1
|
Wang C, Huang Z, Duan Z, Zhu L, Di R, Bao Y, Powell CA, Hu Q, Chen B, Zhang M, Yao W. Pectate Lyase from Fusarium sacchari Induces Plant Immune Responses and Contributes to Virulence. Microbiol Spectr 2023; 11:e0016523. [PMID: 37140457 PMCID: PMC10269888 DOI: 10.1128/spectrum.00165-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/13/2023] [Indexed: 05/05/2023] Open
Abstract
Fusarium sacchari is one of the primary pathogens causing Pokkah Boeng disease (PBD) in sugarcane in China. Pectate lyases (PL), which play a critical role in pectin degradation and fungal virulence, have been extensively studied in major bacterial and fungal pathogens of a wide range of plant species. However, only a few PLs have been functionally investigated. In this study, we analyzed the function of the pectate lyase gene, FsPL, from F. sacchari. FsPL is a key virulence factor of F. sacchari and can induce plant cell death. FsPL also triggers the pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) response in Nicotiana benthamiana, as reflected by increases in reactive oxygen species (ROS) production, electrolyte leakage, and callose accumulation, as well as the upregulation of defense response genes. In addition, our study also found that the signal peptide of FsPL was necessary for induced cell death and PTI responses. Virus-induced gene silencing showed that FsPL-induced cell death in Nicotiana benthamiana was mediated by leucine-rich repeat (LRR) receptor-like kinases BAK1 and SOBIR1. Thus, FsPL may not only be a critical virulence factor for F. sacchari but may also induce plant defense responses. These findings provide new insights into the functions of pectate lyase in host-pathogen interactions. IMPORTANCE Pokkah Boeng disease (PBD) is one of the main diseases affecting sugarcane in China, seriously damaging sugarcane production and economic development. Therefore, it is important to clarify the pathogenic mechanisms of this disease and to provide a theoretical basis for the breeding of PBD-resistant sugarcane strains. The present study aimed to analyze the function of FsPL, a recently identified pectate lyase gene from F. sacchari. FsPL is a key virulence factor of F. sacchari that induces plant cell death. Our results provide new insights into the function of pectate lyase in host-pathogen interactions.
Collapse
Affiliation(s)
- Caixia Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Zhen Huang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Zhenzhen Duan
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Lixiang Zhu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Ruolin Di
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Yixue Bao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | | | - Qin Hu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
- IRREC-IFAS, University of Florida, Fort Pierce, Florida, USA
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
- IRREC-IFAS, University of Florida, Fort Pierce, Florida, USA
| |
Collapse
|
2
|
Pectinase from Microorganisms and Its Industrial Applications. ScientificWorldJournal 2022; 2022:1881305. [PMID: 35311220 PMCID: PMC8933074 DOI: 10.1155/2022/1881305] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
The utilization of microbial pectinase in different industries has been increased in its world demand. The major sources of pectinase are microorganisms mainly bacteria, fungi and yeast. The utilization of low-cost agro-industrial wastes as substrates has been preferable in pectinase production. Pectinase production faced various parameters optimization constraints such as temperature, pH and production times which are the main factors in pectinase production. The pectinase enzyme is getting attention due to its several advantages; hence, it needs to be explored further to take its maximum advantage in different industries. This review discusses the pectin substance structure, substrate for pectinase production, factors influencing pectinase production, the industrial application of microbial pectinase and also discusses challenges and future opportunities of applying microbial pectinase in industry.
Collapse
|
3
|
Sun H, Hao P, Gu L, Cheng S, Wang H, Wu A, Ma L, Wei H, Yu S. Pectate lyase-like Gene GhPEL76 regulates organ elongation in Arabidopsis and fiber elongation in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110395. [PMID: 32081256 DOI: 10.1016/j.plantsci.2019.110395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/02/2019] [Accepted: 12/27/2019] [Indexed: 05/08/2023]
Abstract
Pectate lyases (PELs) play important roles in plant growth and development, mainly by degrading the pectin in primary cell walls. However, the role of PELs in cotton fiber elongation, which also involves changes in cellular structure and components, is poorly understood. Therefore, we aimed to isolate and characterize GhPEL76, as we suspected it to contribute to the regulation of fiber elongation. Expression analysis (qRT-PCR) revealed that GhPEL76 is predominately expressed in cotton fiber, with significantly different expression levels in long- and short-fiber cultivars, and that GhPEL76 expression is responsive to gibberellic acid and indoleacetic acid treatment. Furthermore, GhPEL76 promoter-driven β-glucuronidase activity was detected in the roots, hypocotyls, and leaves of transgenic Arabidopsis plants, and the overexpression of GhPEL76 in transgenic Arabidopsis promoted the elongation of several organs, including petioles, hypocotyls, primary roots, and trichomes. Additionally, the virus-induced silencing of GhPEL76 in cotton reduced fiber length, and both yeast one-hybrid and transient dual-luciferase assays suggested that GhbHLH13, a bHLH transcription factor that is up-regulated during fiber elongation, activates GhPEL76 expression by binding to the G-box of the GhPEL76 promoter region. Therefore, these results suggest GhPEL76 positively regulates fiber elongation and provide a basis for future studies of cotton fiber development.
Collapse
Affiliation(s)
- Huiru Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; College of Life Science, Yan'an University, Yan'an, 716000, China; College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Shuaishuai Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; College of Life Science, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
4
|
Sun H, Hao P, Ma Q, Zhang M, Qin Y, Wei H, Su J, Wang H, Gu L, Wang N, Liu G, Yu S. Genome-wide identification and expression analyses of the pectate lyase (PEL) gene family in cotton (Gossypium hirsutum L.). BMC Genomics 2018; 19:661. [PMID: 30200887 PMCID: PMC6131898 DOI: 10.1186/s12864-018-5047-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/30/2018] [Indexed: 11/23/2022] Open
Abstract
Background Pectin is a major component and structural polysaccharide of the primary cell walls and middle lamella of higher plants. Pectate lyase (PEL, EC 4.2.2.2), a cell wall modification enzyme, degrades de-esterified pectin for cell wall loosening, remodeling and rearrangement. Nevertheless, there have been few studies on PEL genes and no comprehensive analysis of the PEL gene family in cotton. Results We identified 53, 42 and 83 putative PEL genes in Gossypium raimondii (D5), Gossypium arboreum (A2), and Gossypium hirsutum (AD1), respectively. These PEL genes were classified into five subfamilies (I-V). Members from the same subfamilies showed relatively conserved gene structures, motifs and protein domains. An analysis of gene chromosomal locations and gene duplication revealed that segmental duplication likely contributed to the expansion of the GhPELs. The 2000 bp upstream sequences of all the GhPELs contained auxin response elements. A transcriptomic data analysis showed that 62 GhPELs were expressed in various tissues. Notably, most (29/32) GhPELs of subfamily IV were preferentially expressed in the stamen, and five GhPELs of subfamily V were prominently expressed at the fiber elongation stage. In addition, qRT-PCR analysis revealed the expression characteristics of 24 GhPELs in four pollen developmental stages and significantly different expression of some GhPELs between long- and short-fiber cultivars. Moreover, some members were responsive to IAA treatment. The results indicate that GhPELs play significant and functionally diverse roles in the development of different tissues. Conclusions In this study, we comprehensively analyzed PELs in G. hirsutum, providing a foundation to better understand the functions of GhPELs in different tissues and pathways, especially in pollen, fiber and the auxin signaling pathway. Electronic supplementary material The online version of this article (10.1186/s12864-018-5047-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huiru Sun
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Pengbo Hao
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Qiang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Yuan Qin
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Junji Su
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Nuohan Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Guoyuan Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Shuxun Yu
- College of Agronomy, Northwest A&F University, Yangling, 712100, China. .,State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China.
| |
Collapse
|
5
|
Rhee MS, Sawhney N, Kim YS, Rhee HJ, Hurlbert JC, St John FJ, Nong G, Rice JD, Preston JF. GH115 α-glucuronidase and GH11 xylanase from Paenibacillus sp. JDR-2: potential roles in processing glucuronoxylans. Appl Microbiol Biotechnol 2016; 101:1465-1476. [PMID: 27766358 DOI: 10.1007/s00253-016-7899-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/13/2016] [Accepted: 09/25/2016] [Indexed: 01/26/2023]
Abstract
Paenibacillus sp. JDR-2 (Pjdr2) has been studied as a model for development of bacterial biocatalysts for efficient processing of xylans, methylglucuronoxylan, and methylglucuronoarabinoxylan, the predominant hemicellulosic polysaccharides found in dicots and monocots, respectively. Pjdr2 produces a cell-associated GH10 endoxylanase (Xyn10A1) that catalyzes depolymerization of xylans to xylobiose, xylotriose, and methylglucuronoxylotriose with methylglucuronate-linked α-1,2 to the nonreducing terminal xylose. A GH10/GH67 xylan utilization regulon includes genes encoding an extracellular cell-associated Xyn10A1 endoxylanase and an intracellular GH67 α-glucuronidase active on methylglucuronoxylotriose generated by Xyn10A1 but without activity on methylglucuronoxylotetraose generated by a GH11 endoxylanase. The sequenced genome of Pjdr2 contains three paralogous genes potentially encoding GH115 α-glucuronidases found in certain bacteria and fungi. One of these, Pjdr2_5977, shows enhanced expression during growth on xylans along with Pjdr2_4664 encoding a GH11 endoxylanase. Here, we show that Pjdr2_5977 encodes a GH115 α-glucuronidase, Agu115A, with maximal activity on the aldouronate methylglucuronoxylotetraose selectively generated by a GH11 endoxylanase Xyn11 encoded by Pjdr2_4664. Growth of Pjdr2 on this methylglucuronoxylotetraose supports a process for Xyn11-mediated extracellular depolymerization of methylglucuronoxylan and Agu115A-mediated intracellular deglycosylation as an alternative to the GH10/GH67 system previously defined in this bacterium. A recombinantly expressed enzyme encoded by the Pjdr2 agu115A gene catalyzes removal of 4-O-methylglucuronate residues α-1,2 linked to internal xylose residues in oligoxylosides generated by GH11 and GH30 xylanases and releases methylglucuronate from polymeric methylglucuronoxylan. The GH115 α-glucuronidase from Pjdr2 extends the discovery of this activity to members of the phylum Firmicutes and contributes to a novel system for bioprocessing hemicelluloses.
