1
|
Zhang X, Huang D, Zhao Z, Cai X, Cai W, Li G. Bis-molybdopterin guanine dinucleotide modulates hemolysin expression under anaerobiosis and contributes to fitness in vivo in uropathogenic Escherichia coli. Mol Microbiol 2021; 116:1216-1231. [PMID: 34494331 DOI: 10.1111/mmi.14809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 01/10/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is the primary causative agent of urinary tract infections (UTIs). Successful urinary tract colonization requires appropriate expression of virulence factors in response to host environmental cues, such as limited oxygen and iron availability. Hemolysin is a pore-forming toxin, and its expression correlates with the severity of UPEC infection. Previously, we showed that hemolysin expression is enhanced under anaerobic conditions; however, the genetic basis and regulatory mechanisms involved remain undefined. Here, a transposon-based forward screen identified bis-molybdopterin guanine dinucleotide cofactor (bis-MGD) biosynthesis as an important factor for a full transcription of hemolysin under anaerobiosis but not under aerobiosis. bis-MGD positively influences hemolysin transcription via c3566-c3568, an operon immediately upstream of and cotranscribed with hlyCABD. Furthermore, suppressor mutation analysis identified the nitrogen regulator NtrC as a direct repressor of c3566-c3568-hlyCABD expression, and intact bis-MGD biosynthesis downregulated ntrC expression, thus at least partially explaining the positive role of bis-MGD in modulating hemolysin expression. Finally, bis-MGD is involved in hemolysin-mediated uroepithelial cell death and contributes to the competitive fitness of UPEC in a murine model of UTI. Collectively, our data establish that bis-MGD biosynthesis plays a crucial role in UPEC fitness in vivo, thus providing a potential target for combatting UTIs.
Collapse
Affiliation(s)
- Xinyang Zhang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongyan Huang
- Jiangxi Engineering Research Center for Animal Health Products, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Zihui Zhao
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuwang Cai
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Wentong Cai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ganwu Li
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
2
|
Zhong Q, Kobe B, Kappler U. Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria. Front Microbiol 2020; 11:615860. [PMID: 33362753 PMCID: PMC7759655 DOI: 10.3389/fmicb.2020.615860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mononuclear molybdoenzymes are highly versatile catalysts that occur in organisms in all domains of life, where they mediate essential cellular functions such as energy generation and detoxification reactions. Molybdoenzymes are particularly abundant in bacteria, where over 50 distinct types of enzymes have been identified to date. In bacterial pathogens, all aspects of molybdoenzyme biology such as molybdate uptake, cofactor biosynthesis, and function of the enzymes themselves, have been shown to affect fitness in the host as well as virulence. Although current studies are mostly focused on a few key pathogens such as Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Mycobacterium tuberculosis, some common themes for the function and adaptation of the molybdoenzymes to pathogen environmental niches are emerging. Firstly, for many of these enzymes, their role is in supporting bacterial energy generation; and the corresponding pathogen fitness and virulence defects appear to arise from a suboptimally poised metabolic network. Secondly, all substrates converted by virulence-relevant bacterial Mo enzymes belong to classes known to be generated in the host either during inflammation or as part of the host signaling network, with some enzyme groups showing adaptation to the increased conversion of such substrates. Lastly, a specific adaptation to bacterial in-host survival is an emerging link between the regulation of molybdoenzyme expression in bacterial pathogens and the presence of immune system-generated reactive oxygen species. The prevalence of molybdoenzymes in key bacterial pathogens including ESKAPE pathogens, paired with the mounting evidence of their central roles in bacterial fitness during infection, suggest that they could be important future drug targets.
Collapse
Affiliation(s)
- Qifeng Zhong
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
3
|
Guérin A, Sulaeman S, Coquet L, Ménard A, Barloy-Hubler F, Dé E, Tresse O. Membrane Proteocomplexome of Campylobacter jejuni Using 2-D Blue Native/SDS-PAGE Combined to Bioinformatics Analysis. Front Microbiol 2020; 11:530906. [PMID: 33329413 PMCID: PMC7717971 DOI: 10.3389/fmicb.2020.530906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Campylobacter is the leading cause of the human bacterial foodborne infections in the developed countries. The perception cues from biotic or abiotic environments by the bacteria are often related to bacterial surface and membrane proteins that mediate the cellular response for the adaptation of Campylobacter jejuni to the environment. These proteins function rarely as a unique entity, they are often organized in functional complexes. In C. jejuni, these complexes are not fully identified and some of them remain unknown. To identify putative functional multi-subunit entities at the membrane subproteome level of C. jejuni, a holistic non a priori method was addressed using two-dimensional blue native/Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) in strain C. jejuni 81-176. Couples of acrylamide gradient/migration-time, membrane detergent concentration and hand-made strips were optimized to obtain reproducible extraction and separation of intact membrane protein complexes (MPCs). The MPCs were subsequently denatured using SDS-PAGE and each spot from each MPCs was identified by mass spectrometry. Altogether, 21 MPCs could be detected including multi homo-oligomeric and multi hetero-oligomeric complexes distributed in both inner and outer membranes. The function, the conservation and the regulation of the MPCs across C. jejuni strains were inspected by functional and genomic comparison analyses. In this study, relatedness between subunits of two efflux pumps, CmeABC and MacABputC was observed. In addition, a consensus sequence CosR-binding box in promoter regions of MacABputC was present in C. jejuni but not in Campylobacter coli. The MPCs identified in C. jejuni 81-176 membrane are involved in protein folding, molecule trafficking, oxidative phosphorylation, membrane structuration, peptidoglycan biosynthesis, motility and chemotaxis, stress signaling, efflux pumps and virulence.
