1
|
Sun H, Si F, Zhao X, Li F, Qi G. The cellular redox state in Bacillus amyloliquefaciens WH1 affects biofilm formation indirectly in a surfactant direct manner. J Basic Microbiol 2023. [PMID: 37189223 DOI: 10.1002/jobm.202300064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Surfactin is a signal to trigger biofilm formation against harsh environments. Generally, harsh environments can result in change of the cellular redox state to induce biofilm formation, but we know little about whether the cellular redox state influences biofilm formation via surfactin. Here, the reductant glucose could reduce surfactin and enhance biofilm formation by a surfactin-indirect way. The oxidant H2 O2 led to a decrease of surfactin accompanying with weakened biofilm formation. Spx and PerR were both necessary for surfactin production and biofilm formation. H2 O2 improved surfactin production but inhibited biofilm formation by a surfactin-indirect manner in Δspx, while it reduced surfactin production without obvious influence on biofilm formation in ΔperR. The ability against H2 O2 stress was enhanced in Δspx, but weakened in ΔperR. Thereby, PerR was favorable for resisting oxidative stress, while Spx played a negative role in this action. Knockout and compensation of rex also supported that the cells could form biofilm by a surfactin-indirect way. Collectively, surfactin is not a unique signal to trigger biofilm formation, and the cellular redox state can influence biofilm formation by a surfactin-direct or -indirect way in Bacillus amyloliquefaciens WH1.
Collapse
Affiliation(s)
- Huiwan Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fengmei Si
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feng Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Allosteric mechanism of transcription inhibition by NusG-dependent pausing of RNA polymerase. Proc Natl Acad Sci U S A 2023; 120:e2218516120. [PMID: 36745813 PMCID: PMC9963633 DOI: 10.1073/pnas.2218516120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
NusG is a transcription elongation factor that stimulates transcription pausing in Gram+ bacteria including B. subtilis by sequence-specific interaction with a conserved pause-inducing -11TTNTTT-6 motif found in the non-template DNA (ntDNA) strand within the transcription bubble. To reveal the structural basis of NusG-dependent pausing, we determined a cryo-EM structure of a paused transcription complex (PTC) containing RNA polymerase (RNAP), NusG, and the TTNTTT motif in the ntDNA strand. The interaction of NusG with the ntDNA strand rearranges the transcription bubble by positioning three consecutive T residues in a cleft between NusG and the β-lobe domain of RNAP. We revealed that the RNAP swivel module rotation (swiveling), which widens (swiveled state) and narrows (non-swiveled state) a cleft between NusG and the β-lobe, is an intrinsic motion of RNAP and is directly linked to trigger loop (TL) folding, an essential conformational change of all cellular RNAPs for the RNA synthesis reaction. We also determined cryo-EM structures of RNAP escaping from the paused transcription state. These structures revealed the NusG-dependent pausing mechanism by which NusG-ntDNA interaction inhibits the transition from swiveled to non-swiveled states, thereby preventing TL folding and RNA synthesis allosterically. This motion is also reduced by the formation of an RNA hairpin within the RNA exit channel. Thus, the pause half-life can be modulated by the strength of the NusG-ntDNA interaction and/or the stability of the RNA hairpin. NusG residues that interact with the TTNTTT motif are widely conserved in bacteria, suggesting that NusG-dependent pausing is widespread.
Collapse
|
3
|
Mandell ZF, Vishwakarma RK, Yakhnin H, Murakami KS, Kashlev M, Babitzke P. Comprehensive transcription terminator atlas for Bacillus subtilis. Nat Microbiol 2022; 7:1918-1931. [PMID: 36192538 PMCID: PMC10024249 DOI: 10.1038/s41564-022-01240-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/26/2022] [Indexed: 01/12/2023]
Abstract
The transcriptome-wide contributions of Rho-dependent and intrinsic (Rho-independent) transcription termination mechanisms in bacteria are unclear. By sequencing released transcripts in a wild-type strain and strains containing deficiencies in NusA, NusG and/or Rho (10 strains), we produced an atlas of terminators for the model Gram-positive bacterium Bacillus subtilis. We found that NusA and NusG stimulate 77% and 19% of all intrinsic terminators, respectively, and that both proteins participate in Rho-dependent termination. We also show that Rho stimulates termination at 10% of the intrinsic terminators in vivo. We recapitulated Rho-stimulated intrinsic termination at 5 terminators in vitro and found that Rho requires the KOW domain of NusG to stimulate this process at one of these terminators. Computational analyses of our atlas using RNAstructure, MEME suite and DiffLogo, combined with in vitro transcription experiments, revealed that Rho stimulates intrinsic terminators with weak hairpins and/or U-rich tracts by remodelling the RNA upstream of the intrinsic terminator to prevent the formation of RNA structures that could otherwise compete with the terminator hairpin. We also identified 56 putative examples of 'hybrid Rho-dependent termination', wherein classical Rho-dependent termination occurs after readthrough of a Rho-stimulated intrinsic terminator.