Collapse
Affiliation(s)
- Mun Su Rhee
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA.,Xycrobe Therapeutics Inc., 3210 Merryfield Row, San Diego,, CA, 92121,, USA
| | - Neha Sawhney
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235,, USA
| | - Young Sik Kim
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| | - Hyun Jee Rhee
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, 6-113, Cambridge, MA, 02139,, USA
| | - Jason C Hurlbert
- Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC, 29733, USA
| | - Franz J St John
- Forest Products Laboratory, United States Forest Service, The United States Department of Agriculture, Madison, Madison,, WI, 53726, USA
| | - Guang Nong
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| | - John D Rice
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| | - James F Preston
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA.
| |
Collapse
|
6
|
Sawhney N, Crooks C, Chow V, Preston JF, St John FJ. Genomic and transcriptomic analysis of carbohydrate utilization by Paenibacillus sp. JDR-2: systems for bioprocessing plant polysaccharides. BMC Genomics 2016; 17:131. [PMID: 26912334 PMCID: PMC4765114 DOI: 10.1186/s12864-016-2436-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/05/2016] [Indexed: 11/12/2022] Open
Abstract
Background Polysaccharides comprising plant biomass are potential resources for conversion to fuels and chemicals. These polysaccharides include xylans derived from the hemicellulose of hardwoods and grasses, soluble β-glucans from cereals and starch as the primary form of energy storage in plants. Paenibacillus sp. JDR-2 (Pjdr2) has evolved a system for bioprocessing xylans. The central component of this xylan utilization system is a multimodular glycoside hydrolase family 10 (GH10) endoxylanase with carbohydrate binding modules (CBM) for binding xylans and surface layer homology (SLH) domains for cell surface anchoring. These attributes allow efficient utilization of xylans by generating oligosaccharides proximal to the cell surface for rapid assimilation. Coordinate expression of genes in response to growth on xylans has identified regulons contributing to depolymerization, importation of oligosaccharides and intracellular processing to generate xylose as well as arabinose and methylglucuronate. The genome of Pjdr2 encodes several other putative surface anchored multimodular enzymes including those for utilization of β-1,3/1,4 mixed linkage soluble glucan and starch. Results To further define polysaccharide utilization systems in Pjdr2, its transcriptome has been determined by RNA sequencing following growth on barley-derived soluble β-glucan, starch, cellobiose, maltose, glucose, xylose and arabinose. The putative function of genes encoding transcriptional regulators, ABC transporters, and glycoside hydrolases belonging to the corresponding substrate responsive regulon were deduced by their coordinate expression and locations in the genome. These results are compared to observations from the previously defined xylan utilization systems in Pjdr2. The findings from this study show that Pjdr2 efficiently utilizes these glucans in a manner similar to xylans. From transcriptomic and genomic analyses we infer a common strategy evolved by Pjdr2 for efficient bioprocessing of polysaccharides. Conclusions The barley β-glucan and starch utilization systems in Pjdr2 include extracellular glycoside hydrolases bearing CBM and SLH domains for depolymerization of these polysaccharides. Overlapping regulation observed during growth on these polysaccharides suggests they are preferentially utilized in the order of starch before xylan before barley β-glucan. These systems defined in Pjdr2 may serve as a paradigm for developing biocatalysts for efficient bioprocessing of plant biomass to targeted biofuels and chemicals. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2436-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neha Sawhney
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA.
| | - Casey Crooks
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA.
| | - Virginia Chow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA.
| | - James F Preston
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA.
| | - Franz J St John
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA.
| |
Collapse
|
7
|
A 1,3-1,4-β-Glucan Utilization Regulon in Paenibacillus sp. Strain JDR-2. Appl Environ Microbiol 2016; 82:1789-1798. [PMID: 26746717 DOI: 10.1128/aem.03526-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/25/2015] [Indexed: 11/20/2022] Open
Abstract
Paenibacillus sp. strain JDR-2 (Paenibacillus JDR-2) secretes a multimodular cell-associated glycoside hydrolase family 10 (GH10) endoxylanase (XynA10A1) that catalyzes the depolymerization of methylglucuronoxylan (MeGXn) and rapidly assimilates the products of depolymerization. Efficient utilization of MeGXn has been postulated to result from the coupling of the processes of exocellular depolymerization and assimilation of oligosaccharide products, followed by intracellular metabolism. Growth and substrate utilization patterns with barley glucan and laminarin similar to those observed with MeGXn as a substrate suggest similar processes for 1,3-1,4-β-glucan and 1,3-β-glucan depolymerization and product assimilation. The Paenibacillus JDR-2 genome includes a cluster of genes encoding a secreted multimodular GH16 β-glucanase (Bgl16A1) containing surface layer homology (SLH) domains, a secreted GH16 β-glucanase with only a catalytic domain (Bgl16A2), transporter proteins, and transcriptional regulators. Recombinant Bgl16A1 and Bgl16A2 catalyze the formation of trisaccharides, tetrasaccharides, and larger oligosaccharides from barley glucan and of mono-, di-, tri-, and tetrasaccharides and larger oligosaccharides from laminarin. The lack of accumulation of depolymerization products during growth and a marked preference for polymeric glucan over depolymerization products support a process coupling extracellular depolymerization, assimilation, and intracellular metabolism for β-glucans similar to that ascribed to the GH10/GH67 xylan utilization system in Paenibacillus JDR-2. Coordinate expression of genes encoding GH16 β-glucanases, transporters, and transcriptional regulators supports their role as a regulon for the utilization of soluble β-glucans. As in the case of the xylan utilization regulons, this soluble β-glucan regulon provides advantages in the growth rate and yields on polymeric substrates and may be exploited for the efficient conversion of plant-derived polysaccharides to targeted products.
Collapse
|
8
|
Sawhney N, Crooks C, St. John F, Preston JF. Transcriptomic analysis of xylan utilization systems in Paenibacillus sp. strain JDR-2. Appl Environ Microbiol 2015; 81:1490-501. [PMID: 25527555 PMCID: PMC4309694 DOI: 10.1128/aem.03523-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/13/2014] [Indexed: 11/20/2022] Open
Abstract
Xylans, including methylglucuronoxylans (MeGX(n)) and methylglucuronoarabinoxylans (MeGAXn), are the predominant polysaccharidesin hemicellulose fractions of dicots and monocots available for conversion to biofuels and chemicals. Paenibacillus sp. strain JDR-2 (Pjdr2) efficiently depolymerizes MeGX(n) and MeGAX(n) and assimilates the generated oligosaccharides, resulting in efficient saccharification and subsequent metabolism of these polysaccharides. A xylan utilization regulon encoding a cellassociated GH10 (glycoside hydrolase family 10) endoxylanase, transcriptional regulators, ABC (ATP binding cassette) transporters, an intracellular GH67 -glucuronidase, and other glycoside hydrolases contributes to complete metabolism. This GH10/GH67 system has been proposed to account for preferential utilization of xylans compared to free oligo- and monosaccharides. To identify additional genes contributing to MeGX(n) and MeGAXn utilization, the transcriptome of Pjdr2 has been sequenced following growth on each of these substrates as well as xylose and arabinose. Increased expression of genes with different substrates identified pathways common or unique to the utilization of MeGX(n) or MeGAX(n). Coordinate upregulation of genes comprising the GH10/GH67 xylan utilization regulon is accompanied with upregulation of genes encoding a GH11 endoxylanase and a GH115 -glucuronidase, providing evidence for a novel complementary pathway for processing xylans. Elevated expression of genes encoding a GH43 arabinoxylan arabinofuranohydrolase and an arabinose ABC transporter on MeGAX(n) but not on MeGX(n) supports a process in which arabinose may be removed extracellularly followed by its rapid assimilation.Further development of Pjdr2 for direct conversion of xylans to targeted products or introduction of these systems into fermentative strains of related bacteria may lead to biocatalysts for consolidated bioprocessing of hemicelluloses released from lignocellulose.