Collapse
Affiliation(s)
| | | | - Laurent Coquet
- UMR 6270 Laboratoire Polymères Biopolymères Surfaces, UNIROUEN, INSA Rouen, CNRS, Normandie Université, Rouen, France
- UNIROUEN, Plateforme PISSARO, IRIB, Normandie Université, Mont-Saint-Aignan, France
| | - Armelle Ménard
- INSERM, UMR 1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Frédérique Barloy-Hubler
- UMR 6290, CNRS, Institut de Génétique et Développement de Rennes, University of Rennes, Rennes, France
| | - Emmanuelle Dé
- UMR 6270 Laboratoire Polymères Biopolymères Surfaces, UNIROUEN, INSA Rouen, CNRS, Normandie Université, Rouen, France
| | | |
Collapse
|
4
|
Xi D, Alter T, Einspanier R, Sharbati S, Gölz G. Campylobacter jejuni genes Cj1492c and Cj1507c are involved in host cell adhesion and invasion. Gut Pathog 2020; 12:8. [PMID: 32064001 PMCID: PMC7011364 DOI: 10.1186/s13099-020-00347-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Background Campylobacter jejuni (C. jejuni) has been assigned as an important food-borne pathogen for human health but many pathogenicity factors of C. jejuni and human host cell responses related to the infection have not yet been adequately clarified. This study aimed to determine further C. jejuni pathogenicity factors and virulence genes based on a random mutagenesis approach. A transposon mutant library of C. jejuni NCTC 11168 was constructed and the ability of individual mutants to adhere to and invade human intestinal epithelial cells was evaluated compared to the wild type. We identified two mutants of C. jejuni possessing altered phenotypes with transposon insertions in the genes Cj1492c and Cj1507c. Cj1492c is annotated as a two-component sensor and Cj1507c is described as a regulatory protein. However, functions of both mutated genes are not clarified so far. Results In comparison to the wild type, Cj::1492c and Cj::1507c showed around 70-80% relative motility and Cj::1492c had around 3-times enhanced adhesion and invasion rates whereas Cj::1507c had significantly impaired adhesive and invasive capability. Moreover, Cj::1492c had a longer lag phase and slower growth rate while Cj::1507c showed similar growth compared to the wild type. Between 5 and 24 h post infection, more than 60% of the intracellular wild type C. jejuni were eliminated in HT-29/B6 cells, however, significantly fewer mutants were able to survive intracellularly. Nevertheless, no difference in host cell viability and induction of the pro-inflammatory chemokine IL-8 were determined between both mutants and the wild type. Conclusion We conclude that genes regulated by Cj1507c have an impact on efficient adhesion, invasion and intracellular survival of C. jejuni in HT-29/B6 cells. Furthermore, potential signal sensing by Cj1492c seems to lead to limiting attachment and hence internalisation of C. jejuni. However, as the intracellular survival capacities are reduced, we suggest that signal sensing by Cj1492c impacts several processes related to pathogenicity of C. jejuni.
Collapse
Affiliation(s)
- De Xi
- 1Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Thomas Alter
- 2Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Ralf Einspanier
- 1Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Soroush Sharbati
- 1Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Greta Gölz
- 2Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Burnham PM, Hendrixson DR. Campylobacter jejuni: collective components promoting a successful enteric lifestyle. Nat Rev Microbiol 2019; 16:551-565. [PMID: 29892020 DOI: 10.1038/s41579-018-0037-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Campylobacter jejuni is the leading cause of bacterial diarrhoeal disease in many areas of the world. The high incidence of sporadic cases of disease in humans is largely due to its prevalence as a zoonotic agent in animals, both in agriculture and in the wild. Compared with many other enteric bacterial pathogens, C. jejuni has strict growth and nutritional requirements and lacks many virulence and colonization determinants that are typically used by bacterial pathogens to infect hosts. Instead, C. jejuni has a different collection of factors and pathways not typically associated together in enteric pathogens to establish commensalism in many animal hosts and to promote diarrhoeal disease in the human population. In this Review, we discuss the cellular architecture and structure of C. jejuni, intraspecies genotypic variation, the multiple roles of the flagellum, specific nutritional and environmental growth requirements and how these factors contribute to in vivo growth in human and avian hosts, persistent colonization and pathogenesis of diarrhoeal disease.
Collapse
Affiliation(s)
- Peter M Burnham
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Frirdich E, Biboy J, Pryjma M, Lee J, Huynh S, Parker CT, Girardin SE, Vollmer W, Gaynor EC. The Campylobacter jejuni helical to coccoid transition involves changes to peptidoglycan and the ability to elicit an immune response. Mol Microbiol 2019; 112:280-301. [PMID: 31070821 PMCID: PMC6767375 DOI: 10.1111/mmi.14269] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2019] [Indexed: 12/20/2022]
Abstract
Campylobacter jejuni is a prevalent enteric pathogen that changes morphology from helical to coccoid under unfavorable conditions. Bacterial peptidoglycan maintains cell shape. As C. jejuni transformed from helical to coccoid, peptidoglycan dipeptides increased and tri- and tetrapeptides decreased. The DL-carboxypeptidase Pgp1 important for C. jejuni helical morphology and putative N-acetylmuramoyl-L-alanyl amidase AmiA were both involved in the coccoid transition. Mutants in pgp1 and amiA showed reduced coccoid formation, with ∆pgp1∆amiA producing minimal coccoids. Both ∆amiA and ∆amiA∆pgp1 lacked flagella and formed unseparated chains of cells consistent with a role for AmiA in cell separation. All strains accumulated peptidoglycan dipeptides over time, but only strains capable of becoming coccoid displayed tripeptide changes. C. jejuni helical shape and corresponding peptidoglycan structure are important for pathogenesis-related attributes. Concomitantly, changing to a coccoid morphology resulted in differences in pathogenic properties; coccoid C. jejuni were non-motile and non-infectious, with minimal adherence and invasion of epithelial cells and an inability to stimulate IL-8. Coccoid peptidoglycan exhibited reduced activation of innate immune receptors Nod1 and Nod2 versus helical peptidoglycan. C. jejuni also transitioned to coccoid within epithelial cells, so the inability of the immune system to detect coccoid C. jejuni may be significant in its pathogenesis.