Collapse
Affiliation(s)
- Zachary F Mandell
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Department of Molecular Biology and Genetics and Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Rishi K Vishwakarma
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Mikhail Kashlev
- NCI RNA Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
4
|
Shi J, Li F, Wen A, Yu L, Wang L, Wang F, Jin Y, Jin S, Feng Y, Lin W. Structural basis of transcription activation by the global regulator Spx. Nucleic Acids Res 2021; 49:10756-10769. [PMID: 34530448 PMCID: PMC8501982 DOI: 10.1093/nar/gkab790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Spx is a global transcriptional regulator in Gram-positive bacteria and has been inferred to efficiently activate transcription upon oxidative stress by engaging RNA polymerase (RNAP) and promoter DNA. However, the precise mechanism by which it interacts with RNAP and promoter DNA to initiate transcription remains obscure. Here, we report the cryo-EM structure of an intact Spx-dependent transcription activation complex (Spx-TAC) from Bacillus subtilis at 4.2 Å resolution. The structure traps Spx in an active conformation and defines key interactions accounting for Spx-dependent transcription activation. Strikingly, an oxidized Spx monomer engages RNAP by simultaneously interacting with the C-terminal domain of RNAP alpha subunit (αCTD) and σA. The interface between Spx and αCTD is distinct from those previously reported activators, indicating αCTD as a multiple target for the interaction between RNAP and various transcription activators. Notably, Spx specifically wraps the conserved -44 element of promoter DNA, thereby stabilizing Spx-TAC. Besides, Spx interacts extensively with σA through three different interfaces and promotes Spx-dependent transcription activation. Together, our structural and biochemical results provide a novel mechanistic framework for the regulation of bacterial transcription activation and shed new light on the physiological roles of the global Spx-family transcription factors.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangfang Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aijia Wen
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang, China
| | - Lu Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fulin Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanling Jin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sha Jin
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| |
Collapse
|
5
|
Elsholz AKW, Birk MS, Charpentier E, Turgay K. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis. Front Mol Biosci 2017; 4:44. [PMID: 28748186 PMCID: PMC5506225 DOI: 10.3389/fmolb.2017.00044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/15/2017] [Indexed: 12/20/2022] Open
Abstract
Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.
Collapse
Affiliation(s)
- Alexander K W Elsholz
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Marlene S Birk
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany.,The Laboratory for Molecular Infection Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden.,Humboldt UniversityBerlin, Germany
| | - Kürşad Turgay
- Faculty of Natural Sciences, Institute of Microbiology, Leibniz UniversitätHannover, Germany
| |
Collapse
|
6
|
Exploring the Amino Acid Residue Requirements of the RNA Polymerase (RNAP) α Subunit C-Terminal Domain for Productive Interaction between Spx and RNAP of Bacillus subtilis. J Bacteriol 2017; 199:JB.00124-17. [PMID: 28484046 DOI: 10.1128/jb.00124-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/01/2017] [Indexed: 01/21/2023] Open
Abstract
Bacillus subtilis Spx is a global transcriptional regulator that is conserved among Gram-positive bacteria, in which Spx is required for preventing oxidatively induced proteotoxicity. Upon stress induction, Spx engages RNA polymerase (RNAP) through interaction with the C-terminal domain of the rpoA-encoded RNAP α subunit (αCTD). Previous mutational analysis of rpoA revealed that substitutions of Y263 in αCTD severely impaired Spx-activated transcription. Attempts to substitute alanine for αCTD R261, R268, R289, E255, E298, and K294 were unsuccessful, suggesting that these residues are essential. To determine whether these RpoA residues were required for productive Spx-RNAP interaction, we ectopically expressed the putatively lethal rpoA mutant alleles in the rpoAY263C mutant, where "Y263C" indicates the amino acid change that results from mutation of the allele. By complementation analysis, we show that Spx-bound αCTD amino acid residues are not essential for Spx-activated transcription in vivo but that R261A, E298A, and E255A mutants confer a partial defect in NaCl-stress induction of Spx-controlled genes. In addition, strains expressing rpoAE255A are defective in disulfide stress resistance and produce RNAP having a reduced affinity for Spx. The E255 residue corresponds to Escherichia coli αD259, which has been implicated in αCTD-σ70 interaction (σ70 R603, corresponding to R362 of B. subtilis σA). However, the combined rpoAE255A and sigAR362A mutations have an additive negative effect on Spx-dependent expression, suggesting the residues' differing