1
|
Dhingra S, Zhang Z, Lohans CT, Brewitz L, Schofield CJ. Substitution of 2-oxoglutarate alters reaction outcomes of the Pseudomonas savastanoi ethylene-forming enzyme. J Biol Chem 2024; 300:107546. [PMID: 38992435 PMCID: PMC11345546 DOI: 10.1016/j.jbc.2024.107546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
In seeding plants, biosynthesis of the phytohormone ethylene, which regulates processes including fruit ripening and senescence, is catalyzed by 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase. The plant pathogen Pseudomonas savastanoi (previously classified as: Pseudomonas syringae) employs a different type of ethylene-forming enzyme (psEFE), though from the same structural superfamily as ACC oxidase, to catalyze ethylene formation from 2-oxoglutarate (2OG) in an arginine dependent manner. psEFE also catalyzes the more typical oxidation of arginine to give L-Δ1-pyrroline-5-carboxylate (P5C), a reaction coupled to oxidative decarboxylation of 2OG giving succinate and CO2. We report on the effects of C3 and/or C4 substituted 2OG derivatives on the reaction modes of psEFE. 1H NMR assays, including using the pure shift method, reveal that, within our limits of detection, none of the tested 2OG derivatives is converted to an alkene; some are converted to the corresponding β-hydroxypropionate or succinate derivatives, with only the latter being coupled to arginine oxidation. The NMR results reveal that the nature of 2OG derivatization can affect the outcome of the bifurcating reaction, with some 2OG derivatives exclusively favoring the arginine oxidation pathway. Given that some of the tested 2OG derivatives are natural products, the results are of potential biological relevance. There are also opportunities for therapeutic or biocatalytic regulation of the outcomes of reactions catalyzed by 2OG-dependent oxygenases by the use of 2OG derivatives.
Collapse
Affiliation(s)
- Siddhant Dhingra
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Zhihong Zhang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Christopher T Lohans
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Lubbers RJM, Dilokpimol A, Visser J, Mäkelä MR, Hildén KS, de Vries RP. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnol Adv 2019; 37:107396. [PMID: 31075306 DOI: 10.1016/j.biotechadv.2019.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.
Collapse
Affiliation(s)
- Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Kristiina S Hildén
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| |
Collapse
|
3
|
|
4
|
Baker P, Carere J, Seah SYK. Probing the Molecular Basis of Substrate Specificity, Stereospecificity, and Catalysis in the Class II Pyruvate Aldolase, BphI. Biochemistry 2011; 50:3559-69. [DOI: 10.1021/bi101947g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Perrin Baker
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jason Carere
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephen Y. K. Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Wang W, Mazurkewich S, Kimber MS, Seah SYK. Structural and kinetic characterization of 4-hydroxy-4-methyl-2-oxoglutarate/4-carboxy-4-hydroxy-2-oxoadipate aldolase, a protocatechuate degradation enzyme evolutionarily convergent with the HpaI and DmpG pyruvate aldolases. J Biol Chem 2010; 285:36608-15. [PMID: 20843800 PMCID: PMC2978589 DOI: 10.1074/jbc.m110.159509] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/03/2010] [Indexed: 11/06/2022] Open
Abstract
4-Hydroxy-4-methyl-2-oxoglutarate/4-carboxy-4-hydroxy-2-oxoadipate (HMG/CHA) aldolase from Pseudomonas putida F1 catalyzes the last step of the bacterial protocatechuate 4,5-cleavage pathway. The preferred substrates of the enzyme are 2-keto-4-hydroxy acids with a 4-carboxylate substitution. The enzyme also exhibits oxaloacetate decarboxylation and pyruvate α-proton exchange activity. Sodium oxalate is a competitive inhibitor of the aldolase reaction. The pH dependence of k(cat)/K(m) and k(cat) for the enzyme is consistent with a single deprotonation with pK(a) values of 8.0 ± 0.1 and 7.0 ± 0.1 for free enzyme and enzyme substrate complex, respectively. The 1.8 Å x-ray structure shows a four-layered α-β-β-α sandwich structure with the active site at the interface of two adjacent subunits of a hexamer; this fold resembles the RNase E inhibitor, RraA, but is novel for an aldolase. The catalytic site contains a magnesium ion ligated by Asp-124 as well as three water molecules bound by Asp-102 and Glu-199'. A pyruvate molecule binds the magnesium ion through both carboxylate and keto oxygen atoms, completing the octahedral geometry. The carbonyl oxygen also forms hydrogen bonds with the guanadinium group of Arg-123, which site-directed mutagenesis confirms is essential for catalysis. A mechanism for HMG/CHA aldolase is proposed on the basis of the structure, kinetics, and previously established features of other aldolase mechanisms.
