain, and these results give us new insight for constructing the other valuable biochemicals derived from l-lysine.
Collapse
Affiliation(s)
- Xin Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| | - Zhi-Ming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| |
Collapse
|
5
|
Rieu M, Krutyholowa R, Taylor NMI, Berry RM. A new class of biological ion-driven rotary molecular motors with 5:2 symmetry. Front Microbiol 2022; 13:948383. [PMID: 35992645 PMCID: PMC9389320 DOI: 10.3389/fmicb.2022.948383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Several new structures of three types of protein complexes, obtained by cryo-electron microscopy (cryo-EM) and published between 2019 and 2021, identify a new family of natural molecular wheels, the "5:2 rotary motors." These span the cytoplasmic membranes of bacteria, and their rotation is driven by ion flow into the cell. They consist of a pentameric wheel encircling a dimeric axle within the cytoplasmic membrane of both Gram-positive and gram-negative bacteria. The axles extend into the periplasm, and the wheels extend into the cytoplasm. Rotation of these wheels has never been observed directly; it is inferred from the symmetry of the complexes and from the roles they play within the larger systems that they are known to power. In particular, the new structure of the stator complex of the Bacterial Flagellar Motor, MotA5B2, is consistent with a "wheels within wheels" model of the motor. Other 5:2 rotary motors are believed to share the core rotary function and mechanism, driven by ion-motive force at the cytoplasmic membrane. Their structures diverge in their periplasmic and cytoplasmic parts, reflecting the variety of roles that they perform. This review focuses on the structures of 5:2 rotary motors and their proposed mechanisms and functions. We also discuss molecular rotation in general and its relation to the rotational symmetry of molecular complexes.
Collapse
Affiliation(s)
- Martin Rieu
- Department of Physics, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building University of Oxford, Oxford, United Kingdom
| | - Roscislaw Krutyholowa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nicholas M. I. Taylor
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Nicholas M. I. Taylor,
| | - Richard M. Berry
- Department of Physics, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building University of Oxford, Oxford, United Kingdom
- *Correspondence: Richard M. Berry,
| |
Collapse
|
6
|
Ratliff AC, Buchanan SK, Celia H. Ton motor complexes. Curr Opin Struct Biol 2020; 67:95-100. [PMID: 33157479 DOI: 10.1016/j.sbi.2020.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
The Ton complex is a molecular motor that uses the proton gradient at the inner membrane of Gram-negative bacteria to apply forces on outer membrane proteins, allowing active transport of nutrients into the periplasmic space. For decades, contradictory data has been reported on the structure and stoichiometry of the Ton complex. However, recent reports strongly support a subunit stoichiometry of 5:2 for the ExbB-ExbD subcomplex. In this review, we summarize the recent discoveries of the structures and proposed mechanisms of the Ton system, as well as similar protein motor complexes in Gram-negative bacteria.