roles in Spx-activated transcription. Our findings suggest that, while αCTD is essential for Spx-activated transcription, Spx is the primary DNA-binding determinant of the Spx-αCTD complex.IMPORTANCE Though extensively studied in Escherichia coli, the role of αCTD in activator-stimulated transcription is largely uncharacterized in Bacillus subtilis Here, we conduct phenotypic analyses of putatively lethal αCTD alanine codon substitution mutants to determine whether these residues function in specific DNA binding at the Spx-αCTD-DNA interface. Our findings suggest that multisubunit RNAP contact to Spx is optimal for activation while Spx fulfills the most stringent requirement of upstream promoter binding. Furthermore, several αCTD residues targeted for mutagenesis in this study are conserved among many bacterial species and thus insights on their function in other regulatory systems may be suggested herein.
Collapse
|
7
|
Liu TY, Chu SH, Hu YN, Wang JJ, Shaw GC. Genetic evidence that multiple proteases are involved in modulation of heat-induced activation of the sigma factor SigI in Bacillus subtilis. FEMS Microbiol Lett 2017; 364:3063884. [PMID: 28333276 DOI: 10.1093/femsle/fnx054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/07/2017] [Indexed: 11/13/2022] Open
Abstract
The Bacillus subtilis sigI-rsgI operon encodes the heat-inducible sigma factor SigI and its cognate anti-sigma factor RsgI. The heat-activated SigI positively regulates expression of sigI itself and genes involved in cell wall homeostasis and heat resistance. It remains unknown which protease(s) may contribute to degradation of RsgI and heat-induced activation of SigI. In this study, we found that transcription of sigI from its σI-dependent promoter under heat stress was downregulated in a strain lacking the heat-inducible sigma factor SigB. Deletion of protease-relevant clpP, clpC or rasP severely impaired sigI expression during heat stress, whereas deletion of clpE partially impaired sigI expression. Complementation of mutations with corresponding intact genes restored sigI expression. In a null mutant of rsgI, SigI was activated and sigI expression was strongly upregulated during normal growth and under heat stress. In this rsgI mutant, further inactivation of rasP or clpE did not affect sigI expression, whereas further inactivation of clpP or clpC severely or partially impaired sigI expression. Spx negatively influenced sigI expression during heat stress. Possible implications are discussed. Given that clpC, clpP and spx are directly regulated by SigB, SigB appears to control sigI expression under heat stress via ClpC, ClpP and Spx.
Collapse
|
8
|
Evidence that Oxidative Stress Induces spxA2 Transcription in Bacillus anthracis Sterne through a Mechanism Requiring SpxA1 and Positive Autoregulation. J Bacteriol 2016; 198:2902-2913. [PMID: 27501985 PMCID: PMC5055595 DOI: 10.1128/jb.00512-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022] Open
Abstract
Bacillus anthracis possesses two paralogs of the transcriptional regulator, Spx. SpxA1 and SpxA2 interact with RNA polymerase (RNAP) to activate the transcription of genes implicated in the prevention and alleviation of oxidative protein damage. The spxA2 gene is highly upregulated in infected macrophages, but how this is achieved is unknown. Previous studies have shown that the spxA2 gene was under negative control by the Rrf2 family repressor protein, SaiR, whose activity is sensitive to oxidative stress. These studies also suggested that spxA2 was under positive autoregulation. In the present study, we show by in vivo and in vitro analyses that spxA2 is under direct autoregulation but is also dependent on the SpxA1 paralogous protein. The deletion of either spxA1 or spxA2 reduced the diamide-inducible expression of an spxA2-lacZ construct. In vitro transcription reactions using purified B. anthracis RNAP showed that SpxA1 and SpxA2 protein stimulates transcription from a DNA fragment containing the spxA2 promoter. Ectopically positioned spxA2-lacZ fusion requires both SpxA1 and SpxA2 for expression, but the requirement for SpxA1 is partially overcome when saiR is deleted. Electrophoretic mobility shift assays showed that SpxA1 and SpxA2 enhance the affinity of RNAP for spxA2 promoter DNA and that this activity is sensitive to reductant. We hypothesize that the previously observed upregulation of spxA2 in the oxidative environment of the macrophage is at least partly due to SpxA1-mediated SaiR repressor inactivation and the positive autoregulation of spxA2 transcription. IMPORTANCE Regulators of transcription initiation are known to govern the expression of genes required for virulence in pathogenic bacterial species. Members of the Spx family of transcription factors function in control of genes required for virulence and viability in low-GC Gram-positive bacteria. In Bacillus anthracis, the spxA2 gene is highly induced in infected macrophages, which suggests an important role in the control of virulence gene expression during the anthrax disease state. We provide evidence that elevated concentrations of oxidized, active SpxA2 result from an autoregulatory positive-feedback loop driving spxA2 transcription.