Collapse
Affiliation(s)
- Emilisa Frirdich
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| | - Jacob Biboy
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Mark Pryjma
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| | - Jooeun Lee
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Steven Huynh
- Produce Safety and Microbiology Unit, Western Region Research CenterUSDAAgricultural Research ServiceAlbanyCAUSA
| | - Craig T. Parker
- Produce Safety and Microbiology Unit, Western Region Research CenterUSDAAgricultural Research ServiceAlbanyCAUSA
| | - Stephen E. Girardin
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Erin C. Gaynor
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
7
|
Taylor AJ, Kelly DJ. The function, biogenesis and regulation of the electron transport chains in Campylobacter jejuni: New insights into the bioenergetics of a major food-borne pathogen. Adv Microb Physiol 2019; 74:239-329. [PMID: 31126532 DOI: 10.1016/bs.ampbs.2019.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Campylobacter jejuni is a zoonotic Epsilonproteobacterium that grows in the gastrointestinal tract of birds and mammals, and is the most frequent cause of food-borne bacterial gastroenteritis worldwide. As an oxygen-sensitive microaerophile, C. jejuni has to survive high environmental oxygen tensions, adapt to oxygen limitation in the host intestine and resist host oxidative attack. Despite its small genome size, C. jejuni is a versatile and metabolically active pathogen, with a complex and highly branched set of respiratory chains allowing the use of a wide range of electron donors and alternative electron acceptors in addition to oxygen, including fumarate, nitrate, nitrite, tetrathionate and N- or S-oxides. Several novel enzymes participate in these electron transport chains, including a tungsten containing formate dehydrogenase, a Complex I that uses flavodoxin and not NADH, a periplasmic facing fumarate reductase and a cytochrome c tetrathionate reductase. This review presents an updated description of the composition and bioenergetics of these various respiratory chains as they are currently understood, including recent work that gives new insights into energy conservation during electron transport to various alternative electron acceptors. The regulation of synthesis and assembly of the electron transport chains is also discussed. A deeper appreciation of the unique features of the respiratory systems of C. jejuni may be helpful in informing strategies to control this important pathogen.
Collapse
Affiliation(s)
- Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
8
|
Tanabe TS, Leimkühler S, Dahl C. The functional diversity of the prokaryotic sulfur carrier protein TusA. Adv Microb Physiol 2019; 75:233-277. [PMID: 31655739 DOI: 10.1016/bs.ampbs.2019.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Persulfide groups participate in a wide array of biochemical pathways and are chemically very versatile. The TusA protein has been identified as a central element supplying and transferring sulfur as persulfide to a number of important biosynthetic pathways, like molybdenum cofactor biosynthesis or thiomodifications in nucleosides of tRNAs. In recent years, it has furthermore become obvious that this protein is indispensable for the oxidation of sulfur compounds in the cytoplasm. Phylogenetic analyses revealed that different TusA protein variants exists in certain organisms, that have evolved to pursue specific roles in cellular pathways. The specific TusA-like proteins thereby cannot replace each other in their specific roles and are rather specific to one sulfur transfer pathway or shared between two pathways. While certain bacteria like Escherichia coli contain several copies of TusA-like proteins, in other bacteria like Allochromatium vinosum a single copy of TusA is present with an essential role for this organism. Here, we give an overview on the multiple roles of the various TusA-like proteins in sulfur transfer pathways in different organisms to shed light on the remaining mysteries of this versatile protein.
Collapse
|
9
|
Liu MM, Boinett CJ, Chan ACK, Parkhill J, Murphy MEP, Gaynor EC. Investigating the Campylobacter jejuni Transcriptional Response to Host Intestinal Extracts Reveals the Involvement of a Widely Conserved Iron Uptake System. mBio 2018; 9:e01347-18. [PMID: 30087169 PMCID: PMC6083913 DOI: 10.1128/mbio.01347-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni is a pathogenic bacterium that causes gastroenteritis in humans yet is a widespread commensal in wild and domestic animals, particularly poultry. Using RNA sequencing, we assessed C. jejuni transcriptional responses to medium supplemented with human fecal versus chicken cecal extracts and in extract-supplemented medium versus medium alone. C. jejuni exposed to extracts had altered expression of 40 genes related to iron uptake, metabolism, chemotaxis, energy production, and osmotic stress response. In human fecal versus chicken cecal extracts, C. jejuni displayed higher expression of genes involved in respiration (fdhTU) and in known or putative iron uptake systems (cfbpA, ceuB, chuC, and CJJ81176_1649-1655 [here designated 1649-1655]). The 1649-1655 genes and downstream overlapping gene 1656 were investigated further. Uncharacterized homologues of this system were identified in 33 diverse bacterial species representing 6 different phyla, 21 of which are associated with human disease. The 1649 and 1650 (p19) genes encode an iron transporter and a periplasmic iron binding protein, respectively; however, the role of the downstream 1651-1656 genes was unknown. A Δ1651-1656 deletion strain had an iron-sensitive phenotype, consistent with a previously characterized Δp19 mutant, and showed reduced growth in acidic medium, increased sensitivity to streptomycin, and higher resistance to H2O2 stress. In iron-restricted medium, the 1651-1656 and p19 genes were required for optimal growth when using human fecal extracts as an iron source. Collectively, this implicates a function for the 1649-1656 gene cluster in C. jejuni iron scavenging and stress survival in the human intestinal environment.IMPORTANCE Direct comparative studies of C. jejuni infection of a zoonotic commensal host and a disease-susceptible host are crucial to understanding the causes of infection outcome in humans. These studies are hampered by the lack of a disease-susceptible animal model reliably displaying a similar pathology to human campylobacteriosis. In this work, we compared the phenotypic and transcriptional responses of C. jejuni to intestinal compositions of humans (disease-susceptible host) and chickens (zoonotic host) by using human fecal and chicken cecal extracts. The mammalian gut is a complex and dynamic system containing thousands of metabolites that contribute to host health and modulate pathogen activity. We identified C. jejuni genes more highly expressed during exposure to human fecal extracts in comparison to chicken cecal extracts and differentially expressed in extracts compared with medium alone, and targeted one specific iron uptake system for further molecular, genetic, and phenotypic study.