Collapse
Affiliation(s)
- Anna C Ratliff
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Herve Celia
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Kopp DR, Postle K. The Intrinsically Disordered Region of ExbD Is Required for Signal Transduction. J Bacteriol 2020; 202:e00687-19. [PMID: 31932309 PMCID: PMC7167468 DOI: 10.1128/jb.00687-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
The TonB system actively transports vital nutrients across the unenergized outer membranes of the majority of Gram-negative bacteria. In this system, integral membrane proteins ExbB, ExbD, and TonB work together to transduce the proton motive force (PMF) of the inner membrane to customized active transporters in the outer membrane by direct and cyclic binding of TonB to the transporters. A PMF-dependent TonB-ExbD interaction is prevented by 10-residue deletions within a periplasmic disordered domain of ExbD adjacent to the cytoplasmic membrane. Here, we explored the function of the ExbD disordered domain in more detail. In vivo photo-cross-linking through sequential pBpa substitutions in the ExbD disordered domain captured five different ExbD complexes, some of which had been previously detected using in vivo formaldehyde cross-linking, a technique that lacks the residue-specific information that can be achieved through photo-cross-linking: two ExbB-ExbD heterodimers (one of which had not been detected previously), previously detected ExbD homodimers, previously detected PMF-dependent ExbD-TonB heterodimers, and for the first time, a predicted, ExbD-TonB PMF-independent interaction. The fact that multiple complexes were captured by the same pBpa substitution indicated the dynamic nature of ExbD interactions as the energy transduction cycle proceeded in vivo In this study, we also discovered that a conserved motif-V45, V47, L49, and P50-within the disordered domain was required for signal transduction to TonB and to the C-terminal domain of ExbD and was the source of motif essentiality.IMPORTANCE The TonB system is a virulence factor for Gram-negative pathogens. The mechanism by which cytoplasmic membrane proteins of the TonB system transduce an electrochemical gradient into mechanical energy is a long-standing mystery. TonB, ExbB, and ExbD primary amino acid sequences are characterized by regions of predicted intrinsic disorder, consistent with a proposed multiplicity of protein-protein contacts as TonB proceeds through an energy transduction cycle, a complex process that has yet to be recapitulated in vitro This study validates a region of intrinsic disorder near the ExbD transmembrane domain and identifies an essential conserved motif embedded within it that transduces signals to distal regions of ExbD suggested to configure TonB for productive interaction with outer membrane transporters.
Collapse
Affiliation(s)
- Dale R Kopp
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kathleen Postle
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
8
|
Celia H, Noinaj N, Buchanan SK. Structure and Stoichiometry of the Ton Molecular Motor. Int J Mol Sci 2020; 21:E375. [PMID: 31936081 PMCID: PMC7014051 DOI: 10.3390/ijms21020375] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
The Ton complex is a molecular motor that uses the proton gradient at the inner membrane of Gram-negative bacteria to generate force and movement, which are transmitted to transporters at the outer membrane, allowing the entry of nutrients into the periplasmic space. Despite decades of investigation and the recent flurry of structures being reported by X-ray crystallography and cryoEM, the mode of action of the Ton molecular motor has remained elusive, and the precise stoichiometry of its subunits is still a matter of debate. This review summarizes the latest findings on the Ton system by presenting the recently reported structures and related reports on the stoichiometry of the fully assembled complex.
Collapse
Affiliation(s)
- Herve Celia
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA;
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| |
Collapse
|
9
|
Celia H, Botos I, Ni X, Fox T, De Val N, Lloubes R, Jiang J, Buchanan SK. Cryo-EM structure of the bacterial Ton motor subcomplex ExbB-ExbD provides information on structure and stoichiometry. Commun Biol 2019; 2:358. [PMID: 31602407 PMCID: PMC6778125 DOI: 10.1038/s42003-019-0604-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/09/2019] [Indexed: 01/20/2023] Open
Abstract
The TonB-ExbB-ExbD molecular motor harnesses the proton motive force across the bacterial inner membrane to couple energy to transporters at the outer membrane, facilitating uptake of essential nutrients such as iron and cobalamine. TonB physically interacts with the nutrient-loaded transporter to exert a force that opens an import pathway across the outer membrane. Until recently, no high-resolution structural information was available for this unique molecular motor. We published the first crystal structure of ExbB-ExbD in 2016 and showed that five copies of ExbB are arranged as a pentamer around a single copy of ExbD. However, our spectroscopic experiments clearly indicated that two copies of ExbD are present in the complex. To resolve this ambiguity, we used single-particle cryo-electron microscopy to show that the ExbB pentamer encloses a dimer of ExbD in its transmembrane pore, and not a monomer as previously reported. The revised stoichiometry has implications for motor function.