Collapse
|
9
|
Rifampin Resistance rpoB Alleles or Multicopy Thioredoxin/Thioredoxin Reductase Suppresses the Lethality of Disruption of the Global Stress Regulator spx in Staphylococcus aureus. J Bacteriol 2016; 198:2719-31. [PMID: 27432833 DOI: 10.1128/jb.00261-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/14/2016] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Staphylococcus aureus is capable of causing a remarkable spectrum of disease, ranging from mild skin eruptions to life-threatening infections. The survival and pathogenic potential of S. aureus depend partly on its ability to sense and respond to changes in its environment. Spx is a thiol/oxidative stress sensor that interacts with the C-terminal domain of the RNA polymerase RpoA subunit, leading to changes in gene expression that help sustain viability under various conditions. Using genetic and deep-sequencing methods, we show that spx is essential in S. aureus and that a previously reported Δspx strain harbored suppressor mutations that allowed it to grow without spx One of these mutations is a single missense mutation in rpoB (a P-to-L change at position 519 encoded by rpoB [rpoB-P519L]) that conferred high-level resistance to rifampin. This mutation alone was found to be sufficient to bypass the requirement for spx The generation of rifampin resistance libraries led to the discovery of an additional rpoB mutation, R484H, which supported strains with the spx disruption. Other rifampin resistance mutations either failed to support the Δspx mutant or were recovered at unexpectedly low frequencies in genetic transduction experiments. The amino acid residues encoded by rpoB-P519L and -R484H map in close spatial proximity and comprise a highly conserved region of RpoB. We also discovered that multicopy expression of either trxA (encoding thioredoxin) or trxB (encoding thioredoxin reductase) supports strains with the deletion of spx Our results reveal intriguing properties, especially of RNA polymerase, that compensate for the loss of an essential gene that is a key mediator of diverse processes in S. aureus, including redox and thiol homeostasis, antibiotic resistance, growth, and metabolism. IMPORTANCE The survival and pathogenicity of S. aureus depend on complex genetic programs. An objective for combating this insidious organism entails dissecting genetic regulatory circuits and discovering promising new targets for therapeutic intervention. In this study, we discovered that Spx, an RNA polymerase-interacting stress regulator implicated in many stress responses in S. aureus, including responses to oxidative and cell wall antibiotics, is essential. We describe two mechanisms that suppress the lethality of spx disruption. One mechanism highlights how only certain rifampin resistance-encoding alleles of RpoB confer new properties on RNA polymerase, with important mechanistic implications. We describe additional stress conditions where the loss of spx is deleterious, thereby highlighting Spx as a multifaceted regulator and attractive drug discovery target.
