1
|
Bacteria and bacterial derivatives as delivery carriers for immunotherapy. Adv Drug Deliv Rev 2022; 181:114085. [PMID: 34933064 DOI: 10.1016/j.addr.2021.114085] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
There is growing interest in the role of microorganisms in human health and disease, with evidence showing that new types of biotherapy using engineered bacterial therapeutics, including bacterial derivatives, can address specific mechanisms of disease. The complex interactions between microorganisms and metabolic/immunologic pathways underlie many diseases with unmet medical needs, suggesting that targeting these interactions may improve patient treatment. Using tools from synthetic biology and chemical engineering, non-pathogenic bacteria or bacterial products can be programmed and designed to sense and respond to environmental signals to deliver therapeutic effectors. This review describes current progress in biotherapy using live bacteria and their derivatives to achieve therapeutic benefits against various diseases.
Collapse
|
2
|
Abstract
Bacteriophages are the most diverse and abundant biological entities on the Earth and require host bacteria to replicate. Because of this obligate relationship, in addition to the challenging conditions of surrounding environments, phages must integrate information about extrinsic and intrinsic factors when infecting their host. This integration helps to determine whether the infection becomes lytic or lysogenic, which likely influences phage spreading and long-term survival. Although a variety of environmental and physiological clues are known to modulate lysis-lysogeny decisions, the social interplay among phages and host populations has been overlooked until recently. A growing body of evidence indicates that cell-cell communication in bacteria and, more recently, peptide-based communication among phage-phage populations, affect phage-host interactions by controlling phage lysis-lysogeny decisions and phage counter-defensive strategies in bacteria. Here, we explore and discuss the role of signal molecules as well as quorum sensing and quenching factors that mediate phage-host interactions. Our aim is to provide an overview of population-dependent mechanisms that influence phage replication, and how social communication may affect the dynamics and evolution of microbial communities, including their implications in phage therapy.
Collapse
|
3
|
Abstract
Oral bacteriophages (or phages), especially periodontal ones, constitute a growing area of interest, but research on oral phages is still in its infancy. Phages are bacterial viruses that may persist as intracellular parasitic deoxyribonucleic acid (DNA) or use bacterial metabolism to replicate and cause bacterial lysis. The microbiomes of saliva, oral mucosa, and dental plaque contain active phage virions, bacterial lysogens (ie, carrying dormant prophages), and bacterial strains containing short fragments of phage DNA. In excess of 2000 oral phages have been confirmed or predicted to infect species of the phyla Actinobacteria (>300 phages), Bacteroidetes (>300 phages), Firmicutes (>1000 phages), Fusobacteria (>200 phages), and Proteobacteria (>700 phages) and three additional phyla (few phages only). This article assesses the current knowledge of the diversity of the oral phage population and the mechanisms by which phages may impact the ecology of oral biofilms. The potential use of phage-based therapy to control major periodontal pathogens is also discussed.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, California, USA
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Diversity patterns of bacteriophages infecting Aggregatibacter and Haemophilus species across clades and niches. ISME JOURNAL 2019; 13:2500-2522. [PMID: 31201356 PMCID: PMC6776037 DOI: 10.1038/s41396-019-0450-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 05/26/2019] [Indexed: 12/19/2022]
Abstract
Aggregatibacter and Haemophilus species are relevant human commensals and opportunistic pathogens. Consequently, their bacteriophages may have significant impact on human microbial ecology and pathologies. Our aim was to reveal the prevalence and diversity of bacteriophages infecting Aggregatibacter and Haemophilus species that colonize the human body. Genome mining with comparative genomics, screening of clinical isolates, and profiling of metagenomes allowed characterization of 346 phages grouped in 52 clusters and 18 superclusters. Less than 10% of the identified phage clusters were represented by previously characterized phages. Prophage diversity patterns varied significantly for different phage types, host clades, and environmental niches. A more diverse phage community lysogenizes Haemophilus influenzae and Haemophilus parainfluenzae strains than Aggregatibacter actinomycetemcomitans and “Haemophilus ducreyi”. Co-infections occurred more often in “H. ducreyi”. Phages from Aggregatibacter actinomycetemcomitans preferably lysogenized strains of specific serotype. Prophage patterns shared by subspecies clades of different bacterial species suggest similar ecoevolutionary drivers. Changes in frequencies of DNA uptake signal sequences and guanine–cytosine content reflect phage-host long-term coevolution. Aggregatibacter and Haemophilus phages were prevalent at multiple oral sites. Together, these findings should help exploring the ecoevolutionary forces shaping virus-host interactions in the human microbiome. Putative lytic phages, especially phiKZ-like, may provide new therapeutic options.