Collapse
Affiliation(s)
- Weijun Wang
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Scott Mazurkewich
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Matthew S. Kimber
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Stephen Y. K. Seah
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
6
|
Mulla SI, Manjunatha TP, Hoskeri RS, Tallur PN, Ninnekar HZ. Biodegradation of 3-Nitrobenzoate by Bacillus flexus strain XJU-4. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0611-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Liang DW, Zhang T, Fang HHP, He J. Phthalates biodegradation in the environment. Appl Microbiol Biotechnol 2008; 80:183-98. [DOI: 10.1007/s00253-008-1548-5] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 05/18/2008] [Accepted: 05/19/2008] [Indexed: 11/24/2022]
|
8
|
Providenti MA, Mampel J, MacSween S, Cook AM, Wyndham RC. Comamonas testosteroni BR6020 possesses a single genetic locus for extradiol cleavage of protocatechuate. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2157-2167. [PMID: 11495993 DOI: 10.1099/00221287-147-8-2157] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A key intermediate for biodegradation of various distinct aromatic growth substrates in Comamonas testosteroni is protocatechuate (Pca), which is metabolized by the 4,5-extradiol (meta) ring fission pathway. A locus harbouring genes from C. testosteroni BR6020 was cloned, dubbed pmd, which encodes the enzymes that degrade Pca. The identity of pmdAB, encoding respectively the alpha- and beta-subunit of the Pca ring-cleavage enzyme, was confirmed by N-terminal sequencing and molecular mass determination of both subunits from the separated enzyme. Disruption of pmdA resulted in a strain unable to grow on Pca and a variety of aromatic substrates funnelled through this compound (m- and p-hydroxybenzoate, p-sulfobenzoate, phthalate, isophthalate, terephthalate, vanillate, isovanillate and veratrate). Growth on benzoate and o-aminobenzoate (anthranilate) was not affected in this strain, indicating that these substrates are metabolized via a different lower pathway. Tentative functions for the products of other pmd genes were assigned based on sequence identity and/or similarity to proteins from other proteobacteria involved in uptake or metabolism of aromatic compounds. This study provides evidence for a single lower pathway in C. testosteroni for metabolism of Pca, which is generated by different upper pathways acting on a variety of aromatic substrates.