Collapse
|
10
|
Galvão LCC, Miller JH, Kajfasz JK, Scott-Anne K, Freires IA, Franco GCN, Abranches J, Rosalen PL, Lemos JA. Transcriptional and Phenotypic Characterization of Novel Spx-Regulated Genes in Streptococcus mutans. PLoS One 2015; 10:e0124969. [PMID: 25905865 PMCID: PMC4408037 DOI: 10.1371/journal.pone.0124969] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/20/2015] [Indexed: 01/01/2023] Open
Abstract
In oral biofilms, two of the major environmental challenges encountered by the dental pathogen Streptococcus mutans are acid and oxidative stresses. Previously, we showed that the S. mutans transcriptional regulators SpxA1 and SpxA2 (formerly SpxA and SpxB, respectively) are involved in stress survival by activating the expression of classic oxidative stress genes such as dpr, nox, sodA and tpx. We reasoned that some of the uncharacterized genes under SpxA1/A2 control are potentially involved in oxidative stress management. Therefore, the goal of this study was to use Spx-regulated genes as a tool to identify novel oxidative stress genes in S. mutans. Quantitative real-time PCR was used to evaluate the responses of ten Spx-regulated genes during H2O2 stress in the parent and Δspx strains. Transcription activation of the H2O2-induced genes (8 out of 10) was strongly dependent on SpxA1 and, to a lesser extent, SpxA2. In vitro transcription assays revealed that one or both Spx proteins directly regulate three of these genes. The gene encoding the FeoB ferrous permease was slightly repressed by H2O2 but constitutively induced in strains lacking SpxA1. Nine genes were selected for downstream mutational analysis but inactivation of smu127, encoding a subunit of the acetoin dehydrogenase was apparently lethal. In vitro and in vivo characterization of the viable mutants indicated that, in addition to the transcriptional activation of reducing and antioxidant pathways, Spx performs an important role in iron homeostasis by regulating the intracellular availability of free iron. In particular, inactivation of the genes encoding the Fe-S biogenesis SUF system and the previously characterized iron-binding protein Dpr resulted in impaired growth under different oxidative stress conditions, increased sensitivity to iron and lower infectivity in rats. These results serve as an entryway into the characterization of novel genes and pathways that allow S. mutans to cope with oxidative stress.
Collapse
Affiliation(s)
- Lívia C. C. Galvão
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Physiological Sciences, Dentistry School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| | - James H. Miller
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jessica K. Kajfasz
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kathy Scott-Anne
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Irlan A. Freires
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Physiological Sciences, Dentistry School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| | - Gilson C. N. Franco
- Department of General Biology, Laboratory of Physiology and Pathophysiology, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Jacqueline Abranches
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Pedro L. Rosalen
- Department of Physiological Sciences, Dentistry School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| | - José A. Lemos
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Transcription of Oxidative Stress Genes Is Directly Activated by SpxA1 and, to a Lesser Extent, by SpxA2 in Streptococcus mutans. J Bacteriol 2015; 197:2160-2170. [PMID: 25897032 DOI: 10.1128/jb.00118-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/14/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The SpxA1 and SpxA2 (formerly SpxA and SpxB) transcriptional regulators of Streptococcus mutans are members of a highly conserved family of proteins found in Firmicutes, and they were previously shown to activate oxidative stress responses. In this study, we showed that SpxA1 exerts substantial positive regulatory influence over oxidative stress genes following exposure to H2O2, while SpxA2 appears to have a secondary regulatory role. In vitro transcription (IVT) assays using purified SpxA1 and/or SpxA2 showed that SpxA1 and, less often, SpxA2 directly activate transcription of some of the major oxidative stress genes. Addition of equimolar concentrations of SpxA1 and SpxA2 to the IVT reactions neither enhanced transcription of the tested genes nor disrupted the dominant role of SpxA1. Substitution of a conserved glycine residue (G52) present in both Spx proteins by arginine (SpxG52R) resulted in strains that phenocopied the Δspx strains. Moreover, addition of purified SpxA1G52R completely failed to activate transcription of ahpC, sodA, and tpx, further confirming that the G52 residue is critical for Spx functionality. IMPORTANCE Streptococcus mutans is a pathogen associated with the formation of dental caries in humans. Within the oral cavity, S. mutans routinely encounters oxidative stress. Our previous data revealed that two regulatory proteins, SpxA1 and SpxA2 (formerly SpxA and SpxB), bear high homology to the Spx regulator that has been characterized as a critical activator of oxidative stress genes in Bacillus subtilis. In this report, we prove that Spx proteins of S. mutans directly activate transcription of genes involved in the oxidative stress response, though SpxA1 appears to have a more dominant role than SpxA2. Therefore, the Spx regulators play a critical role in the ability of S. mutans to thrive within the oral cavity.