Collapse
|
5
|
The conserved mosaic prophage protein paratox inhibits the natural competence regulator ComR in Streptococcus. Sci Rep 2018; 8:16535. [PMID: 30409983 PMCID: PMC6224593 DOI: 10.1038/s41598-018-34816-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/25/2018] [Indexed: 01/05/2023] Open
Abstract
Horizontal gene transfer is an important means of bacterial evolution. This includes natural genetic transformation, where bacterial cells become “competent” and DNA is acquired from the extracellular environment. Natural competence in many species of Streptococcus, is regulated by quorum sensing via the ComRS receptor-signal pair. The ComR-XIP (mature ComS peptide) complex induces expression of the alternative sigma factor SigX, which targets RNA polymerase to CIN-box promoters to activate genes involved in DNA uptake and recombination. In addition, the widely distributed Streptococcus prophage gene paratox (prx) also contains a CIN-box, and here we demonstrate it to be transcriptionally activated by XIP. In vitro experiments demonstrate that Prx binds ComR directly and prevents the ComR-XIP complex from interacting with DNA. Mutations of prx in vivo caused increased expression of the late competence gene ssb when induced with XIP as compared to wild-type, and Prx orthologues are able to inhibit ComR activation by XIP in a reporter strain which lacks an endogenous prx. Additionally, an X-ray crystal structure of Prx reveals a unique fold that implies a novel molecular mechanism to inhibit ComR. Overall, our results suggest Prx functions to inhibit the acquisition of new DNA by Streptococcus.
Collapse
|
6
|
Abstract
Cryo-electron tomography (cryo-ET) has emerged as a leading technique for three-dimensional visualization of large macromolecular complexes and their conformational changes in their native cellular environment. However, the resolution and potential applications of cryo-ET are fundamentally limited by specimen thickness, preventing high-resolution in situ visualization of macromolecular structures in many bacteria (such as Escherichia coli and Salmonella enterica). Minicells, which were discovered nearly 50 years ago, have recently been exploited as model systems to visualize molecular machines in situ, due to their smaller size and other unique properties. In this review, we discuss strategies for producing minicells and highlight their use in the study of chemotactic signaling, protein secretion, and DNA translocation. In combination with powerful genetic tools and advanced imaging techniques, minicells provide a springboard for in-depth structural studies of bacterial macromolecular complexes in situ and therefore offer a unique approach for gaining novel structural insights into many important processes in microbiology.
Collapse
|
7
|
Croucher NJ, Mostowy R, Wymant C, Turner P, Bentley SD, Fraser C. Horizontal DNA Transfer Mechanisms of Bacteria as Weapons of Intragenomic Conflict. PLoS Biol 2016; 14:e1002394. [PMID: 26934590 PMCID: PMC4774983 DOI: 10.1371/journal.pbio.1002394] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/29/2016] [Indexed: 01/21/2023] Open
Abstract
Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated.
Collapse
Affiliation(s)
- Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Rafal Mostowy
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Christopher Wymant
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephen D. Bentley
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Abstract
Many bacteria are naturally competent, able to actively transport environmental DNA fragments across their cell envelope and into their cytoplasm. Because incoming DNA fragments can recombine with and replace homologous segments of the chromosome, competence provides cells with a potent mechanism of horizontal gene transfer as well as access to the nutrients in extracellular DNA. This review starts with an introductory overview of competence and continues with a detailed consideration of the DNA uptake specificity of competent proteobacteria in the Pasteurellaceae and Neisseriaceae. Species in these distantly related families exhibit strong preferences for genomic DNA from close relatives, a self-specificity arising from the combined effects of biases in the uptake machinery and genomic overrepresentation of the sequences this machinery prefers. Other competent species tested lack obvious uptake bias or uptake sequences, suggesting that strong convergent evolutionary forces have acted on these two families. Recent results show that uptake sequences have multiple "dialects," with clades within each family preferring distinct sequence variants and having corresponding variants enriched in their genomes. Although the genomic consensus uptake sequences are 12 and 29 to 34 bp, uptake assays have found that only central cores of 3 to 4 bp, conserved across dialects, are crucial for uptake. The other bases, which differ between dialects, make weaker individual contributions but have important cooperative interactions. Together, these results make predictions about the mechanism of DNA uptake across the outer membrane, supporting a model for the evolutionary accumulation and stability of uptake sequences and suggesting that uptake biases may be more widespread than currently thought.