Collapse
Affiliation(s)
- Neha Sawhney
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Casey Crooks
- U.S. Department of Agriculture, U.S. Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA
| | - Franz St. John
- U.S. Department of Agriculture, U.S. Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA
| | - James F. Preston
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Sawhney N, Preston JF. GH51 arabinofuranosidase and its role in the methylglucuronoarabinoxylan utilization system in Paenibacillus sp. strain JDR-2. Appl Environ Microbiol 2014; 80:6114-25. [PMID: 25063665 PMCID: PMC4178703 DOI: 10.1128/aem.01684-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/22/2014] [Indexed: 11/20/2022] Open
Abstract
Methylglucuronoarabinoxylan (MeGAXn) from agricultural residues and energy crops is a significant yet underutilized biomass resource for production of biofuels and chemicals. Mild thermochemical pretreatment of bagasse yields MeGAXn requiring saccharifying enzymes for conversion to fermentable sugars. A xylanolytic bacterium, Paenibacillus sp. strain JDR-2, produces an extracellular cell-associated GH10 endoxylanse (XynA1) which efficiently depolymerizes methylglucuronoxylan (MeGXn) from hardwoods coupled with assimilation of oligosaccharides for further processing by intracellular GH67 α-glucuronidase, GH10 endoxylanase, and GH43 β-xylosidase. This process has been ascribed to genes that comprise a xylan utilization regulon that encodes XynA1 and includes a gene cluster encoding transcriptional regulators, ABC transporters, and intracellular enzymes that convert assimilated oligosaccharides to fermentable sugars. Here we show that Paenibacillus sp. JDR-2 utilized MeGAXn without accumulation of oligosaccharides in the medium. The Paenibacillus sp. JDR-2 growth rate on MeGAXn was 3.1-fold greater than that on oligosaccharides generated from MeGAXn by XynA1. Candidate genes encoding GH51 arabinofuranosidases with potential roles were identified. Following growth on MeGAXn, quantitative reverse transcription-PCR identified a cluster of genes encoding a GH51 arabinofuranosidase (AbfB) and transcriptional regulators which were coordinately expressed along with the genes comprising the xylan utilization regulon. The action of XynA1 on MeGAXn generated arabinoxylobiose, arabinoxylotriose, xylobiose, xylotriose, and methylglucuronoxylotriose. Recombinant AbfB processed arabinoxylooligosaccharides to xylooligosaccharides and arabinose. MeGAXn processing by Paenibacillus sp. JDR-2 may be achieved by extracellular depolymerization by XynA1 coupled to assimilation of oligosaccharides and further processing by intracellular enzymes, including AbfB. Paenibacillus sp. JDR-2 provides a GH10/GH67 system complemented with genes encoding intracellular GH51 arabinofuranosidases for efficient utilization of MeGAXn.
Collapse
Affiliation(s)
- Neha Sawhney
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - James F Preston
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Zou M, Guo F, Li X, Zhao J, Qu Y. Enhancing production of alkaline polygalacturonate lyase from Bacillus subtilis by fed-batch fermentation. PLoS One 2014; 9:e90392. [PMID: 24603713 PMCID: PMC3946182 DOI: 10.1371/journal.pone.0090392] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/29/2014] [Indexed: 11/19/2022] Open
Abstract
Alkaline polygalacturonate lyase (PGL, EC 4.2.2.2) is an enzyme used in many industries. We developed a fed-batch fermentation process that combines the enzymatic pretreatment of the carbon source with controlling the pH of the fermentative broth to enhance the PGL production from Bacillus subtilis 7-3-3 to decrease the production cost. Maintaining the fermentation broth at pH 6.5 prior to feeding with ammonia and at pH 6.0 after feeding significantly improved PGL activity (743.5 U mL-1) compared with the control (202.5 U mL-1). The average PGL productivity reached 19.6 U mL-1 h-1 after 38 h of fermentation. The crude PGL was suitable for environmentally friendly ramie enzymatic degumming.
Collapse
Affiliation(s)
- Mouyong Zou
- State Key Laboratory of Microbial Technology, Shandong University, Ji-nan City, P.R. China
| | - Fenfen Guo
- State Key Laboratory of Microbial Technology, Shandong University, Ji-nan City, P.R. China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Ji-nan City, P.R. China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Ji-nan City, P.R. China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Ji-nan City, P.R. China
| |
Collapse
|
11
|
Collmer A, Bateman DF. Impaired induction and self-catabolite repression of extracellular pectate lyase in Erwinia chrysanthemi mutants deficient in oligogalacturonide lyase. Proc Natl Acad Sci U S A 2010; 78:3920-4. [PMID: 16593039 PMCID: PMC319685 DOI: 10.1073/pnas.78.6.3920] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pectate lyase (PL; EC 4.2.2.2) secreted by the plant pathogen Erwinia chrysanthemi is induced and catabolite repressed by different concentrations of its own product, digalacturonic acid 4,5-unsaturated at the nonreducing end [u(GalUA)(2)]. Both activities of u(GalUA)(2) depend on its cleavage by oligogalacturonide lyase (OGL; EC 4.2.2.6). This intracellular enzyme converts u(GalUA)(2) to the deoxyketuronic acid 4-deoxy-L-threo-5-hexosulose uronic acid, which is then isomerized to 3-deoxy-D-glycero-2,5-hexodiulosonic acid. An OGL-deficient mutant unable to grow on u(GalUA)(2) was poorly induced by u(GalUA)(2) or by D-galacturonan but produced wild-type levels of PL when supplied with 3-deoxy-D-glycero-2,5-hexodiulosonic acid. PL synthesis in the mutant could also be stimulated by 4,5-unsaturated trigalacturonic acid, from which deoxyketuronic acid is released by another intracellular enzyme. An OGL-deficient mutant that grew slowly on u(GalUA)(2) in comparison with the wild-type parent was hyperinduced by u(GalUA)(2) unless catabolite repression was relieved by cyclic AMP or imposed by logarithmic growth on glycerol. PL synthesis is also stimulated by saturated digalacturonic acid, which is released from D-galacturonan by another extracellular enzyme, exo-poly-alpha-D-galacturonosidase (EC 3.2.1.82). Because these dimers stimulate PL synthesis at concentrations (wt/vol) 1/1000th of the concentration required by D-galacturonan, and because an OGL-deficient mutant uninducible by dimers was also uninducible by D-galacturonan, we postulate that PL induction by pectic polymers entails extracellular formation of dimers and subsequent intracellular conversion to deoxyketuronic acids, the apparent inducers of PL.
Collapse
Affiliation(s)
- A Collmer
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
12
|
Genetic engineering of Enterobacter asburiae strain JDR-1 for efficient production of ethanol from hemicellulose hydrolysates. Appl Environ Microbiol 2009; 75:5743-9. [PMID: 19617386 DOI: 10.1128/aem.01180-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dilute acid pretreatment is an established method for hydrolyzing the methylglucuronoxylans of hemicellulose to release fermentable xylose. In addition to xylose, this process releases the aldouronate methylglucuronoxylose, which cannot be metabolized by current ethanologenic biocatalysts. Enterobacter asburiae JDR-1, isolated from colonized wood, was found to efficiently ferment both methylglucuronoxylose and xylose in acid hydrolysates of sweet gum xylan, producing predominantly ethanol and acetate. Transformation of E. asburiae JDR-1 with pLOI555 or pLOI297, each containing the PET operon containing pyruvate decarboxylase (pdc) and alcohol dehydrogenase B (adhB) genes derived from Zymomonas mobilis, replaced mixed-acid fermentation with homoethanol fermentation. Deletion of the pyruvate formate lyase (pflB) gene further increased the ethanol yield, resulting in a stable E. asburiae E1(pLOI555) strain that efficiently utilized both xylose and methylglucuronoxylose in dilute acid hydrolysates of sweet gum xylan. Ethanol was produced from xylan hydrolysate by E. asburiae E1(pLOI555) with a yield that was 99% of the theoretical maximum yield and at a rate of 0.11 g ethanol/g (dry weight) cells/h, which was 1.57 times the yield and 1.48 times the rate obtained with the ethanologenic strain Escherichia coli KO11. This engineered derivative of E. asburiae JDR-1 that is able to ferment the predominant hexoses and pentoses derived from both hemicellulose and cellulose fractions is a promising subject for development as an ethanologenic biocatalyst for production of fuels and chemicals from agricultural residues and energy crops.
Collapse
|
13
|
Nong G, Rice JD, Chow V, Preston JF. Aldouronate utilization in Paenibacillus sp. strain JDR-2: Physiological and enzymatic evidence for coupling of extracellular depolymerization and intracellular metabolism. Appl Environ Microbiol 2009; 75:4410-8. [PMID: 19395566 PMCID: PMC2704816 DOI: 10.1128/aem.02354-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 04/19/2009] [Indexed: 11/20/2022] Open
Abstract
Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from decaying sweet gum wood, secretes a multimodular glycohydrolase family GH10 endoxylanase (XynA1) anchored to the cell surface. The gene encoding XynA1 is part of a xylan utilization regulon that includes an aldouronate utilization gene cluster with genes encoding a GH67 alpha-glucuronidase (AguA), a GH10 endoxylanase (XynA2), and a GH43 arabinofuranosidase/beta-xylosidase (XynB). Here we show that this Paenibacillus sp. strain is able to utilize methylglucuronoxylose (MeGAX(1)), an aldobiuronate product that accumulates during acid pretreatment of lignocellulosic biomass, and methylglucuronoxylotriose (MeGAX(3)), the product of the extracellular XynA1 acting on methylglucuronoxylan (MeGAX(n)). The average rates of utilization of MeGAX(n), MeGAX(1), and MeGAX(3) were 149.8, 59.4, and 54.3 microg xylose equivalents.ml(-1).h(-1), respectively, and were proportional to the specific growth rates on the substrates. AguA was active with MeGAX(1) and MeGAX(3), releasing 4-O-methyl-d-glucuronate alpha-1,2 linked to a nonreducing terminal xylose residue. XynA2 converted xylotriose, generated by the action of AguA on MeGAX(3), to xylose and xylobiose. The ability to utilize MeGAX(1) provides a novel metabolic potential for bioconversion of acid hydrolysates of lignocellulosics. The 2.8-fold-greater rate of utilization of polymeric MeGAX(n) than that of MeGAX(3) indicates that there is coupling of extracellular depolymerization, assimilation, and intracellular metabolism, allowing utilization of lignocellulosics with minimal pretreatment. Along with adjacent genes encoding transcriptional regulators and ABC transporter proteins, the aguA and xynA2 genes in the cluster described above contribute to the efficient utilization of aldouronates derived from dilute acid and/or enzyme pretreatment protocols applied to the conversion of hemicellulose to biofuels and chemicals.