Collapse
Affiliation(s)
- Miguel A Providenti
- Faculty of Biology, The University, D-78457, Konstanz, Germany2
- Institute of Biology, College of Natural Sciences, Carleton University, Ottawa, Ontario, CanadaK1S 5B61
| | - Jörg Mampel
- Faculty of Biology, The University, D-78457, Konstanz, Germany2
| | - Scott MacSween
- Institute of Biology, College of Natural Sciences, Carleton University, Ottawa, Ontario, CanadaK1S 5B61
| | - Alasdair M Cook
- Faculty of Biology, The University, D-78457, Konstanz, Germany2
| | - R Campbell Wyndham
- Institute of Biology, College of Natural Sciences, Carleton University, Ottawa, Ontario, CanadaK1S 5B61
| |
Collapse
|
9
|
Abstract
Several 2-substituted benzoates (including 2-trifluoromethyl-, 2-chloro-, 2-bromo-, 2-iodo-, 2-nitro-, 2-methoxy-, and 2-acetyl-benzoates) were converted by phthalate-grown Arthrobacter keyseri (formerly Micrococcus sp.) 12B to the corresponding 2-substituted 3,4-dihydroxybenzoates (protocatechuates). Because these products lack a carboxyl group at the 2 position, they were not substrates for the next enzyme of the phthalate catabolic pathway, 3,4-dihydroxyphthalate 2-decarboxylase, and accumulated. When these incubations were carried out in iron-containing minimal medium, the products formed colored chelates. This chromogenic response was subsequently used to identify recombinant Escherichia coli strains carrying genes encoding the responsible enzymes, phthalate 3,4-dioxygenase and 3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase, from the 130-kbp plasmid pRE1 of strain 12B. Beginning with the initially cloned 8.14-kbp PstI fragment of pRE824 as a probe to identify recombinant plasmids carrying overlapping fragments, a DNA segment of 33.5 kbp was cloned from pRE1 on several plasmids and mapped using restriction endonucleases. From these plasmids, the sequence of 26,274 contiguous bp was determined. Sequenced DNA included several genetic units: tnpR, pcm operon, ptr genes, pehA, norA fragment, and pht operon, encoding a transposon resolvase, catabolism of protocatechuate (3,4-dihydroxybenzoate), a putative ATP-binding cassette transporter, a possible phthalate ester hydrolase, a fragment of a norfloxacin resistance-like transporter, and the conversion of phthalate to protocatechuate, respectively. Activities of the eight enzymes involved in the catabolism of phthalate through protocatechuate to pyruvate and oxaloacetate were demonstrated in cells or cell extracts of recombinant E. coli strains.
Collapse
Affiliation(s)
- R W Eaton
- Gulf Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561, USA.
| |
Collapse
|
10
|
Roper DI, Stringfellow JM, Cooper RA. Sequence of the hpcC and hpcG genes of the meta-fission homoprotocatechuic acid pathway of Escherichia coli C: nearly 40% amino-acid identity with the analogous enzymes of the catechol pathway. Gene 1995; 156:47-51. [PMID: 7737515 DOI: 10.1016/0378-1119(95)00082-h] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The meta-fission pathway for homoprotocatechuic acid (HPC) catabolism is chemically analogous to the oxidative meta-fission pathway for catechol degradation and so provides an opportunity to investigate how the enzymes of chemically similar, but specific, pathways might have arisen. Two more genes of the HPC pathway from Escherichia coli C, hpcC, encoding 5-carboxymethyl-2-hydroxymuconic acid semialdehyde (CHMS) dehydrogenase, and hpcG, encoding 2-oxohept-3-ene-1,7-dioic acid (OHED) hydratase, have now been sequenced to aid this analysis. The CHMS dehydrogenase showed 40% amino acid (aa) sequence identity with the corresponding enzyme of the catechol pathway, and the OHED hydratase showed 36% aa sequence identity with the catechol pathway hydratase. The CHMS dehydrogenase is a member of the aldehyde dehydrogenase superfamily that includes enzymes from animal, plant and microbial sources. Since it appears that the dioxygenase, isomerase and decarboxylase enzymes of the two pathways are not closely related, it is proposed that the two sets of enzymes have arisen separately, but with the muconic acid semialdehyde dehydrogenases and the hydratases being recruited, respectively, from the same ancestral sources.
Collapse
Affiliation(s)
- D I Roper
- Department of Biochemistry, University of Leicester, UK
| | | | | |
Collapse
|
11
|
Maruyama K. Purification and properties of gamma-oxalomesaconate hydratase from Pseudomonas ochraceae grown with phthalate. Biochem Biophys Res Commun 1985; 128:271-7. [PMID: 3985968 DOI: 10.1016/0006-291x(85)91674-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pseudomonas ochraceae produced inducibly a hydro-lyase which catalyzes the reversible conversion of gamma-oxalomesaconate into (-)-gamma-oxalocitramalate. The enzyme has been purified to homogeneity from the bacteria grown with phthalate. The enzyme was a dimeric protein (pI=4.9) with a Mr of 68,000 and showed a high specificity for gamma-oxalomesaconate (Km=14 microM) and (-)-gamma-oxalocitramalate (Km=6.4 microM). Equilibrium constant for the hydration of gamma-oxalomesaconate at pH 8.0 and 24 degrees C was 2.5. Various thiols activated the enzyme.