Collapse
Affiliation(s)
- Martha M Liu
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Christine J Boinett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Anson C K Chan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Erin C Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Campylobacter jejuni transcriptional and genetic adaptation during human infection. Nat Microbiol 2018; 3:494-502. [PMID: 29588538 PMCID: PMC5876760 DOI: 10.1038/s41564-018-0133-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022]
Abstract
Campylobacter jejuni infections are a leading cause bacterial food-borne diarrheal illness worldwide, and Campylobacter infections in children are associated with stunted growth and therefore long-term deficits into adulthood. Despite this global impact on health and human capital, how zoonotic C. jejuni responds to the human host remains unclear. Unlike other intestinal pathogens, C. jejuni does not harbor pathogen-defining toxins that explicitly contribute to disease in humans. This makes understanding Campylobacter pathogenesis challenging and supports a broad examination of bacterial factors that contribute to C. jejuni infection. Here we use a controlled human infection model to characterize C. jejuni transcriptional and genetic adaptations in vivo, along with a non-human primate infection model to validate our approach. We found variation in 11 genes is associated with either acute or persistent human infections and include products involved in host cell invasion, bile sensing, and flagella modification, plus additional potential therapeutic targets. Particularly, a functional version of the cell invasion protein A (cipA) gene product is strongly associated with persistently infecting bacteria and we went on to identify its biochemical role in flagella modification. These data characterize the adaptive C. jejuni response to primate infections and suggest therapy design should consider the intrinsic differences between acute and persistently infecting bacteria. Additionally, RNA-sequencing revealed conserved responses during natural host commensalism and human infections. 39 genes were differentially regulated in vivo across hosts, lifestyles, and C. jejuni strains. This conserved in vivo response highlights important C. jejuni survival mechanisms such as iron acquisition and evasion of the host mucosal immune response. These advances highlight pathogen adaptability across host species and demonstrate the utility of multidisciplinary collaborations in future clinical trials to study pathogens in vivo.
Collapse
|
11
|
Microbiota-Derived Short-Chain Fatty Acids Modulate Expression of Campylobacter jejuni Determinants Required for Commensalism and Virulence. mBio 2017; 8:mBio.00407-17. [PMID: 28487428 PMCID: PMC5424204 DOI: 10.1128/mbio.00407-17] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Campylobacter jejuni promotes commensalism in the intestinal tracts of avian hosts and diarrheal disease in humans, yet components of intestinal environments recognized as spatial cues specific for different intestinal regions by the bacterium to initiate interactions in either host are mostly unknown. By analyzing a C. jejuni acetogenesis mutant defective in converting acetyl coenzyme A (Ac-CoA) to acetate and commensal colonization of young chicks, we discovered evidence for in vivo microbiota-derived short-chain fatty acids (SCFAs) and organic acids as cues recognized by C. jejuni that modulate expression of determinants required for commensalism. We identified a set of C. jejuni genes encoding catabolic enzymes and transport systems for amino acids required for in vivo growth whose expression was modulated by SCFAs. Transcription of these genes was reduced in the acetogenesis mutant but was restored upon supplementation with physiological concentrations of the SCFAs acetate and butyrate present in the lower intestinal tracts of avian and human hosts. Conversely, the organic acid lactate, which is abundant in the upper intestinal tract where C. jejuni colonizes less efficiently, reduced expression of these genes. We propose that microbiota-generated SCFAs and lactate are cues for C. jejuni to discriminate between different intestinal regions. Spatial gradients of these metabolites likely allow C. jejuni to locate preferred niches in the lower intestinal tract and induce expression of factors required for intestinal growth and commensal colonization. Our findings provide insights into the types of cues C. jejuni monitors in the avian host for commensalism and likely in humans to promote diarrheal disease. Campylobacter jejuni is a commensal of the intestinal tracts of avian species and other animals and a leading cause of diarrheal disease in humans. The types of cues sensed by C. jejuni to influence responses to promote commensalism or infection are largely lacking. By analyzing a C. jejuni acetogenesis mutant, we discovered a set of genes whose expression is modulated by lactate and short-chain fatty acids produced by the microbiota in the intestinal tract. These genes include those encoding catabolic enzymes and transport systems for amino acids that are required by C. jejuni for in vivo growth and intestinal colonization. We propose that gradients of these microbiota-generated metabolites are cues for spatial discrimination between areas of the intestines so that the bacterium can locate niches in the lower intestinal tract for optimal growth for commensalism in avian species and possibly infection of human hosts leading to diarrheal disease.