Collapse
Affiliation(s)
- Guang Nong
- Department of Microbiology and Cell Science, University of Florida, Gainesville, 32611-0700, USA
| | | | | | | |
Collapse
|
14
|
Bi C, Zhang X, Rice JD, Ingram LO, Preston JF. Genetic engineering of Enterobacter asburiae strain JDR-1 for efficient d(−) lactic acid production from hemicellulose hydrolysate. Biotechnol Lett 2009; 31:1551-7. [DOI: 10.1007/s10529-009-0044-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 05/14/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022]
|
15
|
Mossel D, Pflug IJ. Occurrence, prevention, and monitoring of microbial quality loss of foods and dairy products. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/10643387509381624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Complete fermentation of xylose and methylglucuronoxylose derived from methylglucuronoxylan by Enterobacter asburiae strain JDR-1. Appl Environ Microbiol 2008; 75:395-404. [PMID: 19011070 DOI: 10.1128/aem.01941-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acid pretreatment is commonly used to release pentoses from the hemicellulose fraction of cellulosic biomass for bioconversion. The predominant pentose in the hemicellulose fraction of hardwoods and crop residues is xylose in the polysaccharide methylglucuronoxylan, in which as many as one in six of the beta-1,4-linked xylopyranose residues is substituted with alpha-1,2-linked 4-O-methylglucuronopyranose. Resistance of the alpha-1,2-methylglucuronosyl linkages to acid hydrolysis results in release of the aldobiuronate 4-O-methylglucuronoxylose, which is not fermented by bacterial biocatalysts currently used for bioconversion of hemicellulose. Enterobacter asburiae strain JDR-1, isolated from colonized hardwood (sweetgum), efficiently ferments both methylglucuronoxylose and xylose, producing predominantly ethanol and acetate. (13)C-nuclear magnetic resonance studies defined the Embden-Meyerhof pathway for metabolism of glucose and the pentose phosphate pathway for xylose metabolism. Rates of substrate utilization, product formation, and molar growth yields indicated methylglucuronoxylose is transported into the cell and hydrolyzed to release methanol, xylose, and hexauronate. Enterobacter asburiae strain JDR-1 is the first microorganism described that ferments methylglucuronoxylose generated along with xylose during the acid-mediated saccharification of hemicellulose. Genetic definition of the methylglucuronoxylose utilization pathway may allow metabolic engineering of established gram-negative bacterial biocatalysts for complete bioconversion of acid hydrolysates of methylglucuronoxylan. Alternatively, Enterobacter asburiae strain JDR-1 may be engineered for the efficient conversion of acid hydrolysates of hemicellulose to biofuels and chemical feedstocks.
Collapse
|
17
|
|
18
|
Structure, function, and regulation of the aldouronate utilization gene cluster from Paenibacillus sp. strain JDR-2. J Bacteriol 2007; 189:8863-70. [PMID: 17921311 DOI: 10.1128/jb.01141-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Direct bacterial conversion of the hemicellulose fraction of hardwoods and crop residues to biobased products depends upon extracellular depolymerization of methylglucuronoxylan (MeGAX(n)), followed by assimilation and intracellular conversion of aldouronates and xylooligosaccharides to fermentable xylose. Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium, secretes a multimodular cell-associated GH10 endoxylanase (XynA1) that catalyzes depolymerization of MeGAX(n) and rapidly assimilates the principal products, beta-1,4-xylobiose, beta-1,4-xylotriose, and MeGAX(3), the aldotetrauronate 4-O-methylglucuronosyl-alpha-1,2-xylotriose. Genomic libraries derived from this bacterium have now allowed cloning and sequencing of a unique aldouronate utilization gene cluster comprised of genes encoding signal transduction regulatory proteins, ABC transporter proteins, and the enzymes AguA (GH67 alpha-glucuronidase), XynA2 (GH10 endoxylanase), and XynB (GH43 beta-xylosidase/alpha-arabinofuranosidase). Expression of these genes, as well as xynA1 encoding the secreted GH10 endoxylanase, is induced by growth on MeGAX(n) and repressed by glucose. Sequences in the yesN, lplA, and xynA2 genes within the cluster and in the distal xynA1 gene show significant similarity to catabolite responsive element (cre) defined in Bacillus subtilis for recognition of the catabolite control protein (CcpA) and consequential repression of catabolic regulons. The aldouronate utilization gene cluster in Paenibacillus sp. strain JDR-2 operates as a regulon, coregulated with the expression of xynA1, conferring the ability for efficient assimilation and catabolism of the aldouronate product generated by a multimodular cell surface-anchored GH10 endoxylanase. This cluster offers a desirable metabolic potential for bacterial conversion of hemicellulose fractions of hardwood and crop residues to biobased products.
Collapse
|
19
|
Abbott DW, Boraston AB. Specific recognition of saturated and 4,5-unsaturated hexuronate sugars by a periplasmic binding protein involved in pectin catabolism. J Mol Biol 2007; 369:759-70. [PMID: 17451747 DOI: 10.1016/j.jmb.2007.03.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/14/2007] [Accepted: 03/16/2007] [Indexed: 11/30/2022]
Abstract
The process of pectin depolymerization by pectate lyases and glycoside hydrolases produced by pectinolytic organisms, particularly the phytopathogens from the genus Erwinia, is reasonably well understood. Indeed each extracellular and intracellular catabolic stage has been identified using either genetic, bioinformatic or biochemical approaches. Nevertheless, the molecular details of many of these stages remain unknown. In particular, the mechanism and ligand binding profiles for the transport of pectin degradation products between cellular compartments remain entirely uninvestigated. Here we present the structure of TogB, a 45.7 kDa periplasmic binding protein from Yersinia enterocolitica. This protein is a component of the TogMNAB ABC transporter involved in the periplasmic transport of oligogalacturonides. In addition to the unliganded complex (at 2.2 A), we have also determined the structures of TogB in complex with digalacturonic acid (at 2.2 A), trigalacturonic acid (at 1.8 A) and 4,5-unsaturated digalacutronic acid (at 2.3 A). The molecular determinants of oligogalacturonide binding include a novel salt-bridge between the non-reducing sugar uronate group, selectivity for the unsaturated ligand, and the overall sugar configuration. Complementing this are UV difference and isothermal titration calorimetry experiments that highlight the thermodynamic basis of ligand specificity. The ligand binding profiles of the TogMNAB transporter complex nicely complement pectate lyase-mediated pectin degradation, which is a significant component of pectin depolymerization reactions.
Collapse
Affiliation(s)
- D Wade Abbott
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada V8W 3P6
| | | |
Collapse
|
20
|
Stjohn FJ, Rice JD, Preston JF. Paenibacillus sp. strain JDR-2 and XynA1: a novel system for methylglucuronoxylan utilization. Appl Environ Microbiol 2006; 72:1496-506. [PMID: 16461704 PMCID: PMC1392964 DOI: 10.1128/aem.72.2.1496-1506.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 12/01/2005] [Indexed: 11/20/2022] Open
Abstract
Environmental and economic factors predicate the need for efficient processing of renewable sources of fuels and chemicals. To fulfill this need, microbial biocatalysts must be developed to efficiently process the hemicellulose fraction of lignocellulosic biomass for fermentation of pentoses. The predominance of methylglucuronoxylan (MeGAXn), a beta-1,4 xylan in which 10% to 20% of the xylose residues are substituted with alpha-1,2-4-O-methylglucuronate residues, in hemicellulose fractions of hardwood and crop residues has made this a target for processing and fermentation. A Paenibacillus sp. (strain JDR-2) has been isolated and characterized for its ability to efficiently utilize MeGAXn. A modular xylanase (XynA1) of glycosyl hydrolase family 10 (GH 10) was identified through DNA sequence analysis that consists of a triplicate family 22 carbohydrate binding module followed by a GH 10 catalytic domain followed by a single family 9 carbohydrate binding module and concluding with C-terminal triplicate surface layer homology (SLH) domains. Immunodetection of the catalytic domain of XynA1 (XynA1 CD) indicates that the enzyme is associated with the cell wall fraction, supporting an anchoring role for the SLH modules. With MeGAXn as substrate, XynA1 CD generated xylobiose and aldotetrauronate (MeGAX3) as predominant products. The inability to detect depolymerization products in medium during exponential growth of Paenibacillus sp. strain JDR-2 on MeGAXn, as well as decreased growth rate and yield with XynA1 CD-generated xylooligosaccharides and aldouronates as substrates, indicates that XynA1 catalyzes a depolymerization process coupled to product assimilation. This depolymerization/assimilation system may be utilized for development of biocatalysts to efficiently convert MeGAXn to alternative fuels and biobased products.