Collapse
|
12
|
Abstract
Micrococcus sp. strain 12B was isolated by enriching for growth with dibutylphthalate as the sole carbon and energy source. A pathway for the metabolism of dibutylphthalate and phthalate by micrococcus sp. strain 12B is proposed: dibutylphthalate leads to monobutylphthalate leads to phthalate leads to 3,4-dihydro-3,4-dihydroxyphthalate leads to 3,4-dihydroxyphthalate leads to protocatechuate (3,4-dihdroxybenzoate). Protocatechuate is metabolized both by the meta-cleavage pathway through 4-carboxy-2-hydroxymuconic semialdehyde and 4-carboxy-2-hydroxymuconate to pyruvate and oxaloacetate and by the ortho-cleavage pathway to beta-ketoadipate. Dibutylphthalate- and phthalate-grown cells readily oxidized dibutylphthalate, phthalate, 3,4-dihydroxyphthalate, and protocatechuate. Extracts of cells grown with dibutylphthalate or phthalate contained the 3,4-dihydroxyphthalate decarboxylase and the enzymes of the protocatechuater 4,5-meta-cleavage pathway. Extracts of dibutylphthalate-grown cells also contained the protocatechuate ortho-cleavage pathway enzymes. The dibutylphthalate-hydrolyzing esterase and 3,4-dihydroxyphthalate decarboxylase were constitutively synthesized; phthalate-3,4-dioxygenase (and possibly the "dihydrodiol" dehydrogenase) was inducible by phthalate or a metabolite occurring before protocatechuate in the pathway; two protocatechuate oxygenases and subsequent enzymes were inducible by protocatechuate or a subsequent metabolic product. During growth at 37 degrees C, strain 12B gave clones at high frequency that had lost the ability to grow with phthalate esters. One of these nonrevertible mutants, strain 12B-Cl, lacked all of the enzymes required for the metabolism of dibutylphthalate through the protocatechuate meta-cleavage pathway. Enzymes for the metabolism of protocatechuate by the ortho-cleavage pathway were present in this strain grown with p-hydroxybenzoate or protocatechuate.
Collapse
|
13
|
|
14
|
Groseclose EE, Ribbons DW. Metabolism of resorcinylic compounds by bacteria: new pathway for resorcinol catabolism in Azotobacter vinelandii. J Bacteriol 1981; 146:460-6. [PMID: 7217008 PMCID: PMC216987 DOI: 10.1128/jb.146.2.460-466.1981] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We present evidence to document a third pathway for the microbial catabolism of resorcinol. Resorcinol is converted to pyrogallol by resorcinol-grown cells of Azotobacter vinelandii. Pyrogallol is the substrate for one of two ring cleavage enzymes induced by growth with resorcinol. Oxalocrotonate, CO2, pyruvate, and acetaldehyde have been identified as products of pyrogallol oxidation catalyzed by extracts of resorcinol-grown cells. The enzymes pyrogallol 1,2-dioxygenase, oxalocrotonate tautomerase (isomerase), oxalocrotonate decarboxylase, and vinylpyruvate hydratase are present in extracts from resorcinol-grown cells but not in succinate-grown cells.