Collapse
|
12
|
Kassem II, Candelero-Rueda RA, Esseili KA, Rajashekara G. Formate simultaneously reduces oxidase activity and enhances respiration in Campylobacter jejuni. Sci Rep 2017; 7:40117. [PMID: 28091524 PMCID: PMC5238407 DOI: 10.1038/srep40117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
The foodborne microaerophilic pathogen, Campylobacter jejuni, possesses a periplasmic formate dehydrogenase and two terminal oxidases, which serve to metabolize formate and facilitate the use of oxygen as a terminal electron acceptor, respectively. Formate, a primary energy source for C. jejuni, inhibits oxidase activity in other bacteria. Here, we hypothesized that formate might affect both energy metabolism and microaerobic survival in C. jejuni. Subsequently, we showed that C. jejuni 81–176 (wildtype) exhibited enhanced chemoattraction to and respiration of formate in comparison to other organic acids. Formate also significantly increased C. jejuni’s growth, motility, and biofilm formation under microaerobic (5% O2) conditions. However, formate reduced oxidase activity under microaerobic conditions as well as aerotolerance and biofilm formation under ambient oxygen conditions. The expression of genes encoding the ribonucleotide reductase (RNR) and proteins that facilitate the use of alternative electron acceptors generally increased in the presence of formate. Taken together, formate might play a role in optimizing C. jejuni’s adaptation to the oxygen-limited gastrointestinal tract of the host. By affecting oxidase activity, formate possibly facilitates shuttling electrons to alternative acceptors, while likely conserving limited oxygen concentrations for other essential functions such as DNA synthesis via RNR which is required for C. jejuni’s growth.
Collapse
Affiliation(s)
- Issmat I Kassem
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Rosario A Candelero-Rueda
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Kawthar A Esseili
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
13
|
Dhouib R, Othman DSMP, Lin V, Lai XJ, Wijesinghe HGS, Essilfie AT, Davis A, Nasreen M, Bernhardt PV, Hansbro PM, McEwan AG, Kappler U. A Novel, Molybdenum-Containing Methionine Sulfoxide Reductase Supports Survival of Haemophilus influenzae in an In vivo Model of Infection. Front Microbiol 2016; 7:1743. [PMID: 27933034 PMCID: PMC5122715 DOI: 10.3389/fmicb.2016.01743] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/18/2016] [Indexed: 01/07/2023] Open
Abstract
Haemophilus influenzae is a host adapted human mucosal pathogen involved in a variety of acute and chronic respiratory tract infections, including chronic obstructive pulmonary disease and asthma, all of which rely on its ability to efficiently establish continuing interactions with the host. Here we report the characterization of a novel molybdenum enzyme, TorZ/MtsZ that supports interactions of H. influenzae with host cells during growth in oxygen-limited environments. Strains lacking TorZ/MtsZ showed a reduced ability to survive in contact with epithelial cells as shown by immunofluorescence microscopy and adherence/invasion assays. This included a reduction in the ability of the strain to invade human epithelial cells, a trait that could be linked to the persistence of H. influenzae. The observation that in a murine model of H. influenzae infection, strains lacking TorZ/MtsZ were almost undetectable after 72 h of infection, while ∼3.6 × 103 CFU/mL of the wild type strain were measured under the same conditions is consistent with this view. To understand how TorZ/MtsZ mediates this effect we purified and characterized the enzyme, and were able to show that it is an S- and N-oxide reductase with a stereospecificity for S-sulfoxides. The enzyme converts two physiologically relevant sulfoxides, biotin sulfoxide and methionine sulfoxide (MetSO), with the kinetic parameters suggesting that MetSO is the natural substrate of this enzyme. TorZ/MtsZ was unable to repair sulfoxides in oxidized Calmodulin, suggesting that a role in cell metabolism/energy generation and not protein repair is the key function of this enzyme. Phylogenetic analyses showed that H. influenzae TorZ/MtsZ is only distantly related to the Escherichia coli TorZ TMAO reductase, but instead is a representative of a new, previously uncharacterized clade of molybdenum enzyme that is widely distributed within the Pasteurellaceae family of pathogenic bacteria. It is likely that MtsZ/TorZ has a similar role in supporting host/pathogen interactions in other members of the Pasteurellaceae, which includes both human and animal pathogens.
Collapse
Affiliation(s)
- Rabeb Dhouib
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Dk. Seti Maimonah Pg Othman
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Victor Lin
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Xuanjie J. Lai
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Hewa G. S. Wijesinghe
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Ama-Tawiah Essilfie
- Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, New LambtonNSW, Australia
| | - Amanda Davis
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
- Department of Chemistry and Biochemistry, The University of Arizona, TucsonAZ, USA
| | - Marufa Nasreen
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Paul V. Bernhardt
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Philip M. Hansbro
- Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, New LambtonNSW, Australia
| | - Alastair G. McEwan
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Ulrike Kappler
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| |
Collapse
|
14
|
Ha R, Frirdich E, Sychantha D, Biboy J, Taveirne ME, Johnson JG, DiRita VJ, Vollmer W, Clarke AJ, Gaynor EC. Accumulation of Peptidoglycan O-Acetylation Leads to Altered Cell Wall Biochemistry and Negatively Impacts Pathogenesis Factors of Campylobacter jejuni. J Biol Chem 2016; 291:22686-22702. [PMID: 27474744 PMCID: PMC5077204 DOI: 10.1074/jbc.m116.746404] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 12/30/2022] Open
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. Despite its prevalence, its mechanisms of pathogenesis are poorly understood. Peptidoglycan (PG) is important for helical shape, colonization, and host-pathogen interactions in C. jejuni Therefore, changes in PG greatly impact the physiology of this organism. O-acetylation of peptidoglycan (OAP) is a bacterial phenomenon proposed to be important for proper cell growth, characterized by acetylation of the C6 hydroxyl group of N-acetylmuramic acid in the PG glycan backbone. The OAP gene cluster consists of a PG O-acetyltransferase A (patA) for translocation of acetate into the periplasm, a PG O-acetyltransferase B (patB) for O-acetylation, and an O-acetylpeptidoglycan esterase (ape1) for de-O-acetylation. In this study, reduced OAP in ΔpatA and ΔpatB had minimal impact on C. jejuni growth and fitness under the conditions tested. However, accumulation of OAP in Δape1 resulted in marked differences in PG biochemistry, including O-acetylation, anhydromuropeptide levels, and changes not expected to result directly from Ape1 activity. This suggests that OAP may be a form of substrate level regulation in PG biosynthesis. Ape1 acetylesterase activity was confirmed in vitro using p-nitrophenyl acetate and O-acetylated PG as substrates. In addition, Δape1 exhibited defects in pathogenesis-associated phenotypes, including cell shape, motility, biofilm formation, cell surface hydrophobicity, and sodium deoxycholate sensitivity. Δape1 was also impaired for chick colonization and adhesion, invasion, intracellular survival, and induction of IL-8 production in INT407 cells in vitro The importance of Ape1 in C. jejuni biology makes it a good candidate as an antimicrobial target.