Collapse
Affiliation(s)
- Franz J Stjohn
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | | | | |
Collapse
|
21
|
Herron SR, Scavetta RD, Garrett M, Legner M, Jurnak F. Characterization and implications of Ca2+ binding to pectate lyase C. J Biol Chem 2003; 278:12271-7. [PMID: 12540845 DOI: 10.1074/jbc.m209306200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) is essential for in vitro activity of Erwinia chrysanthemi pectate lyase C (PelC). Crystallographic analyses of 11 PelC-Ca(2+) complexes, formed at pH 4.5, 9.5, and 11.2 under varying Ca(2+) concentrations, have been solved and refined at a resolution of 2.2 A. The Ca(2+) site represents a new motif for Ca(2+), consisting primarily of beta-turns and beta-strands. The principal differences between PelC and the PelC-Ca(2+) structures at all pH values are the side-chain conformations of Asp-129 and Glu-166 as well as the occupancies of four water molecules. According to calculations of pK(a) values, the presence of Ca(2+) and associated structural changes lower the pK(a) of Arg-218, the amino acid responsible for proton abstraction during catalysis. The Ca(2+) affinity for PelC is weak, as the K(d) was estimated to be 0.132 (+/-0.004) mm at pH 9.5, 1.09 (+/-0.29) mm at pH 11.2, and 5.84 (+/-0.41) mm at pH 4.5 from x-ray diffraction studies and 0.133 (+/-0.045) mm at pH 9.5 from intrinsic tryptophan fluorescence measurements. Given the pH dependence of Ca(2+) affinity, PelC activity at pH 4.5 has been reexamined. At saturating Ca(2+) concentrations, PelC activity increases 10-fold at pH 4.5 but is less than 1% of maximal activity at pH 9.5. Taken together, the studies suggest that the primary Ca(2+) ion in PelC has multiple functions.
Collapse
Affiliation(s)
- Steven R Herron
- Department of Physiology and Biophysics, University of California, Irvine, California 92697-4560, USA
| | | | | | | | | |
Collapse
|
22
|
Azad HR, Holmes GJ, Cooksey DA. A New Leaf Blotch Disease of Sudangrass Caused by Pantoea ananas and Pantoea stewartii. PLANT DISEASE 2000; 84:973-979. [PMID: 30832029 DOI: 10.1094/pdis.2000.84.9.973] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An unreported disease of sudangrass (Sorghum sudanense) was observed in commercial fields in Imperial Valley of California. Symptoms included light-colored necrotic streaks, and white or tan irregular blotches, often associated with reddish purple to dark brown margins. Pantoea ananas was consistently isolated from the blotches with reddish margins, while Pantoea stewartii or mixtures of both species were isolated from necrotic streaks without reddish margins. Fourteen seed samples harvested in different locations were assayed and found to be 0.0 to 3.6% infested with P. ananas. Seed transmission may be a means by which the pathogen is introduced. Symptoms in inoculated plants appeared as early as 2 and as late as 20 days after inoculation, depending on the inoculum level, methods of inoculation, temperature, and available moisture. The initial symptoms caused by inoculations with both bacteria were similar, but as symptoms progressed, P. ananas was associated with white streaks or irregular necrotic blotches often surrounded by a reddish or purplish hue. P. stewartii was associated with light-colored necrotic streaks. A synergistic or antagonistic relationship was not observed between the two pathogens in co-inoculations. In host range studies, both bacteria caused disease on sorghum and sudangrass at similar levels of severity. P. ananas was also pathogenic on corn and oat. P. stewartii from sudangrass was pathogenic on corn but did not cause wilting that was observed with Stewart's wilt strains of P. stewartii from corn. The sudangrass strains of P. stewartii also infected oat and triticale, while the Stewart's wilt strains did not. Both P. ananas and P. stewartii from sudangrass grew at relatively high temperatures (43 and 37°C, respectively) and caused disease at elevated temperatures and conditions of relative humidity similar to those in the Imperial Valley during late summer when epidemics of the disease were common.
Collapse
Affiliation(s)
- H R Azad
- Research Associate, Department of Plant Pathology, University of California, Riverside 92521
| | - G J Holmes
- Extension Plant Pathologist, Department of Plant Pathology, North Carolina State University, Raleigh 27695
| | - D A Cooksey
- Professor, Department of Plant Pathology, University of California, Riverside 92521
| |
Collapse
|
23
|
Shih J, Wei Y, Goodwin PH. A comparison of the pectate lyase genes, pel-1 and pel-2, of Colletotrichum gloeosporioides f.sp. malvae and the relationship between their expression in culture and during necrotrophic infection. Gene 2000; 243:139-50. [PMID: 10675622 DOI: 10.1016/s0378-1119(99)00546-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extracellular pectic lyase and polygalacturonase activities of Colletotrichum gloeosporioides f.sp. malvae were detected in broths containing mallow cell wall extract, pectin or glucose as the carbon source. The initial pH of the broth as well as the carbon source had major influences on pectinase enzyme activities. In the host, only pectic lyase activity was detected, which began at the end of the biotrophic phase and increased in the necrotrophic phase of infection. Two full-length pectate lyase cDNAs, pel-1 and pel-2, were cloned from the fungus. Both genes showed similar patterns of expression when the fungus was grown in mallow cell-wall extract and pectin medium, and the only major difference in expression in culture was that only pel-2 was expressed in glucose broth. Expression of pel-1 and pel-2 was also affected by the initial pH of the medium. Expression of pel-2, but not pel-1, was detected during infection of the host, round-leaved mallow, Malva pusilla. Transcripts of pel-2 were first detectable during the necrotrophic phase of infection approx. 24h after the first detection of pectic lyase enzyme activity. A comparison of expression of pel-1 and pel-2 in culture and in planta with other pectinase genes of C. gloeosporioides f.sp. malvae, as well as with other plant pathogenic fungi, indicates that expression during necrotrophic infection correlates with the ability to be expressed in media containing glucose.
Collapse
Affiliation(s)
- J Shih
- Department of Environmental Biology, University of Guelph, Guelph, Canada
| | | | | |
Collapse
|
24
|
Characterization of an endopolygalacturonase produced by the apple scab fungus, Venturia inaequalis. ACTA ACUST UNITED AC 1998. [DOI: 10.1017/s0953756297005194] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Lietzke SE, Scavetta RD, Yoder MD, Jurnak F. The Refined Three-Dimensional Structure of Pectate Lyase E from Erwinia chrysanthemi at 2.2 A Resolution. PLANT PHYSIOLOGY 1996; 111:73-92. [PMID: 12226275 PMCID: PMC157814 DOI: 10.1104/pp.111.1.73] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The crystal structure of pectate lyase E (PelE; EC 4.2.2.2) from the enterobacteria Erwinia chrysanthemi has been refined by molecular dynamics techniques to a resolution of 2.2 A and an R factor (an agreement factor between observed structure factor amplitudes) of 16.1%. The final model consists of all 355 amino acids and 157 water molecules. The root-mean-square deviation from ideality is 0.009 A for bond lengths and 1.721[deg] for bond angles. The structure of PelE bound to a lanthanum ion, which inhibits the enzymatic activity, has also been refined and compared to the metal-free protein. In addition, the structures of pectate lyase C (PelC) in the presence and absence of a lutetium ion have been refined further using an improved algorithm for identifying waters and other solvent molecules. The two putative active site regions of PelE have been compared to those in the refined structure of PelC. The analysis of the atomic details of PelE and PelC in the presence and absence of lanthanide ions provides insight into the enzymatic mechanism of pectate lyases.
Collapse
Affiliation(s)
- S. E. Lietzke
- Department of Biochemistry, University of California, Riverside, California 92521
| | | | | | | |
Collapse
|
26
|
de Groot A, Krijger JJ, Filloux A, Tommassen J. Characterization of type II protein secretion (xcp) genes in the plant growth-stimulating Pseudomonas putida, strain WCS358. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:491-504. [PMID: 8602167 DOI: 10.1007/bf02174038] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In Pseudomonas aeruginosa, the products of the xcp genes are required for the secretion of exoproteins across the outer membrane. Despite structural conservation of the Xcp components, secretion of exoproteins via the Xcp pathway is generally not found in heterologous organisms. To study the specificity of this protein secretion pathway, the xcp genes of another fluorescent pseudomonad, the plant growth-promoting Pseudomonas putida strain WCS358, were cloned and characterized. Nucleotide sequence analysis revealed the presence of at least five genes, i.e., xcpP, Q, R, S, and T, with homology to xcp genes of P. aeruginosa. Unlike the genetic organization in P. aeruginosa, where the xcp cluster consists of two divergently transcribed operons, the xcp genes in P. putida are all oriented in the same direction, and probably comprise a single operon. Upstream of xcpP in P. putida, an additional open reading frame, with no homolog in P. aeruginosa, was identified, which possibly encodes a lipoprotein. Mutational inactivation of xcp genes in P. putida did not affect secretion, indicating that no proteins are secreted via the Xcp system under the growth conditions tested, and that an alternative secretion system is operative. To obtain some insight into the secretory pathway involved, the amino acid sequence of the N-terminus of the major extracellular protein was determined. The protein could be identified as flagellin. Mutations in the xcpQ and R genes of P. aeruginosa could not be complemented by introduction of the corresponding xcp genes of P. putida. However, expression of a hybrid XcpR protein, composed of the N-terminal one-third of P. aeruginosa XcpR and the C-terminal two-thirds of P. putida XcpR, did restore protein secretion in a P. aeruginosa xcpR mutant.