Collapse
|
12
|
Chan CM, Hahn E, Zuber P. Adaptor bypass mutations of Bacillus subtilis spx suggest a mechanism for YjbH-enhanced proteolysis of the regulator Spx by ClpXP. Mol Microbiol 2014; 93:426-38. [PMID: 24942655 DOI: 10.1111/mmi.12671] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 12/28/2022]
Abstract
The global regulator, Spx, is under proteolytic control exerted by the adaptor YjbH and ATP-dependent protease ClpXP in Bacillus subtilis. While YjbH is observed to bind the Spx C-terminus, YjbH shows little affinity for ClpXP, indicating adaptor activity that does not operate by tethering. Chimeric proteins derived from B. subtilis AbrB and the Spx C-terminus showed that a 28-residue C-terminal section of Spx (AbrB28), but not the last 12 or 16 residues (AbrB12, AbrB16), was required for YjbH interaction and for ClpXP proteolysis, although the rate of AbrB28 proteolysis was not affected by YjbH addition. The result suggested that the YjbH-targeted 28 residue segment of the Spx C-terminus bears a ClpXP-recognition element(s) that is hidden in the intact Spx protein. Residue substitutions in the conserved helix α6 of the C-terminal region generated Spx substrates that were degraded by ClpXP at accelerated rates compared to wild-type Spx, and showed reduced dependency on the YjbH activity. The residue substitutions also weakened the interaction between Spx and YjbH. The results suggest a model in which YjbH, through interaction with residues of helix α6, exposes the C-terminus of Spx for recognition and proteolysis by ClpXP.
Collapse
Affiliation(s)
- Chio Mui Chan
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA
| | | | | |
Collapse
|
13
|
Streptococcus mutans NADH oxidase lies at the intersection of overlapping regulons controlled by oxygen and NAD+ levels. J Bacteriol 2014; 196:2166-77. [PMID: 24682329 DOI: 10.1128/jb.01542-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
NADH oxidase (Nox, encoded by nox) is a flavin-containing enzyme used by the oral pathogen Streptococcus mutans to reduce diatomic oxygen to water while oxidizing NADH to NAD(+). The critical nature of Nox is 2-fold: it serves to regenerate NAD(+), a carbon cycle metabolite, and to reduce intracellular oxygen, preventing formation of destructive reactive oxygen species (ROS). As oxygen and NAD(+) have been shown to modulate the activity of the global transcription factors Spx and Rex, respectively, Nox is potentially poised at a critical junction of two stress regulons. In this study, microarray data showed that either addition of oxygen or loss of nox resulted in altered expression of genes involved in energy metabolism and transport and the upregulation of genes encoding ROS-metabolizing enzymes. Loss of nox also resulted in upregulation of several genes encoding transcription factors and signaling molecules, including the redox-sensing regulator gene rex. Characterization of the nox promoter revealed that nox was regulated by oxygen, through SpxA, and by Rex. These data suggest a regulatory loop in which the roles of nox in reduction of oxygen and regeneration of NAD(+) affect the activity levels of Spx and Rex, respectively, and their regulons, which control several genes, including nox, crucial to growth of S. mutans under conditions of oxidative stress.
Collapse
|
14
|
Runde S, Molière N, Heinz A, Maisonneuve E, Janczikowski A, Elsholz AKW, Gerth U, Hecker M, Turgay K. The role of thiol oxidative stress response in heat-induced protein aggregate formation during thermotolerance in Bacillus subtilis. Mol Microbiol 2014; 91:1036-52. [PMID: 24417481 DOI: 10.1111/mmi.12521] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2014] [Indexed: 11/30/2022]
Abstract
Using Bacillus subtilis as a model organism, we investigated thermotolerance development by analysing cell survival and in vivo protein aggregate formation in severely heat-shocked cells primed by a mild heat shock. We observed an increased survival during severe heat stress, accompanied by a strong reduction of heat-induced cellular protein aggregates in cells lacking the ClpXP protease. We could demonstrate that the transcription factor Spx, a regulatory substrate of ClpXP, is critical for the prevention of protein aggregate formation because its regulon encodes redox chaperones, such as thioredoxin, required for protection against thiol-specific oxidative stress. Consequently B. subtilis cells grown in the absence of oxygen were more protected against severe heat shock and much less protein aggregates were detected compared to aerobically grown cells. The presented results indicate that in B. subtilis Spx and its regulon plays not only an important role for oxidative but also for heat stress response and thermotolerance development. In addition, our experiments suggest that the protection of misfolded proteins from thiol oxidation during heat shock can be critical for the prevention of cellular protein aggregation in vivo.
