1
|
Tian J, Deng W, Zhang Z, Xu J, Yang G, Zhao G, Yang S, Jiang W, Gu Y. Discovery and remodeling of Vibrio natriegens as a microbial platform for efficient formic acid biorefinery. Nat Commun 2023; 14:7758. [PMID: 38012202 PMCID: PMC10682008 DOI: 10.1038/s41467-023-43631-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Formic acid (FA) has emerged as a promising one-carbon feedstock for biorefinery. However, developing efficient microbial hosts for economically competitive FA utilization remains a grand challenge. Here, we discover that the bacterium Vibrio natriegens has exceptional FA tolerance and metabolic capacity natively. This bacterium is remodeled by rewiring the serine cycle and the TCA cycle, resulting in a non-native closed loop (S-TCA) which as a powerful metabolic sink, in combination with laboratory evolution, enables rapid emergence of synthetic strains with significantly improved FA-utilizing ability. Further introduction of a foreign indigoidine-forming pathway into the synthetic V. natriegens strain leads to the production of 29.0 g · L-1 indigoidine and consumption of 165.3 g · L-1 formate within 72 h, achieving a formate consumption rate of 2.3 g · L-1 · h-1. This work provides an important microbial chassis as well as design rules to develop industrially viable microorganisms for FA biorefinery.
Collapse
Affiliation(s)
- Jinzhong Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- Xianghu Laboratory, Hangzhou, 311231, China.
| | - Wangshuying Deng
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziwen Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Xu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | | | - Guoping Zhao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sheng Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
2
|
Tec-Campos D, Posadas C, Tibocha-Bonilla JD, Thiruppathy D, Glonek N, Zuñiga C, Zepeda A, Zengler K. The genome-scale metabolic model for the purple non-sulfur bacterium Rhodopseudomonas palustris Bis A53 accurately predicts phenotypes under chemoheterotrophic, chemoautotrophic, photoheterotrophic, and photoautotrophic growth conditions. PLoS Comput Biol 2023; 19:e1011371. [PMID: 37556472 PMCID: PMC10441798 DOI: 10.1371/journal.pcbi.1011371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/21/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
The purple non-sulfur bacterium Rhodopseudomonas palustris is recognized as a critical microorganism in the nitrogen and carbon cycle and one of the most common members in wastewater treatment communities. This bacterium is metabolically extremely versatile. It is capable of heterotrophic growth under aerobic and anaerobic conditions, but also able to grow photoautotrophically as well as mixotrophically. Therefore R. palustris can adapt to multiple environments and establish commensal relationships with other organisms, expressing various enzymes supporting degradation of amino acids, carbohydrates, nucleotides, and complex polymers. Moreover, R. palustris can degrade a wide range of pollutants under anaerobic conditions, e.g., aromatic compounds such as benzoate and caffeate, enabling it to thrive in chemically contaminated environments. However, many metabolic mechanisms employed by R. palustris to breakdown and assimilate different carbon and nitrogen sources under chemoheterotrophic or photoheterotrophic conditions remain unknown. Systems biology approaches, such as metabolic modeling, have been employed extensively to unravel complex mechanisms of metabolism. Previously, metabolic models have been reconstructed to study selected capabilities of R. palustris under limited experimental conditions. Here, we developed a comprehensive metabolic model (M-model) for R. palustris Bis A53 (iDT1294) consisting of 2,721 reactions, 2,123 metabolites, and comprising 1,294 genes. We validated the model using high-throughput phenotypic, physiological, and kinetic data, testing over 350 growth conditions. iDT1294 achieved a prediction accuracy of 90% for growth with various carbon and nitrogen sources and close to 80% for assimilation of aromatic compounds. Moreover, the M-model accurately predicts dynamic changes of growth and substrate consumption rates over time under nine chemoheterotrophic conditions and demonstrated high precision in predicting metabolic changes between photoheterotrophic and photoautotrophic conditions. This comprehensive M-model will help to elucidate metabolic processes associated with the assimilation of multiple carbon and nitrogen sources, anoxygenic photosynthesis, aromatic compound degradation, as well as production of molecular hydrogen and polyhydroxybutyrate.
Collapse
Affiliation(s)
- Diego Tec-Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Camila Posadas
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Juan D. Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, United States of America
| | - Deepan Thiruppathy
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California, San Diego, La Jolla California, United States of America
| | - Nathan Glonek
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Cristal Zuñiga
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Alejandro Zepeda
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California, San Diego, La Jolla California, United States of America
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
3
|
Alloul A, Blansaer N, Cabecas Segura P, Wattiez R, Vlaeminck SE, Leroy B. Dehazing redox homeostasis to foster purple bacteria biotechnology. Trends Biotechnol 2023; 41:106-119. [PMID: 35843758 DOI: 10.1016/j.tibtech.2022.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/27/2022]
Abstract
Purple non-sulfur bacteria (PNSB) show great potential for environmental and industrial biotechnology, producing microbial protein, biohydrogen, polyhydroxyalkanoates (PHAs), pigments, etc. When grown photoheterotrophically, the carbon source is typically more reduced than the PNSB biomass, which leads to a redox imbalance. To mitigate the excess of electrons, PNSB can exhibit several 'electron sinking' strategies, such as CO2 fixation, N2 fixation, and H2 and PHA production. The lack of a comprehensive (over)view of these redox strategies is hindering the implementation of PNSB for biotechnology applications. This review aims to present the state of the art of redox homeostasis in phototrophically grown PNSB, presenting known and theoretically expected strategies, and discussing them from stoichiometric, thermodynamic, metabolic, and economic points of view.
