1
|
Lamrabet O, Plumbridge J, Martin M, Lenski RE, Schneider D, Hindré T. Plasticity of Promoter-Core Sequences Allows Bacteria to Compensate for the Loss of a Key Global Regulatory Gene. Mol Biol Evol 2019; 36:1121-1133. [PMID: 30825312 DOI: 10.1093/molbev/msz042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Transcription regulatory networks (TRNs) are of central importance for both short-term phenotypic adaptation in response to environmental fluctuations and long-term evolutionary adaptation, with global regulatory genes often being targets of natural selection in laboratory experiments. Here, we combined evolution experiments, whole-genome resequencing, and molecular genetics to investigate the driving forces, genetic constraints, and molecular mechanisms that dictate how bacteria can cope with a drastic perturbation of their TRNs. The crp gene, encoding a major global regulator in Escherichia coli, was deleted in four different genetic backgrounds, all derived from the Long-Term Evolution Experiment (LTEE) but with different TRN architectures. We confirmed that crp deletion had a more deleterious effect on growth rate in the LTEE-adapted genotypes; and we showed that the ptsG gene, which encodes the major glucose-PTS transporter, gained CRP (cyclic AMP receptor protein) dependence over time in the LTEE. We then further evolved the four crp-deleted genotypes in glucose minimal medium, and we found that they all quickly recovered from their growth defects by increasing glucose uptake. We showed that this recovery was specific to the selective environment and consistently relied on mutations in the cis-regulatory region of ptsG, regardless of the initial genotype. These mutations affected the interplay of transcription factors acting at the promoters, changed the intrinsic properties of the existing promoters, or produced new transcription initiation sites. Therefore, the plasticity of even a single promoter region can compensate by three different mechanisms for the loss of a key regulatory hub in the E. coli TRN.
Collapse
Affiliation(s)
- Otmane Lamrabet
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Jacqueline Plumbridge
- CNRS UMR8261, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-chimique, Paris, France
| | - Mikaël Martin
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI
| | | | - Thomas Hindré
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| |
Collapse
|
2
|
Arolas JL, Goulas T, Cuppari A, Gomis-Rüth FX. Multiple Architectures and Mechanisms of Latency in Metallopeptidase Zymogens. Chem Rev 2018; 118:5581-5597. [PMID: 29775286 DOI: 10.1021/acs.chemrev.8b00030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metallopeptidases cleave polypeptides bound in the active-site cleft of catalytic domains through a general base/acid mechanism. This involves a solvent molecule bound to a catalytic zinc and general regulation of the mechanism through zymogen-based latency. Sixty reported structures from 11 metallopeptidase families reveal that prosegments, mostly N-terminal of the catalytic domain, block the cleft regardless of their size. Prosegments may be peptides (5-14 residues), which are only structured within the zymogens, or large moieties (<227 residues) of one or two folded domains. While some prosegments globally shield the catalytic domain through a few contacts, others specifically run across the cleft in the same or opposite direction as a substrate, making numerous interactions. Some prosegments block the zinc by replacing the solvent with particular side chains, while others use terminal α-amino or carboxylate groups. Overall, metallopeptidase zymogens employ disparate mechanisms that diverge even within families, which supports that latency is less conserved than catalysis.
Collapse
Affiliation(s)
- Joan L Arolas
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - Theodoros Goulas
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - Anna Cuppari
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| |
Collapse
|
3
|
Löffler M, Simen JD, Müller J, Jäger G, Laghrami S, Schäferhoff K, Freund A, Takors R. Switching between nitrogen and glucose limitation: Unraveling transcriptional dynamics in Escherichia coli. J Biotechnol 2017; 258:2-12. [PMID: 28412516 DOI: 10.1016/j.jbiotec.2017.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/09/2017] [Accepted: 04/11/2017] [Indexed: 01/09/2023]
Abstract
Transcriptional control under nitrogen and carbon-limitation conditions have been well analyzed for Escherichia coli. However, the transcriptional dynamics that underlie the shift in regulatory programs from nitrogen to carbon limitation is not well studied. In the present study, cells were cultivated at steady state under nitrogen (ammonia)-limited conditions then shifted to carbon (glucose) limitation to monitor changes in transcriptional dynamics. Nitrogen limitation was found to be dominated by sigma 54 (RpoN) and sigma 38 (RpoS), whereas the "housekeeping" sigma factor 70 (RpoD) and sigma 38 regulate cellular status under glucose limitation. During the transition, nitrogen-mediated control was rapidly redeemed and mRNAs that encode active uptake systems, such as ptsG and manXYZ, were quickly amplified. Next, genes encoding facilitators such as lamB were overexpressed, followed by high affinity uptake systems such as mglABC and non-specific porins such as ompF. These regulatory programs are complex and require well-equilibrated and superior control. At the metabolome level, 2-oxoglutarate is the likely component that links carbon- and nitrogen-mediated regulation by interacting with major regulatory elements. In the case of dual glucose and ammonia limitation, sigma 24 (RpoE) appears to play a key role in orchestrating these complex regulatory networks.