Collapse
Affiliation(s)
- A de Groot
- Department of Molecular Cell Biology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
27
|
Vroemen S, Heldens J, Boyd C, Henrissat B, Keen NT. Cloning and characterization of the bgxA gene from Erwinia chrysanthemi D1 which encodes a beta-glucosidase/xylosidase enzyme. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:465-77. [PMID: 7891660 DOI: 10.1007/bf00290450] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A beta-glucosidase/xylosidase gene from Erwinia chrysanthemi strain D1 was cloned and sequenced. This gene, named bgxA, encodes a ca. 71 kDa protein product which, following removal of the leader peptide, resulted in a ca. 69 kDa mature protein that accumulated in the periplasmic space of E. chrysanthemi strain D1 and Escherichia coli cells expressing the cloned gene. The protein exhibited both beta-glucosidase and beta-xylosidase activities but gave no detectable activity on xylan or carboxymethyl cellulose. The enzyme was classified as a type 3 glycosyl hydrolase, but was unusual in having a truncated B region at the carboxyl-terminus. Several E. chrysanthemi strains isolated from corn produced the glucosidase/xylosidase activity but not those isolated from dicot plants. However, bgxA marker exchange mutants of strain D1 were not detectably altered in virulence on corn leaves.
Collapse
Affiliation(s)
- S Vroemen
- Department of Plant Pathology, University of California, Riverside 92521
| | | | | | | | | |
Collapse
|
28
|
Magro P, Varvaro L, Chilosi G, Avanzo C, Balestra GM. Pectolytic enzymes produced byPseudomonas syringaepv.glycinea. FEMS Microbiol Lett 1994. [DOI: 10.1111/j.1574-6968.1994.tb06733.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
Collmer A, Bauer DW. Erwinia chrysanthemi and Pseudomonas syringae: plant pathogens trafficking in extracellular virulence proteins. Curr Top Microbiol Immunol 1994; 192:43-78. [PMID: 7859513 DOI: 10.1007/978-3-642-78624-2_3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A Collmer
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853-4203
| | | |
Collapse
|
30
|
Famurewa O, Oyede MA, Olutiola PO. Pectin transeliminase complex from Aspergillus flavus. Folia Microbiol (Praha) 1993; 38:459-66. [PMID: 8150394 DOI: 10.1007/bf02814396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aspergillus flavus grown in a liquid medium containing pectin as the sole carbon source produced extracellular enzymes which degraded the 1,4-alpha-D-glycosidic bonds of pectin. The products of degradation were characteristic of substances produced by transeliminase. Synthesis of this enzyme was repressed by the addition of sucrose, glucose, fructose and maltose. The crude enzyme was partially purified by a combination of ultrafiltration and ammonium sulfate precipitation. The partially purified enzyme was separated by molecular exclusion chromatography into three components A, B and C, with molar masses ranging from 13.2 to 64 kDa. Only fraction B exhibited enzymic activity and further fractionated by ion-exchange chromatography into four components I-IV. Among these components, only fractions I and II possessed transeliminase activity. Both fractions had an optimum activity at pH 8.5 and 35 degrees C, and were stimulated by Ca2+, Mg2+, Na+ and K+ but inhibited by EDTA and DNP. The apparent Km for the degradation of pectin by fractions I and II were 6.2 and 8.0 g/L, respectively.
Collapse
Affiliation(s)
- O Famurewa
- Department of Microbiology, Ondo State University, Ado-Ekiti, Nigeria
| | | | | |
Collapse
|
31
|
Saarilahti HT, Pirhonen M, Karlsson MB, Flego D, Palva ET. Expression of pehA-bla gene fusions in Erwinia carotovora subsp. carotovora and isolation of regulatory mutants affecting polygalacturonase production. MOLECULAR & GENERAL GENETICS : MGG 1992; 234:81-8. [PMID: 1495488 DOI: 10.1007/bf00272348] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In vitro gene fusions were constructed between the polygalacturonase-encoding pehA gene of the Erwinia carotovora subsp. carotovora (Ecc) strain SCC3193 and the bla gene of pBR322. The gene fusions obtained (75-2, 75-5 and 75-6) encoded hybrid proteins with the entire signal peptide and 70, 260 or 327 amino acids (aa) of the mature 376 aa PehA protein, respectively, fused to the mature part of the periplasmic beta-lactamase. All three hybrid proteins remained cell-bound in Ecc. High-level expression of the longer fusions 75-5 and 75-6 in Ecc led to reduced growth and viability of the cells. This phenotype was utilized to select for spontaneous extragenic mutations restoring normal cell growth. Two classes of regulatory mutants were obtained by this selection. First, mutants impaired in the production of several exoenzymes, including polygalacturonase, were found. These were phenotypically similar to the previously characterized Exp- mutants. Secondly, mutants specifically impaired in the production of polygalacturonase (designated PehR-), but producing and secreting wild-type levels of pectate lyase and cellulase, were obtained. The PehR- mutations were shown to affect transcriptional activation of the pehA gene. Furthermore, the PehR- as well as PehA- mutants exhibited a reduced virulence phenotype suggesting that polygalacturonase is a virulence factor in Ecc.
Collapse
Affiliation(s)
- H T Saarilahti
- Department of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala
| | | | | | | | | |
Collapse
|
32
|
Liao CH. Cloning of pectate lyase gene pel from Pseudomonas fluorescens and detection of sequences homologous to pel in Pseudomonas viridiflava and Pseudomonas putida. J Bacteriol 1991; 173:4386-93. [PMID: 1906062 PMCID: PMC208100 DOI: 10.1128/jb.173.14.4386-4393.1991] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pectate lyase (PL) depolymerizes pectin and other polygalacturonates (PGAs) and is thought to play a role in bacterial invasion of plants. Production of PL by the soft-rotting pathogen Pseudomonas fluorescens CY091 is regulated by Ca2+. In the presence of Ca2+, this bacterium constitutively synthesizes PL in media containing glucose, glycerol, or PGA and excretes over 87% of total PL into culture fluids. In the absence of Ca2+, the organism fails to use PGA as a carbon source and produces very low levels of PL in media containing glucose or glycerol. Of the small amount of PL produced by the bacterium in Ca(2+)-deficient media, over 78% was detected within the cells, indicating that Ca2+ is critical not only for the production but also for the secretion of PL. The pel gene, encoding an alkaline PL (pI 10.0, Mr 41,000) was cloned and located on the overlapping region of a 4.3-kb SalI and a 7.1-kb EcoRI fragment. The 7.1-kb EcoRI fragment appears to contain a promoter for pel gene expression. A 1.7-kb SalI-XhoI subfragment of the 4.3-kb SalI fragment was cloned into pUC18 to give pROTM2. Escherichia coli cells carrying pROTM2 produce 50 to 100 times more PL than do cells carrying other pectolytic constructs. Production of PL by E. coli (pROTM2) was not affected by carbon sources or by Ca2+. The pI and Mr of PL from E. coli corresponded to values for its counterpart from P. fluorescens. A 0.7-kb BglII-ClaI fragment encoding the pel structural sequence was used to detect pel homologs in various species of fluorescent pseudomonads. Homologous sequences were observed in 10 of 11 strains of P. fluorescens, P. viridiflava, and P. putida. The pel gene in fluorescent pseudomonads is well conserved and may exist and remain repressed in certain strains or species which exhibit nonpectolytic phenotypes under laboratory conditions.
Collapse
Affiliation(s)
- C H Liao
- Eastern Regional Research Center, U.S. Department of Agriculture, Philadelphia, Pennsylvania 19118
| |
Collapse
|
33
|
Ladjama A, Chardon-Loriaux I, Foglietti MJ. On the pectolytic activity of twoStreptomycesstrains. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04542.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
34
|
Fukuoka S, Kamishima H, Sode K, Karube I. Facile isolation of endo-pectate lyase from Erwinia carotovora based on electrostatic interaction. Appl Biochem Biotechnol 1990; 26:239-48. [PMID: 2091529 DOI: 10.1007/bf02921505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endo-pectate lyase (PATE) from Erwinia carotovora was selectively cosedimented with extracellularly produced lipopolysaccharide-lipid complex (LPSLC) through dialysis of the cell free culture broth. The selective isolation of PATE was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The cosedimentation of the PATE with LPSLC was initiated by decreasing conductivity of the solution and terminated at approx 1 m siemens (mScm-1). As much as 62% of PATE activity in the culture broth was removed by precipitation. PATE was isolated from the precipitate by gel chromatography. The cosedimentation of PATE with LPSLC was remarkably affected by pH or ionic strength. The addition of polycationic peptide polymyxin B sulfate or a metal chloride affected the interaction. The cosedimentation was diminished by acetylation of the free amino groups of PATE. From these results, it was confirmed that the cosedimentation was induced by electrostatic interaction.