Collapse
Affiliation(s)
- Reuben Ha
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Emilisa Frirdich
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - David Sychantha
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jacob Biboy
- the Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom, and
| | - Michael E Taveirne
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jeremiah G Johnson
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Victor J DiRita
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Waldemar Vollmer
- the Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom, and
| | - Anthony J Clarke
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Erin C Gaynor
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada,
| |
Collapse
|
15
|
Svensson SL, Huynh S, Hyunh S, Parker CT, Gaynor EC. The Campylobacter jejuni CprRS two-component regulatory system regulates aspects of the cell envelope. Mol Microbiol 2015; 96:189-209. [PMID: 25582441 DOI: 10.1111/mmi.12927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
Abstract
Campylobacter jejuni is a leading cause of food-borne gastroenteritis in humans. It lives commensally in the gastrointestinal tract of animals, and tolerates variable conditions during transit/colonization of susceptible hosts. The C. jejuni CprRS two-component system contains an essential response regulator (CprR), and deletion of the cprS sensor kinase enhances biofilms. We sought to identify CprRS-regulated genes and better understand how the system affects survival. Expression from the cprR promoter was highest during logarithmic growth and dependent on CprS. CprR(D52A) did not support viability, indicating that CprR phosphorylation is essential despite the dispensability of CprS. We identified a GTAAAC consensus bound by the CprR C-terminus; the Asp52 residue of full-length CprR was required for binding, suggesting phosphorylation is required. Transcripts differing in expression in ΔcprS compared with wildtype (WT) contained a putative CprR binding site upstream of their promoter region and encoded htrA (periplasmic protease upstream of cprRS) and peb4 (SurA-like chaperone). Consistent with direct regulation, the CprR consensus in the htrA promoter was bound by CprR(CTD). Finally, ΔhtrA formed enhanced biofilms, and ΔcprS biofilms were suppressed by Mg(2+). CprRS is the first C. jejuni regulatory system shown to control genes related to the cell envelope, the first line of interaction between pathogen and changing environments.
Collapse
Affiliation(s)
- Sarah L Svensson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
16
|
Analysis of the activity and regulon of the two-component regulatory system composed by Cjj81176_1484 and Cjj81176_1483 of Campylobacter jejuni. J Bacteriol 2015; 197:1592-605. [PMID: 25691530 DOI: 10.1128/jb.02564-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Campylobacter jejuni is a leading cause of bacterial diarrheal disease and a frequent commensal of the intestinal tract in poultry and other animals. For optimal growth and colonization of hosts, C. jejuni employs two-component regulatory systems (TCSs) to monitor environmental conditions and promote proper expression of specific genes. We analyzed the potential of C. jejuni Cjj81176_1484 (Cjj1484) and Cjj81176_1483 (Cjj1483) to encode proteins of a cognate TCS that influences expression of genes possibly important for C. jejuni growth and colonization. Transcriptome analysis revealed that the regulons of the Cjj81176_1484 (Cjj1484) histidine kinase and the Cjj81176_1483 (Cjj1483) response regulator contain many common genes, suggesting that these proteins likely form a cognate TCS. We found that this TCS generally functions to repress expression of specific proteins with roles in metabolism, iron/heme acquisition, and respiration. Furthermore, the TCS repressed expression of Cjj81176_0438 and Cjj81176_0439, which had previously been found to encode a gluconate dehydrogenase complex required for commensal colonization of the chick intestinal tract. However, the TCS and other specific genes whose expression is repressed by the TCS were not required for colonization of chicks. We observed that the Cjj1483 response regulator binds target promoters in both unphosphorylated and phosphorylated forms and influences expression of some specific genes independently of the Cjj1484 histidine kinase. This work further expands the signaling mechanisms of C. jejuni and provides additional insights regarding the complex and multifactorial regulation of many genes involved in basic metabolism, respiration, and nutrient acquisition that the bacterium requires for optimal growth in different environments. IMPORTANCE Bacterial two-component regulatory systems (TCSs) link environmental cues to expression of specific genes that enable optimal bacterial growth or colonization of hosts. We found that the Campylobacter jejuni Cjj1484 histidine kinase and Cjj1483 response regulator function as a cognate TCS to largely repress expression of target genes encoding a gluconate dehydrogenase complex required for commensal colonization of the chick intestinal tract, as well as other genes encoding proteins for heme or iron acquisition, metabolism, and respiration. We also discovered different modes by which Cjj1483 may mediate repression with and without Cjj1484. This work provides insight into the signal transduction mechanisms of a leading cause of bacterial diarrheal disease and emphasizes the multifactorial and complex regulation of specific biological processes in C. jejuni.