Collapse
Affiliation(s)
- Herve Celia
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Xiaodan Ni
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Tara Fox
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer institute, National Institutes of Health, Bethesda, MD 20892 USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701 USA
| | - Natalia De Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer institute, National Institutes of Health, Bethesda, MD 20892 USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701 USA
| | - Roland Lloubes
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 20, France
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
10
|
Going Outside the TonB Box: Identification of Novel FepA-TonB Interactions In Vivo. J Bacteriol 2017; 199:JB.00649-16. [PMID: 28264993 DOI: 10.1128/jb.00649-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/15/2017] [Indexed: 01/30/2023] Open
Abstract
In Gram-negative bacteria, the cytoplasmic membrane protein TonB transmits energy derived from proton motive force to energize transport of important nutrients through TonB-dependent transporters in the outer membrane. Each transporter consists of a beta barrel domain and a lumen-occluding cork domain containing an essential sequence called the TonB box. To date, the only identified site of transporter-TonB interaction is between the TonB box and residues ∼158 to 162 of TonB. While the mechanism of ligand transport is a mystery, a current model based on site-directed spin labeling and molecular dynamics simulations is that, following ligand binding, the otherwise-sequestered TonB box extends into the periplasm for recognition by TonB, which mediates transport by pulling or twisting the cork. In this study, we tested that hypothesis with the outer membrane transporter FepA using in vivo photo-cross-linking to explore interactions of its TonB box and determine whether additional FepA-TonB interaction sites exist. We found numerous specific sites of FepA interaction with TonB on the periplasmic face of the FepA cork in addition to the TonB box. Two residues, T32 and A33, might constitute a ligand-sensitive conformational switch. The facts that some interactions were enhanced in the absence of ligand and that other interactions did not require the TonB box argued against the current model and suggested that the transport process is more complex than originally conceived, with subtleties that might provide a mechanism for discrimination among ligand-loaded transporters. These results constitute the first study on the dynamics of TonB-gated transporter interaction with TonB in vivoIMPORTANCE The TonB system of Gram-negative bacteria has a noncanonical active transport mechanism involving signal transduction and proteins integral to both membranes. To achieve transport, the cytoplasmic membrane protein TonB physically contacts outer membrane transporters such as FepA. Only one contact between TonB and outer membrane transporters has been identified to date: the TonB box at the transporter amino terminus. The TonB box has low information content, raising the question of how TonB can discriminate among multiple different TonB-dependent transporters present in the bacterium if it is the only means of contact. Here we identified several additional sites through which FepA contacts TonB in vivo, including two neighboring residues that may explain how FepA signals to TonB that ligand has bound.
Collapse
|
11
|
From Homodimer to Heterodimer and Back: Elucidating the TonB Energy Transduction Cycle. J Bacteriol 2015; 197:3433-45. [PMID: 26283773 DOI: 10.1128/jb.00484-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The TonB system actively transports large, scarce, and important nutrients through outer membrane (OM) transporters of Gram-negative bacteria using the proton gradient of the cytoplasmic membrane (CM). In Escherichia coli, the CM proteins ExbB and ExbD harness and transfer proton motive force energy to the CM protein TonB, which spans the periplasmic space and cyclically binds OM transporters. TonB has two activity domains: the amino-terminal transmembrane domain with residue H20 and the periplasmic carboxy terminus, through which it binds to OM transporters. TonB is inactivated by all substitutions at residue H20 except H20N. Here, we show that while TonB trapped as a homodimer through its amino-terminal domain retained full activity, trapping TonB through its carboxy terminus inactivated it by preventing conformational changes needed for interaction with OM transporters. Surprisingly, inactive TonB H20A had little effect on homodimerization through the amino terminus and instead decreased TonB carboxy-terminal homodimer formation prior to reinitiation of an energy transduction cycle. That result suggested that the TonB carboxy terminus ultimately interacts with OM transporters as a monomer. Our findings also suggested the existence of a separate equimolar pool of ExbD homodimers that are not in contact with TonB. A model is proposed where interaction of TonB homodimers with ExbD homodimers initiates the energy transduction cycle, and, ultimately, the ExbD carboxy terminus modulates interactions of a monomeric TonB carboxy terminus with OM transporters. After TonB exchanges its interaction with ExbD for interaction with a transporter, ExbD homodimers undergo a separate cycle needed to re-energize them. IMPORTANCE Canonical mechanisms of active transport across cytoplasmic membranes employ ion gradients or hydrolysis of ATP for energy. Gram-negative bacterial outer membranes lack these resources. The TonB system embodies a novel means of active transport across the outer membrane for nutrients that are too large, too scarce, or too important for diffusion-limited transport. A proton gradient across the cytoplasmic membrane is converted by a multiprotein complex into mechanical energy that drives high-affinity active transport across the outer membrane. This system is also of interest since one of its uses in pathogenic bacteria is for competition with the host for the essential element iron. Understanding the mechanism of the TonB system will allow design of antibiotics targeting iron acquisition.