Collapse
Affiliation(s)
- S Fukuoka
- Government Industrial Research Institute, Takamatsu, Japan
| | | | | | | |
Collapse
|
35
|
He SY, Collmer A. Molecular cloning, nucleotide sequence, and marker exchange mutagenesis of the exo-poly-alpha-D-galacturonosidase-encoding pehX gene of Erwinia chrysanthemi EC16. J Bacteriol 1990; 172:4988-95. [PMID: 2168372 PMCID: PMC213154 DOI: 10.1128/jb.172.9.4988-4995.1990] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The pehX gene encoding extracellular exo-poly-alpha-D-galacturonosidase (exoPG; EC 3.2.1.82) was isolated from a genomic library of the pectate lyase-deficient Erwinia chrysanthemi mutant UM1005 (a Nalr Kanr delta pelABCE derivative of EC16) by immunoscreening 2,800 Escherichia coli HB101 transformants with an antibody against exoPG protein. The cloned pehX gene was expressed highly from its own promoter in E. coli, and most of the enzyme was localized in the periplasm. The nucleotide sequence of pehX revealed the presence of an amino-terminal signal peptide and an open reading frame encoding a preprotein of 64,608 daltons. The cloned pehX gene was insertionally inactivated with TnphoA and used to mutate the chromosomal pehX gene of E. chrysanthemi AC4150 (Nalr) and CUCPB5006 (Nalr Kans delta pelABCE) by marker exchange mutagenesis. Analysis of the resulting mutants, CUCPB5008 (Pel+ Peh-) and CUCPB5009 (Pel- Peh-), indicated that exoPG can contribute significantly to bacterial utilization of polygalacturonate and the induction of pectate lyase in the presence of extracellular pectic polymers. CUCPB5009 retained a slight ability to pit polygalacturonate semisolid agar and macerated chrysanthemum pith tissues when large numbers of bacteria were inoculated.
Collapse
Affiliation(s)
- S Y He
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
36
|
Liao CH. Analysis of pectate lyases produced by soft rot bacteria associated with spoilage of vegetables. Appl Environ Microbiol 1989; 55:1677-83. [PMID: 2764574 PMCID: PMC202934 DOI: 10.1128/aem.55.7.1677-1683.1989] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Isoelectric focusing (IEF) profiles of pectate lyases (PLs) produced by five different groups of soft rot bacteria were analyzed by using the combined techniques of thin-layer polyacrylamide gel IEF and agarose-pectate overlay activity staining. Four strains of soft rot Erwinia spp. produced three or more PL isozymes. All of eight Pseudomonas viridiflava strains examined produced one single PL with a pI of 9.7. All 10 of Pseudomonas fluorescens strains produced two PLs; the major one had a pI of 10.0 and the minor one had a pI of 6.7. A single PL with a pI of greater than or equal to 10.0 was detected in one strain each of Xanthomonas campestris and Cytophaga johnsonae. PLs of six representative strains were purified from culture supernatants by ammonium sulfate precipitation and anion-exchange chromatography. All purified PL samples macerated potato slices, but to different degrees. The Mrs of alkaline PLs produced by P. viridiflava, P. fluorescens, X. campestris, and C. johnsonae were estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 42,000, 41,000, 41,500, and 35,000, respectively. IEF profiles of PLs were distinct among the bacterial species. Profiles of non-Erwinia spoilage bacteria were considerably simpler than those of Erwinia spp. The PL with an alkaline pI appeared to be the principal or the sole enzymatic factor involved in tissue maceration caused by most strains of soft rot bacteria.
Collapse
Affiliation(s)
- C H Liao
- Eastern Regional Research Center, U.S. Department of Agriculture, Philadelphia, Pennsylvania 19118
| |
Collapse
|
37
|
Röber KC. Untersuchungen zur Dynamik der Polyphenol-und Phytoalexinsynthese fäuleinfizierter Kartoffelknollen. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/s0015-3796(89)80013-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Kobayashi Y, Komae K, Tanabe H, Matsuo R. Approach to maceration mechanism in enzymatic pulping of bast fibers by alkalophilic pectionlytic enzymes produced by Erwinia species. Biotechnol Adv 1988; 6:29-37. [PMID: 14543440 DOI: 10.1016/0734-9750(88)90572-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tissue maceration was generally elucidated by the action of endo-polygalacturonase and endo-pectate or -pectin lyase (endo-PAL or -PNL). In a process of screening of Erwinia and Pseudomonas strains for enzymatic pulping of pectocellulosic bast fibers, it was found that their PAL productivity was not completely related with defibration activity, i.e., the fact that an E.chrysanthemi strain showed high PAL productivity but possessed rather low defibration activity. Moreover, defibration activity was parallel to the amount of neutral sugars released during pulping. Based on these fact, the maceration or enzymatic pulping of basts was estimated to proceed not only by cleavage of interfiber bonding cause by PAL action but also another factors. Among three possibilities proposed on the maceration mechanism of basts, it was elucidated by a concerted action of PAL and PNL with an aid of xylanase. In addition, a quantitative determinative method of maceration activity toward basts was also presented.
Collapse
Affiliation(s)
- Y Kobayashi
- Government Industrial Research Institute, Shikoku, 2-3-3, Hananomiya-chô, Takamatsu 761, Japan
| | | | | | | |
Collapse
|
39
|
Stutzenberger FJ. Inducible thermoalkalophilic polygalacturonate lyase from Thermomonospora fusca. J Bacteriol 1987; 169:2774-80. [PMID: 3584069 PMCID: PMC212184 DOI: 10.1128/jb.169.6.2774-2780.1987] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A thermostable polygalacturonate lyase (PL; EC 4.2.2.2) was secreted by Thermomonospora fusca during stationary phase in pectin-mineral salts medium at 52 degrees C. Biosynthesis was induced by addition of pectic substances to cultures growing on glucose or cellulose but not cellobiose; the disaccharide repressed enzyme synthesis and triggered inactivation of enzyme previously secreted. The PL, purified to electrophoretic and serologic homogeneity, had a molecular size of 56 kilodaltons and an isoelectric point at pH 4.16. The amino acid composition closely resembled that of the major extracellular endoglucanases of the actinomycete. The enzyme had six cystine residues but no detectable sulfhydryl groups. It was inactivated by mild reducing agents and activated by oxygenation, indicating the necessity for disulfide bond maintenance. Temperature and pH optima for the PL reaction were 60 degrees C and 10.45, respectively. Calcium was essential for activity but not stability; calcium dependence curves were altered by low concentrations of toxic metals. The Km for pectin increased 30,000-fold as the percent esterification (methoxylation) of that substrate was increased from 0 to 60%. The size of the minimal susceptible site for PL attack on the pectin molecule was calculated as being equivalent to 10 unesterified residues, based on the correlation of Km values at various degrees of esterification with the percentage of cleavable bonds predicted by a random-number-generating computer program.
Collapse
|
40
|
Ried JL, Collmer A. An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in gram-negative bacteria by marker exchange-eviction mutagenesis. Gene 1987; 57:239-46. [PMID: 3319780 DOI: 10.1016/0378-1119(87)90127-2] [Citation(s) in RCA: 281] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A technique for marker exchange-eviction mutagenesis that enables the construction of directed, unmarked mutations in Gram-negative bacteria was demonstrated in Erwinia chrysanthemi. The technique employs an nptI-sacB-sacR cartridge that is carried on a 3.8-kb BamHI fragment and confers kanamycin (Km) resistance and sucrose sensitivity (due to the production of levansucrase by sacB) in E. chrysanthemi. The cartridge was inserted into a Sau3A site in a cloned E. chrysanthemi pelC gene (encoding pectate lyase isozyme PLc) and then introduced into the Erwinia genome by gene exchange recombination. The resulting mutant was KmR, sucrose-sensitive, and PLc-deficient. The cartridge was then excised from the plasmid-borne pelC gene by PstI cleavage to leave a 28-bp frame-shifting insertion. The pelC allele containing the 28-bp insertion was exchanged for the chromosomal allele containing the nptI-sacB-sacR cartridge by selection for sucrose tolerance. The resulting E. chrysanthemi mutant was Kms and PLc-deficient. The technique permits the construction of complex strains with many directed mutations without the introduction of a corresponding number of antibiotic resistance markers and should prove useful, for example, in exploring the role of the multiple pel genes in E. chrysanthemi.
Collapse
Affiliation(s)
- J L Ried
- Department of Botany, University of Maryland, College Park 20742
| | | |
Collapse
|
41
|
Ried JL, Collmer A. Comparison of pectic enzymes produced by Erwinia chrysanthemi, Erwinia carotovora subsp. carotovora, and Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 1986; 52:305-10. [PMID: 3752996 PMCID: PMC203520 DOI: 10.1128/aem.52.2.305-310.1986] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Erwinia spp. that cause soft-rot diseases in plants produce a variety of extracellular pectic enzymes. To assess the correlation between patterns of pectic enzyme production and taxonomic classification, we compared the enzymes from representative strains. Supernatants obtained from polygalacturonate-grown cultures of nine strains of Erwinia chrysanthemi, three strains of E. carotovora subsp. carotovora, and three strains of E. carotovora subsp. atroseptica were concentrated and subjected to ultrathin-layer polyacrylamide gel isoelectric focusing. Pectate lyase, polygalacturonase, and exo-poly-alpha-D-galacturonosidase activities were visualized by staining diagnostically buffered pectate-agarose overlays with ruthenium red after incubation of the overlays with the isoelectric focusing gels. The isoelectric focusing profiles of pectate lyase and polygalacturonase were nearly identical for strains of E. carotovora subsp. carotovora and E. carotovora subsp. atroseptica, showing three pectate lyase isozymes with isoelectric points higher than 8.7 and a polygalacturonase with pI of ca. 10.2. Isoelectric focusing profiles of the E. chrysanthemi pectic enzymes were substantially different. Although there was considerable intraspecific heterogeneity, all strains produced at least four isozymes of pectate lyase, which could be divided into three groups: basic (pI, ca. 9.0 to 10.0), slightly basic (pI, ca. 7.0 to 8.5), and acidic (pI, ca. 4.0 to 5.0). Several strains of E. chrysanthemi also produced a single form of exo-poly-alpha-D-galacturonosidase (pI, ca. 8.0).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
42
|
Abstract
Polysaccharide lyases (or eliminases) are a class of enzymes (EC 4.2.2.-) that act to cleave certain activated glycosidic linkages present in acidic polysaccharides. These enzymes act through an eliminase mechanism, rather than through hydrolysis, resulting in unsaturated oligosaccharide products. Acidic polysaccharides are ubiquitous and so are the lyases that degrade them. This review article examines lyases that act on acidic polysaccharides of plant, animal, and microbial origin. These lyases are predominantly of microbial origin and come from a wide variety of both pathogenic and nonpathogenic bacteria and fungi. The lyases discussed include alginate lyase (EC 4.2.2.3), pectin lyase (EC 4.2.2.10), pectate lyase (EC 4.2.2.2), oligogalacturonide lyase (EC 4.2.2.6), exopolygalacturonate lyase (EC 4.2.2.9), chondroitin lyases (EC 4.2.2.4 and EC 4.2.2.5), hyaluronate lyase (EC 4.2.2.1), heparin lyase (EC 4.2.2.7), heparan lyase (EC 4.2.2.8), and other unclassified lyases. This review examines the sources, regulation, purification, and properties of these polysaccharide lyases.