Collapse
|
17
|
Lin J, Peng T, Jiang L, Ni JZ, Liu Q, Chen L, Zhang Y. Comparative genomics reveals new candidate genes involved in selenium metabolism in prokaryotes. Genome Biol Evol 2015; 7:664-76. [PMID: 25638258 PMCID: PMC5322559 DOI: 10.1093/gbe/evv022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Selenium (Se) is an important micronutrient that mainly occurs in proteins in the form of selenocysteine and in tRNAs in the form of selenouridine. In the past 20 years, several genes involved in Se utilization have been characterized in both prokaryotes and eukaryotes. However, Se homeostasis and the associated regulatory network are not fully understood. In this study, we conducted comparative genomics and phylogenetic analyses to examine the occurrence of all known Se utilization traits in prokaryotes. Our results revealed a highly mosaic pattern of species that use Se (in different forms) in spite that most organisms do not use this element. Further investigation of genomic context of known Se-related genes in different organisms suggested novel candidate genes that may participate in Se metabolism in bacteria and/or archaea. Among them, a membrane protein, YedE, which contains ten transmembrane domains and shows distant similarity to a sulfur transporter, is exclusively found in Se-utilizing organisms, suggesting that it may be involved in Se transport. A LysR-like transcription factor subfamily might be important for the regulation of Sec biosynthesis and/or other Se-related genes. In addition, a small protein family DUF3343 is widespread in Se-utilizing organisms, which probably serves as an important chaperone for Se trafficking within the cells. Finally, we proposed a simple model of Se homeostasis based on our findings. Our study reveals new candidate genes involved in Se metabolism in prokaryotes and should be useful for a further understanding of the complex metabolism and the roles of Se in biology.
Collapse
Affiliation(s)
- Jie Lin
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ting Peng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liang Jiang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences, Shenzhen University, Guangdong Province, China
| | - Jia-Zuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences, Shenzhen University, Guangdong Province, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences, Shenzhen University, Guangdong Province, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
Hofreuter D. Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni. Front Cell Infect Microbiol 2014; 4:137. [PMID: 25325018 PMCID: PMC4178425 DOI: 10.3389/fcimb.2014.00137] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/11/2014] [Indexed: 01/27/2023] Open
Abstract
During the last decade Campylobacter jejuni has been recognized as the leading cause of bacterial gastroenteritis worldwide. This facultative intracellular pathogen is a member of the Epsilonproteobacteria and requires microaerobic atmosphere and nutrient rich media for efficient proliferation in vitro. Its catabolic capacity is highly restricted in contrast to Salmonella Typhimurium and other enteropathogenic bacteria because several common pathways for carbohydrate utilization are either missing or incomplete. Despite these metabolic limitations, C. jejuni efficiently colonizes various animal hosts as a commensal intestinal inhabitant. Moreover, C. jejuni is tremendously successful in competing with the human intestinal microbiota; an infectious dose of few hundreds bacteria is sufficient to overcome the colonization resistance of humans and can lead to campylobacteriosis. Besides the importance and clear clinical manifestation of this disease, the pathogenesis mechanisms of C. jejuni infections are still poorly understood. In recent years comparative genome sequence, transcriptome and metabolome analyses as well as mutagenesis studies combined with animal infection models have provided a new understanding of how the specific metabolic capacity of C. jejuni drives its persistence in the intestinal habitat of various hosts. Furthermore, new insights into the metabolic requirements that support the intracellular survival of C. jejuni were obtained. Because C. jejuni harbors distinct properties in establishing an infection in comparison to pathogenic Enterobacteriaceae, it represents an excellent organism for elucidating new aspects of the dynamic interaction and metabolic cross talk between a bacterial pathogen, the microbiota and the host.
Collapse
Affiliation(s)
- Dirk Hofreuter
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology Hannover, Germany
| |
Collapse
|
19
|
Molecular methods to investigate adhesion, transmigration, invasion and intracellular survival of the foodborne pathogen Campylobacter jejuni. J Microbiol Methods 2013; 95:8-23. [DOI: 10.1016/j.mimet.2013.06.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/18/2013] [Accepted: 06/28/2013] [Indexed: 01/08/2023]
|
20
|
Dufour V, Li J, Flint A, Rosenfeld E, Rivoal K, Georgeault S, Alazzam B, Ermel G, Stintzi A, Bonnaure-Mallet M, Baysse C. Inactivation of the LysR regulator Cj1000 of Campylobacter jejuni affects host colonization and respiration. MICROBIOLOGY-SGM 2013; 159:1165-1178. [PMID: 23558264 DOI: 10.1099/mic.0.062992-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcriptional regulation mediates adaptation of pathogens to environmental stimuli and is important for host colonization. The Campylobacter jejuni genome sequence reveals a surprisingly small set of regulators, mostly of unknown function, suggesting an intricate regulatory network. Interestingly, C. jejuni lacks the homologues of ubiquitous regulators involved in stress response found in many other Gram-negative bacteria. Nonetheless, cj1000 is predicted to encode the sole LysR-type regulator in the C. jejuni genome, and thus may be involved in major adaptation pathways. A cj1000 mutant strain was constructed and found to be attenuated in its ability to colonize 1-day-old chicks. Complementation of the cj1000 mutation restored the colonization ability to wild-type levels. The mutant strain was also outcompeted in a competitive colonization assay of the piglet intestine. Oxygraphy was carried out for what is believed to be the first time with the Oroboros Oxygraph-2k on C. jejuni and revealed a role for Cj1000 in controlling O2 consumption. Furthermore, microarray analysis of the cj1000 mutant revealed both direct and indirect regulatory targets, including genes involved in energy metabolism and oxidative stress defences. These results highlight the importance of Cj1000 regulation in host colonization and in major physiological pathways.