Collapse
|
9
|
Abstract
The ability of some bacteria to take up and recombine DNA from the environment is an important evolutionary problem because its function is controversial; although populations may benefit in the long-term from the introduction of new alleles, cells also reap immediate benefits from the contribution of DNA to metabolism. To clarify how selection has acted, we have characterized competence in natural isolates of H. influenzae by measuring DNA uptake and transformation. Most of the 34 strains we tested became competent, but the amounts of DNA they took up and recombined varied more than 1000-fold. Differences in recombination were not due to sequence divergence and were only partly explained by differences in the amounts of DNA taken up. One strain was highly competent during log phase growth, unlike the reference strain Rd, but several strains did not develop competence under any of the tested conditions. Analysis of competence genes identified genetic defects in two poorly transformable strains. These results show that strains can differ considerably in the amount of DNA they take up and recombine, indicating that the benefit associated with competence is likely to vary in space and/or time.
Collapse
Affiliation(s)
- Heather Maughan
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
10
|
Redfield RJ, Findlay WA, Bossé J, Kroll JS, Cameron ADS, Nash JHE. Evolution of competence and DNA uptake specificity in the Pasteurellaceae. BMC Evol Biol 2006; 6:82. [PMID: 17038178 PMCID: PMC1626085 DOI: 10.1186/1471-2148-6-82] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 10/12/2006] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Many bacteria can take up DNA, but the evolutionary history and function of natural competence and transformation remain obscure. The sporadic distribution of competence suggests it is frequently lost and/or gained, but this has not been examined in an explicitly phylogenetic context. Additional insight may come from the sequence specificity of uptake by species such as Haemophilus influenzae, where a 9 bp uptake signal sequence (USS) repeat is both highly overrepresented in the genome and needed for efficient DNA uptake. We used the distribution of competence genes and DNA uptake specificity in H. influenzae's family, the Pasteurellaceae, to examine the ancestry of competence. RESULTS A phylogeny of the Pasteurellaceae based on 12 protein coding genes from species with sequenced genomes shows two strongly supported subclades: the Hin subclade (H. influenzae, Actinobacillus actinomycetemcomitans, Pasteurella multocida, Mannheimia succiniciproducens, and H. somnus), and the Apl subclade (A. pleuropneumoniae, M. haemolytica, and H. ducreyi). All species contained homologues of all known H. influenzae competence genes, consistent with an ancestral origin of competence. Competence gene defects were identified in three species (H. somnus, H. ducreyi and M. haemolytica); each appeared to be of recent origin. The assumption that USS arise by mutation rather than copying was first confirmed using alignments of H. influenzae proteins with distant homologues. Abundant USS-like repeats were found in all eight Pasteurellacean genomes; the repeat consensuses of species in the Hin subclade were identical to that of H. influenzae (AAGTGCGGT), whereas members of the Apl subclade shared the consensus ACAAGCGGT. All species' USSs had the strong consensus and flanking AT-rich repeats of H. influenzae USSs. DNA uptake and competition experiments demonstrated that the Apl-type repeat is a true USS distinct from the Hin-type USS: A. pleuropneumoniae preferentially takes up DNA fragments containing the Apl-type USS over both H. influenzae and unrelated DNAs, and H. influenzae prefers its own USS over the Apl type. CONCLUSION Competence and DNA uptake specificity are ancestral properties of the Pasteurellaceae, with divergent USSs and uptake specificity distinguishing only the two major subclades. The conservation of most competence genes over the approximately 350 million year history of the family suggests that lineages that lose competence may be evolutionary dead ends.