Collapse
Affiliation(s)
- Abbas Alloul
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium.
| | - Naïm Blansaer
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium
| | | | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, University of Mons, Mons, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, University of Mons, Mons, Belgium
| |
Collapse
|
4
|
Alloul A, Spanoghe J, Machado D, Vlaeminck SE. Unlocking the genomic potential of aerobes and phototrophs for the production of nutritious and palatable microbial food without arable land or fossil fuels. Microb Biotechnol 2022; 15:6-12. [PMID: 33529492 PMCID: PMC8719805 DOI: 10.1111/1751-7915.13747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
The increasing world population and living standards urgently necessitate the transition towards a sustainable food system. One solution is microbial protein, i.e. using microbial biomass as alternative protein source for human nutrition, particularly based on renewable electron and carbon sources that do not require arable land. Upcoming green electrification and carbon capture initiatives enable this, yielding new routes to H2, CO2 and CO2-derived compounds like methane, methanol, formic- and acetic acid. Aerobic hydrogenotrophs, methylotrophs, acetotrophs and microalgae are the usual suspects for nutritious and palatable biomass production on these compounds. Interestingly, these compounds are largely un(der)explored for purple non-sulfur bacteria, even though these microbes may be suitable for growing aerobically and phototrophically on these substrates. Currently, selecting the best strains, metabolisms and cultivation conditions for nutritious and palatable microbial food mainly starts from empirical growth experiments, and mostly does not stretch beyond bulk protein. We propose a more target-driven and efficient approach starting from the genome-embedded potential to tuning towards, for instance, essential amino- and fatty acids, vitamins, taste,... Genome-scale metabolic models combined with flux balance analysis will facilitate this, narrowing down experimental variations and enabling to get the most out of the 'best' combinations of strain and electron and carbon sources.
Collapse
Affiliation(s)
- Abbas Alloul
- Research Group of Sustainable Energy, Air and Water TechnologyDepartment of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171Antwerpen2020Belgium
| | - Janne Spanoghe
- Research Group of Sustainable Energy, Air and Water TechnologyDepartment of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171Antwerpen2020Belgium
| | - Daniel Machado
- Department of Biotechnology and Food ScienceNorwegian University of Science and TechnologyTrondheim7491Norway
| | - Siegfried E. Vlaeminck
- Research Group of Sustainable Energy, Air and Water TechnologyDepartment of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171Antwerpen2020Belgium
| |
Collapse
|
5
|
Eley JH, Knobloch K, Han TW. Effect of growth condition on enzymes of the citric acid cycle and the glyoxylate cycle in the photosynthetic bacterium Rhodopseudomonas palustris. Antonie Van Leeuwenhoek 1979; 45:521-9. [PMID: 552814 DOI: 10.1007/bf00403652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The enzymes of the citric acid and glyoxylate cycles as well as RuBP4 carboxylase were measured in cell-free extracts from Rhodopseudomonas palustris after growth under chemoheterotrophic, photoheterotrophic and photolithotrophic conditions. Although the citric acid cycle was found to be complete under all growth conditions, significant differences in certain enzyme activities occurred as a function of the different energy sources applied. The glyoxylate cycle also was complete under all growth conditions with highest isocitrate lyase activity seen after photoheterotrophic growth on acetate. Photo- and chemoheterotrophic growth on malate reduced the isocitrate lyase. The activity was not repressed further by photolithotrophic growth on thiosulfate. RuBP carboxylase activity, present under photolithotrophic conditions, was repressed by chemoheterotrophic growth but was not decreased by the presence of organic substrates during photoheterotrophic growth.
Collapse
|
6
|
|
7
|
|
8
|
Douthit HA, Pfennig N. Isolation and growth rates of methanol utilizing Rhodospirillaceae. Arch Microbiol 1976; 107:UNKNOWN. [PMID: 1259511 DOI: 10.1007/bf00446847] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
38 pure culture strains belonging to seven species of the Rhodospirillaceae were isolated from 39 methanol enrichment cultures inoculated with water and mud samples of different habitats. None of the strains exhibited doubling times shorter than 10 h in methanol-bicarbonate media.
Collapse
|
9
|
McFadden BA. Autotrophic CO2 assimilation and the evolution of ribulose diphosphate carboxylase. BACTERIOLOGICAL REVIEWS 1973; 37:289-319. [PMID: 4357017 PMCID: PMC413820 DOI: 10.1128/br.37.3.289-319.1973] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Hansen TA, Veldkamp H. Rhodopseudomonas sulfidophila, nov. spec., a new species of the purple nonsulfur bacteria. ARCHIV FUR MIKROBIOLOGIE 1973; 92:45-58. [PMID: 4725822 DOI: 10.1007/bf00409510] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
|