Collapse
Affiliation(s)
| | - Jennifer Li
- Department of Biochemistry, Immunology and Microbiology, Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada
| | - Annika Flint
- Department of Biochemistry, Immunology and Microbiology, Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada
| | | | | | | | | | | | - Alain Stintzi
- Department of Biochemistry, Immunology and Microbiology, Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada
| | | | | |
Collapse
|
21
|
N-glycosylation of Campylobacter jejuni surface proteins promotes bacterial fitness. Infect Immun 2013; 81:1674-82. [PMID: 23460522 DOI: 10.1128/iai.01370-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Campylobacter jejuni is the etiologic agent of human bacterial gastroenteritis worldwide. In contrast, despite heavy colonization, C. jejuni maintains a commensal mode of existence in chickens. The consumption of contaminated chicken products is thought to be the principal mode of C. jejuni transmission to the human population. C. jejuni harbors a system for N-linked protein glycosylation that has been well characterized and modifies more than 60 periplasmic and membrane-bound proteins. However, the precise role of this modification in the biology of C. jejuni remains unexplored. We hypothesized that the N-glycans protect C. jejuni surface proteins from the action of gut proteases. The C. jejuni pglB mutant, deficient in the expression of the oligosaccharyltransferase, exhibited reduced growth in medium supplemented with chicken cecal contents (CCC) compared with that of wild-type (WT) cells. Inactivation of the cecal proteases by heat treatment or with protease inhibitors completely restored bacterial viability and partially rescued bacterial growth. Physiological concentrations of trypsin, but not chymotrypsin, also reduced C. jejuni pglB mutant CFU. Live or dead staining indicated that CCC preferentially influenced C. jejuni growth as opposed to bacterial viability. We identified multiple chicken cecal proteases by mass fingerprinting. The use of protease inhibitors that target specific classes indicated that both metalloproteases and serine proteases were involved in the attenuated growth of the oligosaccharyltransferase mutant. In conclusion, protein N-linked glycosylation of surface proteins may enhance C. jejuni fitness by protecting bacterial proteins from cleavage due to gut proteases.
Collapse
|
22
|
Basolateral invasion and trafficking of Campylobacter jejuni in polarized epithelial cells. PLoS One 2013; 8:e54759. [PMID: 23382959 PMCID: PMC3557275 DOI: 10.1371/journal.pone.0054759] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/18/2012] [Indexed: 01/07/2023] Open
Abstract
Campylobacter jejuni is a major cause of bacterial diarrheal disease. Most enteropathogenic bacteria including C. jejuni can invade cultured eukaryotic cells via an actin- and/or microtubule-dependent and an energy-consuming uptake process. Recently, we identified a novel highly efficient C. jejuni invasion pathway that involves bacterial migration into the subcellular space of non-polarized epithelial cells (termed subvasion) followed by invasion from the cell basis. Here we report cellular requirements of this entry mechanism and the subsequent intracellular trafficking route of C. jejuni in polarized islands of Caco-2 intestinal epithelial cells. Advanced microscopy on infected cells revealed that C. jejuni invades the polarized intestinal cells via the subcellular invasion pathway. Remarkably, invasion was not blocked by the inhibitors of microtubule dynamics colchicine or paclitaxel, and was even enhanced after disruption of host cell actin filaments by cytochalasin D. Invasion also continued after dinitrophenol-induced cellular depletion of ATP, whereas this compound effectively inhibited the uptake of invasive Escherichia coli. Confocal microscopy demonstrated that intracellular C. jejuni resided in membrane-bound CD63-positive cellular compartments for up to 24 h. Establishment of a novel luciferase reporter-based bacterial viability assay, developed to overcome the limitations of the classical bacterial recovery assay, demonstrated that a subset of C. jejuni survived intracellularly for up to 48 h. Taken together, our results indicate that C. jejuni is able to actively invade polarized intestinal epithelial cells via a novel actin- and microtubule-independent mechanism and remains metabolically active in the intracellular niche for up to 48 hours.
Collapse
|
23
|
Selenium-dependent biogenesis of formate dehydrogenase in Campylobacter jejuni is controlled by the fdhTU accessory genes. J Bacteriol 2012; 194:3814-23. [PMID: 22609917 DOI: 10.1128/jb.06586-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The food-borne bacterial pathogen Campylobacter jejuni efficiently utilizes organic acids such as lactate and formate for energy production. Formate is rapidly metabolized via the activity of the multisubunit formate dehydrogenase (FDH) enzyme, of which the FdhA subunit is predicted to contain a selenocysteine (SeC) amino acid. In this study we investigated the function of the cj1500 and cj1501 genes of C. jejuni, demonstrate that they are involved in selenium-controlled production of FDH, and propose the names fdhT and fdhU, respectively. Insertional inactivation of fdhT or fdhU in C. jejuni resulted in the absence of FdhA and FdhB protein expression, reduced fdhABC RNA levels, the absence of FDH enzyme activity, and the lack of formate utilization, as assessed by (1)H nuclear magnetic resonance. The fdhABC genes are transcribed from a single promoter located two genes upstream of fdhA, and the decrease in fdhABC RNA levels in the fdhU mutant is mediated at the posttranscriptional level. FDH activity and the ability to utilize formate were restored by genetic complementation with fdhU and by supplementation of the growth media with selenium dioxide. Disruption of SeC synthesis by inactivation of the selA and selB genes also resulted in the absence of FDH activity, which could not be restored by selenium supplementation. Comparative genomic analysis suggests a link between the presence of selA and fdhTU orthologs and the predicted presence of SeC in FdhA. The fdhTU genes encode accessory proteins required for FDH expression and activity in C. jejuni, possibly by contributing to acquisition or utilization of selenium.
Collapse
|