Collapse
Affiliation(s)
| | - Wendy A Findlay
- Institute for Biological Sciences, National Research Council of Canada, Ottawa ON Canada
| | - Janine Bossé
- Dept. of Paediatrics, Faculty of Medicine, Imperial College London, London W2 1PG UK
| | - J Simon Kroll
- Dept. of Paediatrics, Faculty of Medicine, Imperial College London, London W2 1PG UK
| | - Andrew DS Cameron
- Dept. of Microbiology and Immunology, University of British Columbia, Vancouver BC Canada
| | - John HE Nash
- Institute for Biological Sciences, National Research Council of Canada, Ottawa ON Canada
| |
Collapse
|
11
|
Williams BJ, Golomb M, Phillips T, Brownlee J, Olson MV, Smith AL. Bacteriophage HP2 of Haemophilus influenzae. J Bacteriol 2002; 184:6893-905. [PMID: 12446640 PMCID: PMC135456 DOI: 10.1128/jb.184.24.6893-6905.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temperate bacteriophages effect chromosomal evolution of their bacterial hosts, mediating rearrangements and the acquisition of novel genes from other taxa. Although the Haemophilus influenzae genome shows evidence of past phage-mediated lateral transfer, the phages presumed responsible have not been identified. To date, six different H. influenzae phages are known; of these, only the HP1/S2 group, which lyosogenizes exclusively Rd strains (which were originally encapsulated serotype d), is well characterized. Phages in this group are genetically very similar, with a highly conserved set of genes. Because the majority of H. influenzae strains are nonencapsulated (nontypeable), it is important to characterize phages infecting this larger, genetically more diverse group of respiratory pathogens. We have identified and sequenced HP2, a bacteriophage of nontypeable H. influenzae. Although related to the fully sequenced HP1 (and even more so to the partially sequenced S2) and similar in genetic organization, HP2 has a few novel genes and differs in host range; HP2 will not infect or lysogenize Rd strains. Genomic comparisons between HP1/S2 and HP2 suggest recent divergence, with new genes completely replacing old ones at certain loci. Sequence comparisons suggest that H. influenzae phages evolve by recombinational exchange of genes with each other, with cryptic prophages, and with the host chromosome.
Collapse
Affiliation(s)
- Bryan J Williams
- Department of Molecular Microbiology & Immunology, University of Missouri-Columbia, Columbia, 65212, USA
| | | | | | | | | | | |
Collapse
|
12
|
Fink DL, Cope LD, Hansen EJ, Geme JW. The Hemophilus influenzae Hap autotransporter is a chymotrypsin clan serine protease and undergoes autoproteolysis via an intermolecular mechanism. J Biol Chem 2001; 276:39492-500. [PMID: 11504735 DOI: 10.1074/jbc.m106913200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hemophilus influenzae Hap adhesin is an autotransporter protein that undergoes an autoproteolytic cleavage event resulting in extracellular release of the adhesin domain (Hap(s)) from the membrane-associated translocator domain (Hap(beta)). Hap autoproteolysis is mediated by Ser(243) and occurs at LN1036-7 and to a lesser extent at more COOH-terminal alternate sites. In the present study, we sought to further define the mechanism of Hap autoproteolysis. Site-directed mutagenesis of residues His(98) and Asp(140) identified a catalytic triad conserved among a subfamily of autotransporters and reminiscent of the SA (chymotrypsin) clan of serine proteases. Amino-terminal amino acid sequencing of histidine-tagged Hap(beta) species and site-directed mutagenesis established that autoproteolysis occurs at LT1046-7, FA1077-8, and FS1067-8, revealing a consensus target sequence for cleavage that consists of ((Q/R)(A/S)X(L/F)) at the P4 through P1 positions. Examination of a recombinant strain co-expressing a Hap derivative lacking all cleavage sites (HapDelta1036-99) and a Hap derivative lacking proteolytic activity (HapS243A) demonstrated that autoproteolysis occurs by an intermolecular mechanism. Kinetic analysis of Hap autoproteolysis in bacteria expressing Hap under control of an inducible promoter demonstrated that autoproteolysis increases as the density of Hap precursor in the outer membrane increases, confirming intermolecular cleavage and suggesting a novel mechanism for regulation of bacterial adherence and microcolony formation.
Collapse
Affiliation(s)
- D L Fink
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Evidence for gene silencing of Haemophilus influenzae involved a beta-subunit of RNA polymerase. The gene presumed silenced was rifampin resistance. The evidence that it was silencing, rather than dominance of a rifampin-sensitive marker, was that it took place when the rifampin resistance marker was on both a plasmid and the chromosome, without the presence of a rifampin-sensitive marker, as judged by lack of transformation of a rifampin-resistant cell to rifampin sensitivity by the plasmid. In addition, three compounds that are known to decrease gene silencing in eukaryotes (trichostatin A, sodium butyrate and 5-azacytidine) also decreased the presumed silencing in H. influenzae. Silencing of rifampin-resistant Escherichia coli did not take place with the plasmid from H. influenzae.