Collapse
|
15
|
Nakazawa T, Hayashi E. Phthalate metabolism in Pseudomonas testosteroni: accumulation of 4,5-dihydroxyphthalate by a mutant strain. J Bacteriol 1977; 131:42-8. [PMID: 873893 PMCID: PMC235388 DOI: 10.1128/jb.131.1.42-48.1977] [Citation(s) in RCA: 42] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A mutant strain of Pseudomonas testosteroni blocked in phthalate catabolism converted phthalate into 4,5-dihydroxyphthalate. The latter compound was isolated, and its physical properties were determined. A stoichiometric conversion of the compound to protocatechuate was demonstrated spectrophotometrically with crude extracts of a protocatechuate 4,5-dioxygenase-deficient mutant. Therefore, phthalate is metabolized through 4,5-dihydroxyphthalate and protocatechuate, which is further degraded by protocatechuate 4,5-dioxygenase in P. testosteroni. By using several mutants blocked in phthalate catabolism, 4,5-dihydroxyphthalate decarboxylase was shown to be induced by phthalate. A simple spectrophotometric assay for the enzyme is also reported.
Collapse
|
16
|
Sparnins VL, Dagley S. Alternative routes of aromatic catabolism in Pseudomonas acidovorans and Pseudomonas putida: gallic acid as a substrate and inhibitor of dioxygenases. J Bacteriol 1975; 124:1374-81. [PMID: 1194238 PMCID: PMC236050 DOI: 10.1128/jb.124.3.1374-1381.1975] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
When 3,4-dihydroxyphenylacetic acid (homoprotocatechuic acid) was added to Pseudomonase acidovorans growing at the expense of succinate, enzymes required for degrading homoprotocatechuate to pyruvate and succinate semialdehyde were strongly induced. These enzymes were effectively absent from cell extracts of the organism grown with 4-hydroxyphenylacetic acid, and this substrate was metabolized by the catabolic enzymes of the homogentisate pathway. Two separate ring-fission dioxygenases for 3,4,5-trihydroxybenzoic acid (gallic acid) were present in cell extracts of Pseudomonas putida when grown with syringic acid, and gallate was degraded by reactions associated with meta fission. One of the two gallate dioxygenases also attacked 3-O-methylgallic acid; the other, which did not, was induced when cells were exposed to gallate. This organism possessed ortho fission enzymes, including protocatechuate 3,4-dioxygenase (EC 1.13.11.3) and cis,cis-carboxymuconate-lactonizing enzyme (EC 5.5.1.2), after induction with 3,4-dihydroxybenzoic acid (protocatechuic acid). Gallate was a substrate for protocatechuate 3,4-dioxygenase, with a Vmax about 3% of that of protocatechuate and with an apparent Km slightly lower. Gallate was a powerful competitive inhibitor of protocatechuate oxidation.
Collapse
|
17
|
Sparnins VL, Chapman PJ, Dagley S. Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid. J Bacteriol 1974; 120:159-67. [PMID: 4420192 PMCID: PMC245745 DOI: 10.1128/jb.120.1.159-167.1974] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A species of Acinetobacter and two strains of Pseudomonas putida when grown with 4-hydroxyphenylacetic acid gave cell extracts that converted 3,4-dihydroxyphenylacetic acid (homoprotocatechuic acid) into carbon dioxide, pyruvate, and succinate. The sequence of enzyme-catalyzed steps was as follows: ring-fission by a 2,3-dioxygenase, nicotinamide adenine dinucleotide-dependent dehydrogenation, decarboxylation, hydration, aldol fission, and oxidation of succinic semialdehyde. Two new metabolites, 5-carboxymethyl-2-hydroxymuconic acid and 2-hydroxyhepta-2,4-diene-1,7-dioic acid, were isolated from reaction mixtures and a third, 4-hydroxy-2-ketopimelic acid, was shown to be cleaved by extracts to give pyruvate and succinic semialdehyde. Enzymes of this metabolic pathway were present in Acinetobacter grown with 4-hydroxyphenylacetic acid but were effectively absent when 3-hydroxyphenylacetic acid or phenylacetic acid served as sources of carbon.
Collapse
|
18
|
Michalover JL, Ribbons DW, Hughes H. 3-Hydroxybenzoate 4-hydroxylase from Pseudomonas testosteroni. Biochem Biophys Res Commun 1973; 55:888-96. [PMID: 4148586 DOI: 10.1016/0006-291x(73)91227-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|