Collapse
Affiliation(s)
- Michael Löffler
- University of Stuttgart, Institute of Biochemical Engineering, Allmandring 31, 70569 Stuttgart, Germany
| | - Joana Danica Simen
- University of Stuttgart, Institute of Biochemical Engineering, Allmandring 31, 70569 Stuttgart, Germany
| | - Jan Müller
- University of Stuttgart, Institute of Biochemical Engineering, Allmandring 31, 70569 Stuttgart, Germany
| | - Günter Jäger
- University of Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Salaheddine Laghrami
- University of Stuttgart, Institute of Biochemical Engineering, Allmandring 31, 70569 Stuttgart, Germany
| | - Karin Schäferhoff
- University of Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Andreas Freund
- University of Stuttgart, Institute of Biochemical Engineering, Allmandring 31, 70569 Stuttgart, Germany
| | | | - Ralf Takors
- University of Stuttgart, Institute of Biochemical Engineering, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
4
|
The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 2015; 78:231-56. [PMID: 24847021 DOI: 10.1128/mmbr.00001-14] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components.
Collapse
|
5
|
Brennan FP, Grant J, Botting CH, O'Flaherty V, Richards KG, Abram F. Insights into the low-temperature adaptation and nutritional flexibility of a soil-persistentEscherichia coli. FEMS Microbiol Ecol 2012; 84:75-85. [DOI: 10.1111/1574-6941.12038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 01/14/2023] Open
Affiliation(s)
- Fiona P. Brennan
- Ecological Sciences Group; The James Hutton Institute; Craigiebucker, Aberdeen; Scotland
| | - Jim Grant
- Ashtown Research Centre; Teagasc; Dublin; Ireland
| | - Catherine H. Botting
- Biomedical Sciences Research Complex; University of St. Andrews; St. Andrews; Fife; UK
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory; Department of Microbiology; School of Natural Sciences and Ryan Institute; National University of Ireland, Galway; Galway; Ireland
| | | | - Florence Abram
- Functional Environmental Microbiology; Department of Microbiology; School of Natural Sciences; National University of Ireland, Galway; Galway; Ireland
| |
Collapse
|
6
|
Görke B. Killing two birds with one stone: an ABC transporter regulates gene expression through sequestration of a transcriptional regulator at the membrane. Mol Microbiol 2012; 85:597-601. [PMID: 22742494 DOI: 10.1111/j.1365-2958.2012.08156.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcriptional regulators are controlled through various, mostly well-understood, principles. In the study of Richet et al., published in this issue of Molecular Microbiology, fluorescence microscopy was used to uncover an unorthodox mechanism that relies on the dynamic shuttling of a gene regulator between the membrane and the chromosome. When not occupied with transport, the maltose-specific ABC transporter sequesters and thereby inactivates its cognate transcriptional regulator MalT. Upon maltose transport, MalT is released from the membrane and activates the maltose utilization and transport genes. This mechanism prevents induction of MalT by endogenously produced maltotriose, which is the inducer. Thus, the maltose uptake system is a trigger transporter with a bi-functional role in transport and regulation.
Collapse
Affiliation(s)
- Boris Görke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, 37077 Göttingen, Germany.
| |
Collapse
|
7
|
Xu Q, Göhler AK, Kosfeld A, Carlton D, Chiu HJ, Klock HE, Knuth MW, Miller MD, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Jahreis K, Wilson IA. The structure of Mlc titration factor A (MtfA/YeeI) reveals a prototypical zinc metallopeptidase related to anthrax lethal factor. J Bacteriol 2012; 194:2987-99. [PMID: 22467785 PMCID: PMC3370624 DOI: 10.1128/jb.00038-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/23/2012] [Indexed: 12/25/2022] Open
Abstract
MtfA of Escherichia coli (formerly YeeI) was previously identified as a regulator of the phosphoenolpyruvate (PEP)-dependent:glucose phosphotransferase system. MtfA homolog proteins are highly conserved, especially among beta- and gammaproteobacteria. We determined the crystal structures of the full-length MtfA apoenzyme from Klebsiella pneumoniae and its complex with zinc (holoenzyme) at 2.2 and 1.95 Å, respectively. MtfA contains a conserved H(149)E(150)XXH(153)+E(212)+Y(205) metallopeptidase motif. The presence of zinc in the active site induces significant conformational changes in the region around Tyr205 compared to the conformation of the apoenzyme. Additionally, the zinc-bound MtfA structure is in a self-inhibitory conformation where a region that was disordered in the unliganded structure is now observed in the active site and a nonproductive state of the enzyme is formed. MtfA is related to the catalytic domain of the anthrax lethal factor and the Mop protein involved in the virulence of Vibrio cholerae, with conservation in both overall structure and in the residues around the active site. These results clearly provide support for MtfA as a prototypical zinc metallopeptidase (gluzincin clan).
Collapse
Affiliation(s)
- Qingping Xu
- Joint Center for Structural Genomics
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | | | - Anne Kosfeld
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Dennis Carlton
- Joint Center for Structural Genomics
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Hsiu-Ju Chiu
- Joint Center for Structural Genomics
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Heath E. Klock
- Joint Center for Structural Genomics
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Mark W. Knuth
- Joint Center for Structural Genomics
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Mitchell D. Miller
- Joint Center for Structural Genomics
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Marc-André Elsliger
- Joint Center for Structural Genomics
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ashley M. Deacon
- Joint Center for Structural Genomics
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Adam Godzik
- Joint Center for Structural Genomics
- Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, California, USA
| | - Scott A. Lesley
- Joint Center for Structural Genomics
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Knut Jahreis
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Ian A. Wilson
- Joint Center for Structural Genomics
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|