Collapse
Affiliation(s)
- J K Setlow
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | | | | |
Collapse
|
14
|
Redfield RJ. Evolution of natural transformation: testing the DNA repair hypothesis in Bacillus subtilis and Haemophilus influenzae. Genetics 1993; 133:755-61. [PMID: 8462839 PMCID: PMC1205397 DOI: 10.1093/genetics/133.4.755] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The hypothesis that the primary function of bacterial transformation is DNA repair was tested in the naturally transformable bacteria Bacillus subtilis and Haemophilus influenzae by determining whether competence for transformation is regulated by DNA damage. Accordingly, DNA damage was induced by mitomycin C and by ultraviolet radiation at doses that efficiently induced a known damage-inducible gene fusion, and the ability of the damaged cultures to transform was monitored. Experiments were carried out both under conditions where cells do not normally become competent and under competence-inducing conditions. No induction or enhancement of competence by damage was seen in either organism. These experiments strongly suggest that the regulation of competence does not involve a response to DNA damage, and thus that explanations other than DNA repair must be sought for the evolutionary functions of natural transformation systems.
Collapse
Affiliation(s)
- R J Redfield
- Department of Biochemistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
Muñoz-Sánchez JL, Cabrera-Juárez E. In vitro mutation of Haemophilus influenzae transforming deoxyribonucleic acid by ultraviolet radiation at -70 degrees C. Mutat Res 1991; 251:21-9. [PMID: 1944374 DOI: 10.1016/0027-5107(91)90212-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous studies have shown the non-mutability of Haemophilus influenzae either by UV irradiation of the cells or by irradiating the transforming DNA and transformation of competent cells. In the present work, we present evidence of transforming DNA mutation in vitro by UV irradiation at -70 degrees C, which upon transformation of competent cells showed a rise in the mutation frequencies of novobiocin resistance of the order of several hundredfold. Also we performed experiments using the UV-irradiated DNA either sonicated or DNase-treated, which allowed us to propose that such rise in mutation frequency is probably due to the integration of DNA carrying premutagenic photoproducts to the recipient cells' genome. We think that the key point was the low temperature at which the DNA was irradiated in order to obtain the mutagenic effects, since it is likely that at -70 degrees C, the main photoproducts are not the cyclobutane dimers, but are the spore photoproducts, which are probably responsible for the damage that leads to mutagenic effects.
Collapse
Affiliation(s)
- J L Muñoz-Sánchez
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, I.P.N. Carpio y Plan de Ayala, Mexico, D.F
| | | |
Collapse
|
16
|
|
17
|
Abstract
This review discusses the genetic basis for surface changes in Neisseria gonorrhoeae and the role of specific transformation reactions in producing them. Variation in the structure of pilin, the subunit of gonococcal pili, occurs by transformation-mediated recombination of DNA segments in storage loci with the expression locus. These pilin loci have low recombination potential since their sequences contain only short uninterrupted identical sequences. The DNA within storage or silent loci are also relatively deficient in the short defined sequences which target DNA for efficient uptake and thus have relatively low affinity for the DNA transport system. Consequently, pilin-encoding DNA segments constitute relatively poor substrates for the general transformation system of gonococci. These considerations suggest the existence of locus-specific factors which increase the efficiency of genetic exchange between pilin loci. I raise the speculative hypothesis that one function of transformation-mediated DNA entry is to provide a regulatory stimulus signalling the death of neighbouring gonococci. This regulatory shift might lead to production of factors which accelerate genetic reshuffling of pilin loci either by transformation per se using external DNA as donor, or via a recombinational process which utilizes internally derived DNA segments as donors. A signalling function for transforming DNA also clarifies several general properties of specific transformation reactions.
Collapse
Affiliation(s)
- J J Scocca
- Department of Biochemistry, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205
| |
Collapse
|
18
|
Spikes D, Setlow JK. A plasmid carrying mucA and mucB genes from pKM101 in Haemophilus influenzae and Escherichia coli. J Bacteriol 1989; 171:5753-5. [PMID: 2676992 PMCID: PMC210427 DOI: 10.1128/jb.171.10.5753-5755.1989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The plasmid pMucAMucB, constructed from the Haemophilus influenzae vector pDM2, and a similar plasmid, constructed from pBR322, increased the survival after UV irradiation of Escherichia coli AB1157 with the umu-36 mutation and also caused UV-induced mutation in the E. coli strain. In H. influenzae, pMucAMucB caused a small but reproducible increase in survival after UV irradiation in wild-type cells and in a rec-1 mutant, but there was no increase in spontaneous mutation in the wild type or in the rec-1 mutant and no UV-induced mutation.