Collapse
|
12
|
Sverzhinsky A, Chung JW, Deme JC, Fabre L, Levey KT, Plesa M, Carter DM, Lypaczewski P, Coulton JW. Membrane Protein Complex ExbB4-ExbD1-TonB1 from Escherichia coli Demonstrates Conformational Plasticity. J Bacteriol 2015; 197:1873-85. [PMID: 25802296 PMCID: PMC4420915 DOI: 10.1128/jb.00069-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/13/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Iron acquisition at the outer membrane (OM) of Gram-negative bacteria is powered by the proton motive force (PMF) of the cytoplasmic membrane (CM), harnessed by the CM-embedded complex of ExbB, ExbD, and TonB. Its stoichiometry, ensemble structural features, and mechanism of action are unknown. By panning combinatorial phage libraries, periplasmic regions of dimerization between ExbD and TonB were predicted. Using overexpression of full-length His6-tagged exbB-exbD and S-tagged tonB, we purified detergent-solubilized complexes of ExbB-ExbD-TonB from Escherichia coli. Protein-detergent complexes of ∼230 kDa with a hydrodynamic radius of ∼6.0 nm were similar to previously purified ExbB₄-ExbD₂ complexes. Significantly, they differed in electronegativity by native agarose gel electrophoresis. The stoichiometry was determined to be ExbB₄-ExbD₁-TonB₁. Single-particle electron microscopy agrees with this stoichiometry. Two-dimensional averaging supported the phage display predictions, showing two forms of ExbD-TonB periplasmic heterodimerization: extensive and distal. Three-dimensional (3D) particle classification showed three representative conformations of ExbB₄-ExbD₁-TonB₁. Based on our structural data, we propose a model in which ExbD shuttles a proton across the CM via an ExbB interprotein rearrangement. Proton translocation would be coupled to ExbD-mediated collapse of extended TonB in complex with ligand-loaded receptors in the OM, followed by repositioning of TonB through extensive dimerization with ExbD. Here we present the first report for purification of the ExbB-ExbD-TonB complex, molar ratios within the complex (4:1:1), and structural biology that provides insights into 3D organization. IMPORTANCE Receptors in the OM of Gram-negative bacteria allow entry of iron-bound siderophores that are necessary for pathogenicity. Numerous iron-acquisition strategies rely upon a ubiquitous and unique protein for energization: TonB. Complexed with ExbB and ExbD, the Ton system links the PMF to OM transport. Blocking iron uptake by targeting a vital nanomachine holds promise in therapeutics. Despite much research, the stoichiometry, structural arrangement, and molecular mechanism of the CM-embedded ExbB-ExbD-TonB complex remain unreported. Here we demonstrate in vitro evidence of ExbB₄-ExbD₁-TonB₁ complexes. Using 3D EM, we reconstructed the complex in three conformational states that show variable ExbD-TonB heterodimerization. Our structural observations form the basis of a model for TonB-mediated iron acquisition.