Collapse
Affiliation(s)
- Stephanie Runde
- Institut für Biologie - Mikrobiologie, Freie Universität Berlin, D-14195, Berlin, Germany; Institut für Mikrobiologie, Leibniz Universität Hannover, D-30167, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Residue substitutions near the redox center of Bacillus subtilis Spx affect RNA polymerase interaction, redox control, and Spx-DNA contact at a conserved cis-acting element. J Bacteriol 2013; 195:3967-78. [PMID: 23813734 DOI: 10.1128/jb.00645-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spx, a member of the ArsC protein family, is a regulatory factor that interacts with RNA polymerase (RNAP). It is highly conserved in Gram-positive bacteria and controls transcription on a genome-wide scale in response to oxidative stress. The structural requirements for RNAP interaction and promoter DNA recognition by Spx were examined through mutational analysis. Residues near the CxxC redox disulfide center of Spx functioned in RNAP α subunit interaction and in promoter DNA binding. R60E and C10A mutants were shown previously to confer defects in transcriptional activation, but both were able to interact with RNAP. R92, which is conserved in ArsC-family proteins, is likely involved in redox control of Spx, as the C10A mutation, which blocks disulfide formation, was epistatic to the R92A mutation. The R91A mutation reduced transcriptional activation and repression, suggesting a defect in RNAP interaction, which was confirmed by interaction assays using an epitope-tagged mutant protein. Protein-DNA cross-linking detected contact between RNAP-bound Spx and the AGCA element at −44 that is conserved in Spx-controlled genes. This interaction caused repositioning of the RNAP σA subunit from a −35-like element upstream of the trxB (thioredoxin reductase) promoter to positions −36 and −11 of the core promoter. The study shows that RNAP-bound Spx contacts a conserved upstream promoter sequence element when bound to RNAP.
Collapse
|
16
|
Chan CM, Garg S, Lin AA, Zuber P. Geobacillus thermodenitrificans YjbH recognizes the C-terminal end of Bacillus subtilis Spx to accelerate Spx proteolysis by ClpXP. MICROBIOLOGY-SGM 2012; 158:1268-1278. [PMID: 22343351 DOI: 10.1099/mic.0.057661-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proteolytic control can govern the levels of specific regulatory factors, such as Spx, a transcriptional regulator of the oxidative stress response in Gram-positive bacteria. Under oxidative stress, Spx concentration is elevated and upregulates transcription of genes that function in the stress response. When stress is alleviated, proteolysis of Spx catalysed by ClpXP reduces Spx concentration. Proteolysis is enhanced by the substrate recognition factor YjbH, which possesses a His-Cys-rich region at its N terminus. However, mutations that generate H12A, C13A, H14A, H16A and C31/34A residue substitutions in the N terminus of Bacillus subtilis YjbH (BsYjbH) do not affect functionality in Spx proteolytic control in vivo and in vitro. Because of difficulties in obtaining soluble BsYjbH, the Geobacillus thermodenitrificans yjbH gene was cloned, which yielded soluble GtYjbH protein. Despite its lack of a His-Cys-rich region, GtYjbH complements a B. subtilis yjbH null mutant, and shows high activity in vitro when combined with ClpXP and Spx in an approximately 30 : 1 (ClpXP/Spx : GtYjbH) molar ratio. In vitro interaction experiments showed that Spx and the protease-resistant Spx(DD) (in which the last two residues of Spx are replaced with two Asp residues) bind to GtYjbH, but deletion of 12 residues from the Spx C terminus (SpxΔC) significantly diminished interaction and proteolytic degradation, indicating that the C terminus of Spx is important for YjbH recognition. These experiments also showed that Spx, but not GtYjbH, interacts with ClpX. Kinetic measurements for Spx proteolysis by ClpXP in the presence and absence of GtYjbH suggest that YjbH overcomes non-productive Spx-ClpX interaction, resulting in rapid degradation.
Collapse
Affiliation(s)
- Chio Mui Chan
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, 20000 NW Walker Rd, Beaverton, OR 97006, USA
| | - Saurabh Garg
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, 20000 NW Walker Rd, Beaverton, OR 97006, USA
| | - Ann A Lin
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, 20000 NW Walker Rd, Beaverton, OR 97006, USA
| | - Peter Zuber
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, 20000 NW Walker Rd, Beaverton, OR 97006, USA
| |
Collapse
|