Collapse
|
43
|
Roeder DL, Collmer A. Marker-exchange mutagenesis of a pectate lyase isozyme gene in Erwinia chrysanthemi. J Bacteriol 1985; 164:51-6. [PMID: 2995324 PMCID: PMC214209 DOI: 10.1128/jb.164.1.51-56.1985] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The phytopathogenic enterobacterium Erwinia chrysanthemi contains pel genes encoding several different isozymes of the plant-tissue-disintegrating enzyme pectate lyase (PL). The pelC gene, encoding an isozyme with an approximate isoelectric point of 8.0, was mutagenized by a three-step procedure involving (i) insertional inactivation of the cloned gene by ligation of a kan-containing BamHI fragment from pUC4K with a partial Sau3A digest of E. chrysanthemi pelC DNA in pBR322; (ii) mobilization of the pBR322 derivative from Escherichia coli to E. chrysanthemi by the helper plasmids R64drd11 and pLVC9; and (iii) exchange recombination of the pelC::kan mutation into the E. chrysanthemi chromosome by selection for kanamycin resistance in transconjugants cultured in phosphate-limited medium (which renders pBR322 unstable). The resulting E. chrysanthemi mutant was Kanr Amps, lacked pBR322 sequences, and was deficient in only one of the four major PL isozymes, PLc, as determined by activity-stained isoelectric-focusing polyacrylamide gels. The rates of PL induction and cell growth in a medium containing polygalacturonic acid as the sole carbon source were not significantly reduced in the mutant. No difference was detected in the ability of the mutant to macerate potato tuber tissue. The evidence suggests that this isozyme is not necessary for soft-rot pathogenesis.
Collapse
|
44
|
Molecular cloning in Escherichia coli of Erwinia chrysanthemi genes encoding multiple forms of pectate lyase. J Bacteriol 1985; 161:913-20. [PMID: 2982794 PMCID: PMC214984 DOI: 10.1128/jb.161.3.913-920.1985] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The phytopathogenic enterobacterium Erwinia chrysanthemi excretes multiple isozymes of the plant tissue-disintegrating enzyme, pectate lyase (PL). Genes encoding PL were cloned from E. chrysanthemi CUCPB 1237 into Escherichia coli HB101 by inserting Sau3A-generated DNA fragments into the BamHI site of pBR322 and then screening recombinant transformants for the ability to sink into pectate semisolid agar. Restriction mapping of the cloned DNA in eight pectolytic transformants revealed overlapping portions of a 9.8-kilobase region of the E. chrysanthemi genome. Deletion derivatives of these plasmids were used to localize the pectolytic genotype to a 2.5-kilobase region of the cloned DNA. PL gene expression in E. coli was independent of vector promoters, repressed by glucose, and not induced by galacturonan. PL accumulated largely in the periplasmic space of E. coli. An activity stain used in conjunction with ultrathin-layer isoelectric focusing resolved the PL in E. chrysanthemi culture supernatants and shock fluids of E. coli clones into multiple forms. One isozyme with an apparent pI of 7.8 was produced at a far higher level in E. coli and was common to all of the pectolytic clones. Activity staining of renatured PL in sodium dodecyl sulfate-polyacrylamide gels revealed that this isozyme comigrated with the corresponding isozyme produced by E. chrysanthemi. The PL isozyme profiles produced by different clones and deletion derivative subclones suggest that the cloned region contains at least two PL isozyme structural genes. Pectolytic E. coli clones possessed a limited ability to macerate potato tuber tissues.
Collapse
|
45
|
Lei SP, Lin HC, Heffernan L, Wilcox G. Cloning of the pectate lyase genes from Erwinia carotovora and their expression in Escherichia coli. Gene 1985; 35:63-70. [PMID: 3896936 DOI: 10.1016/0378-1119(85)90158-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A hybrid cosmid coding for pectate lyase (PL) activity was identified from an Erwinia carotovora genomic library by an immunological screening method. A 7-kb DNA fragment was identified which codes for three proteins identical in size to proteins with PL activity purified from E. carotovora culture supernatants. The three proteins had apparent Mrs of 41, 44 and 44 X 10(3) as estimated by SDS-PAGE. None of the PLs were exported from Escherichia coli strain HB101 but all were found in the periplasmic space. Plant tissue was macerated by the PLs made in E. coli.
Collapse
|
46
|
Keen NT, Dahlbeck D, Staskawicz B, Belser W. Molecular cloning of pectate lyase genes from Erwinia chrysanthemi and their expression in Escherichia coli. J Bacteriol 1984; 159:825-31. [PMID: 6090392 PMCID: PMC215732 DOI: 10.1128/jb.159.3.825-831.1984] [Citation(s) in RCA: 140] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A genomic library of Erwinia chrysanthemi EC16 was constructed in plasmid pHC79, and seven putative pectate lyase (PL) clones in Escherichia coli were selected on pectate agar. Six of the recombinant cosmids contained a common PstI fragment of ca. 8.2 kilobases (kb). Subcloning of this fragment in either orientation into the PstI site of plasmid pBR329 resulted in E. coli transformants that produced a PL of pI 9.8 which was indistinguishable from one of two PLs produced by strain EC16. A 6.6-kilobase PstI fragment from the remaining cosmid clone caused production of an Erwinia PL of pI 8.8 when the fragment was subcloned in either orientation into plasmid pBR329 and transformed into E. coli. Selected pBR329 subclones for the 8.2- and 6.6-kilobase PstI fragments showed no similarity in their restriction maps and did not cross-hybridize. All of the E. coli cosmid clones that produced large amounts of PL also caused soft-rot of potato tubers and tuber slices, thus confirming the role of the enzymes in plant tissue maceration. The E. coli cosmid clones and plasmid pBR329 subclones produced the PLs constitutively, unlike Erwinia chrysanthemi, which made the enzymes inducibly. However, catabolite repression appeared to function in the E. coli clones, and almost all of the PL activity occurred in the periplasm and culture fluids. Thus, the Erwinia PL clones appear to contain signal peptide sequences, transcription and translation signals, and a recognition sequence for the catabolite activator protein, all of which function efficiently in E. coli.
Collapse
|
47
|
Regulation of extracellular pectate lyase in Erwinia chrysanthemi: evidence that reaction products of pectate lyase and exo-poly-α-d-galacturonosidase mediate induction on d-galacturonan. ACTA ACUST UNITED AC 1982. [DOI: 10.1016/0048-4059(82)90032-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Collmer A, Whalen CH, Beer SV, Bateman DF. An exo-poly-alpha-D-galacturonosidase implicated in the regulation of extracellular pectate lyase production in Erwinia chrysanthemi. J Bacteriol 1982; 149:626-34. [PMID: 7056698 PMCID: PMC216551 DOI: 10.1128/jb.149.2.626-634.1982] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pectic enzymes in the supernatants of Erwinia chrysanthemi cultures in late-logarithmic-phase growth on D-galacturonan were resolved into three components: two pectate lyase isozymes and an exo-poly-alpha-D-galacturonosidase previously unreported in this organism. The hydrolytic enzyme was purified to homogeneity by ammonium sulfate fractionation, preparative electrofocusing in Ultrodex gel, and gel filtration through Ultrogel AcA54. The enzyme had a specific activity of 591 mumol/min per mg of protein, a pI of 8.3, a molecular weight of 67,000, a pH optimum of 6.0, and a Km of 0.05 mM for D-galacturonan. Analyses of reaction mixtures by paper chromatography revealed that the enzyme released only digalacturonic acid from D-galacturonan. The action of the hydrolytic enzyme on D-galacturonan labeled at the nonreducing end by partial digestion with pectate lyase revealed that it rapidly released 4,5-unsaturated digalacturonic acid from 4,5-unsaturated pectic polymers. The production of extracellular exo-poly-alpha-D-galacturonosidase was coordinately regulated with pectate lyase production. The action patterns of the two enzymes appeared complementary in the degradation of pectic polymers to disaccharides that stimulated pectic enzyme production and supported bacterial growth.
Collapse
|
49
|
|
50
|
Wong W, Preece T. Erwinia salicis in cricket bat willows: peroxidase, polyphenoloxidase, β-glucosidase, pectinolytic and cellulolytic enzyme activity in diseased wood. ACTA ACUST UNITED AC 1978. [DOI: 10.1016/0048-4059(78)90008-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|