Collapse
Affiliation(s)
| | - Jacqueline W Chung
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Justin C Deme
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Lucien Fabre
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Kristian T Levey
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Maria Plesa
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - David M Carter
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - James W Coulton
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Sverzhinsky A, Qian S, Yang L, Allaire M, Moraes I, Ma D, Chung JW, Zoonens M, Popot JL, Coulton JW. Amphipol-Trapped ExbB–ExbD Membrane Protein Complex from Escherichia coli: A Biochemical and Structural Case Study. J Membr Biol 2014; 247:1005-18. [DOI: 10.1007/s00232-014-9678-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/09/2014] [Indexed: 01/02/2023]
|
14
|
Sverzhinsky A, Fabre L, Cottreau AL, Biot-Pelletier DMP, Khalil S, Bostina M, Rouiller I, Coulton JW. Coordinated rearrangements between cytoplasmic and periplasmic domains of the membrane protein complex ExbB-ExbD of Escherichia coli. Structure 2014; 22:791-7. [PMID: 24657092 DOI: 10.1016/j.str.2014.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
Gram-negative bacteria rely on the ExbB-ExbD-TonB system for the import of essential nutrients. Despite decades of research, the stoichiometry, subunit organization, and mechanism of action of the membrane proteins of the Ton system remain unclear. We copurified ExbB with ExbD as an ∼240 kDa protein-detergent complex, measured by light scattering and by native gels. Quantitative Coomassie staining revealed a stoichiometry of ExbB4-ExbD2. Negative stain electron microscopy and 2D analysis showed particles of ∼10 nm diameter in multiple structural states. Nanogold labeling identified the position of the ExbD periplasmic domain. Random conical tilt was used to reconstruct the particles in three structural states followed by sorting of the single particles and refinement of each state. The different states are interpreted by coordinated structural rearrangements between the cytoplasmic domain and the periplasmic domain, concordant with in vivo predictions.
Collapse
Affiliation(s)
- Aleksandr Sverzhinsky
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lucien Fabre
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrew L Cottreau
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | | | - Sofia Khalil
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Mihnea Bostina
- Facility for Electron Microscope Research, McGill University, Montreal, QC H3A 2B4, Canada
| | - Isabelle Rouiller
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B4, Canada
| | - James W Coulton
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
15
|
Elucidating the origin of the ExbBD components of the TonB system through Bayesian inference and maximum-likelihood phylogenies. Mol Phylogenet Evol 2013; 69:674-86. [PMID: 23891663 DOI: 10.1016/j.ympev.2013.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 01/03/2023]
Abstract
Uptake of ferric siderophores, vitamin B12, and other molecules in gram-negative bacteria is mediated by a multi-protein complex known as the TonB system. The ExbB and ExbD protein components of the TonB system play key energizing roles and are homologous with the flagellar motor proteins MotA and MotB. Here, the phylogenetic relationships of ExbBD and MotAB were investigated using Bayesian inference and the maximum-likelihood method. Phylogenetic trees of these proteins suggest that they are separated into distinct monophyletic groups and have originated from a common ancestral system. Several horizontal gene transfer events for ExbB-ExbD are also inferred, and a model for the evolution of the TonB system is proposed.
Collapse
|
16
|
Mutations in Escherichia coli ExbB transmembrane domains identify scaffolding and signal transduction functions and exclude participation in a proton pathway. J Bacteriol 2013; 195:2898-911. [PMID: 23603742 DOI: 10.1128/jb.00017-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The TonB system couples cytoplasmic membrane proton motive force (pmf) to active transport of diverse nutrients across the outer membrane. Current data suggest that cytoplasmic membrane proteins ExbB and ExbD harness pmf energy. Transmembrane domain (TMD) interactions between TonB and ExbD allow the ExbD C terminus to modulate conformational rearrangements of the periplasmic TonB C terminus in vivo. These conformational changes somehow allow energization of high-affinity TonB-gated transporters by direct interaction with TonB. While ExbB is essential for energy transduction, its role is not well understood. ExbB has N-terminus-out, C-terminus-in topology with three TMDs. TMDs 1 and 2 are punctuated by a cytoplasmic loop, with the C-terminal tail also occupying the cytoplasm. We tested the hypothesis that ExbB TMD residues play roles in proton translocation. Reassessment of TMD boundaries based on hydrophobic character and residue conservation among distantly related ExbB proteins brought earlier widely divergent predictions into congruence. All TMD residues with potentially function-specific side chains (Lys, Cys, Ser, Thr, Tyr, Glu, and Asn) and residues with probable structure-specific side chains (Trp, Gly, and Pro) were substituted with Ala and evaluated in multiple assays. While all three TMDs were essential, they had different roles: TMD1 was a region through which ExbB interacted with the TonB TMD. TMD2 and TMD3, the most conserved among the ExbB/TolQ/MotA/PomA family, played roles in signal transduction between cytoplasm and periplasm and the transition from ExbB homodimers to homotetramers. Consideration of combined data excludes ExbB TMD residues from direct participation in a proton pathway.
Collapse
|
17
|
Identification of functionally important TonB-ExbD periplasmic domain interactions in vivo. J Bacteriol 2012; 194:3078-87. [PMID: 22493017 DOI: 10.1128/jb.00018-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-negative bacteria, the cytoplasmic membrane proton-motive force energizes the active transport of TonB-dependent ligands through outer membrane TonB-gated transporters. In Escherichia coli, cytoplasmic membrane proteins ExbB and ExbD couple the proton-motive force to conformational changes in TonB, which are hypothesized to form the basis of energy transduction through direct contact with the transporters. While the role of ExbB is not well understood, contact between periplasmic domains of TonB and ExbD is required, with the conformational response of TonB to presence or absence of proton motive force being modulated through ExbD. A region (residues 92 to 121) within the ExbD periplasmic domain was previously identified as being important for TonB interaction. Here, the specific sites of periplasmic domain interactions between that region and the TonB carboxy terminus were identified by examining 270 combinations of 45 TonB and 6 ExbD individual cysteine substitutions for disulfide-linked heterodimer formation. ExbD residues A92C, K97C, and T109C interacted with multiple TonB substitutions in four regions of the TonB carboxy terminus. Two regions were on each side of the TonB residues known to interact with the TonB box of TonB-gated transporters, suggesting that ExbD positions TonB for correct interaction at that site. A third region contained a functionally important glycine residue, and the fourth region involved a highly conserved predicted amphipathic helix. Three ExbD substitutions, F103C, L115C, and T121C, were nonreactive with any TonB cysteine substitutions. ExbD D25, a candidate to be on a proton translocation pathway, was important to support efficient TonB-ExbD heterodimerization at these specific regions.
Collapse
|
18
|
The ExbD periplasmic domain contains distinct functional regions for two stages in TonB energization. J Bacteriol 2012; 194:3069-77. [PMID: 22493019 DOI: 10.1128/jb.00015-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TonB system of gram-negative bacteria energizes the active transport of diverse nutrients through high-affinity TonB-gated outer membrane transporters using energy derived from the cytoplasmic membrane proton motive force. Cytoplasmic membrane proteins ExbB and ExbD harness the proton gradient to energize TonB, which directly contacts and transmits this energy to ligand-loaded transporters. In Escherichia coli, the periplasmic domain of ExbD appears to transition from proton motive force-independent to proton motive force-dependent interactions with TonB, catalyzing the conformational changes of TonB. A 10-residue deletion scanning analysis showed that while all regions except the extreme amino terminus of ExbD were indispensable for function, distinct roles for the amino- and carboxy-terminal regions of the ExbD periplasmic domain were evident. Like residue D25 in the ExbD transmembrane domain, periplasmic residues 42 to 61 facilitated the conformational response of ExbD to proton motive force. This region appears to be important for transmitting signals between the ExbD transmembrane domain and carboxy terminus. The carboxy terminus, encompassing periplasmic residues 62 to 141, was required for initial assembly with the periplasmic domain of TonB, a stage of interaction required for ExbD to transmit its conformational response to proton motive force to TonB. Residues 92 to 121 were important for all three interactions previously observed for formaldehyde-cross-linked ExbD: ExbD homodimers, TonB-ExbD heterodimers, and ExbD-ExbB heterodimers. The distinct requirement of this ExbD region for interaction with ExbB raised the possibility of direct interaction with the few residues of ExbB known to occupy the periplasm.
Collapse
|