Collapse
Affiliation(s)
- D Spikes
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | | |
Collapse
|
19
|
Tomb JF, Barcak GJ, Chandler MS, Redfield RJ, Smith HO. Transposon mutagenesis, characterization, and cloning of transformation genes of Haemophilus influenzae Rd. J Bacteriol 1989; 171:3796-802. [PMID: 2544555 PMCID: PMC210127 DOI: 10.1128/jb.171.7.3796-3802.1989] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A plasmid library of PstI fragments of Haemophilus influenzae Rd genomic DNA was mutagenized in Escherichia coli with mini-Tn10kan. The mutagenized PstI fragments were introduced by transformation into the H. influenzae chromosome, and kanamycin-resistant transformants were screened for the transformation-deficient phenotype by a cyclic AMP-DNA plate method. Fifty-four mutant strains containing 24 unique insertions that mapped to 10 different PstI fragments were isolated. Strains carrying unique insertions were tested individually for DNA uptake, transformation efficiency, UV sensitivity, and growth rate. The transformation frequencies of these mutants were decreased by factors of 10(-2) to 10(-6). Five of the mutants had normal competence-induced DNA uptake, and the rest were variably deficient in competence development. Three strains were moderately UV sensitive. All strains but one had doubling times within 50% of that of the wild type. Mutated genes were cloned into an H. influenzae-E. coli shuttle vector, and wild-type loci were recovered by in vivo recombinational exchange. Hybridization of these clones to SmaI genomic fragments separated in pulsed-field gels showed that these insertions were not clustered in a particular region of the chromosome.
Collapse
Affiliation(s)
- J F Tomb
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | |
Collapse
|
20
|
Setlow JK, Spikes D, Griffin K. Characterization of the rec-1 gene of Haemophilus influenzae and behavior of the gene in Escherichia coli. J Bacteriol 1988; 170:3876-81. [PMID: 3045079 PMCID: PMC211384 DOI: 10.1128/jb.170.9.3876-3881.1988] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The rec-1 gene of Haemophilus influenzae was cloned into a shuttle vector that replicates in Escherichia coli as well as in H. influenzae. The plasmid, called pRec1, complemented the defects of a rec-1 mutant in repair of UV damage, transformation, and ability of prophage to be induced by UV radiation. Although UV resistance and recombination were caused by pRec1 in E. coli recA mutants, UV induction of lambda and UV mutagenesis were not. We suggest that the ability of the H. influenzae Rec-1 protein to cause cleavage of repressors but not the recombinase function differs from that of the E. coli RecA protein.
Collapse
Affiliation(s)
- J K Setlow
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | | | | |
Collapse
|
21
|
Redfield RJ. Evolution of bacterial transformation: is sex with dead cells ever better than no sex at all? Genetics 1988; 119:213-21. [PMID: 3396864 PMCID: PMC1203342 DOI: 10.1093/genetics/119.1.213] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Computer simulations of bacterial transformation are used to show that, under a wide range of biologically reasonable assumptions, transforming populations undergoing deleterious mutation and selection have a higher mean fitness at equilibrium than asexual populations. The source of transforming DNA, the amount of DNA taken up by each transforming cell, and the relationship between number of mutations and cell viability (the fitness function) are important factors. When the DNA source is living cells, transformation resembles meiotic sex. When the DNA source is cells killed by selection against mutations, transformation increases the average number of mutations per genome but can nevertheless increase the mean fitness of the population at equilibrium. In a model of regulated transformation, in which the most fit cells of a transforming population do not transform, transforming populations are always fitter at equilibrium than asexual populations. These results show that transformation can reduce mutation load.
Collapse
Affiliation(s)
- R J Redfield
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
22
|
|
23
|
Setlow JK, Cabrera-Juárez E, Albritton WL, Spikes D, Mutschler A. Mutations affecting gyrase in Haemophilus influenzae. J Bacteriol 1985; 164:525-34. [PMID: 2997115 PMCID: PMC214283 DOI: 10.1128/jb.164.2.525-534.1985] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutants separately resistant to novobiocin, coumermycin, nalidixic acid, and oxolinic acid contained gyrase activity as measured in vitro that was resistant to the antibiotics, indicating that the mutations represented structural alterations of the enzyme. One Novr mutant contained an altered B subunit of the enzyme, as judged by the ability of a plasmid, pNov1, containing the mutation to complement a temperature-sensitive gyrase B mutation in Escherichia coli and to cause novobiocin resistance in that strain. Three other Novr mutations did not confer antibiotic resistance to the gyrase but appeared to increase the amount of active enzyme in the cell. One of these, novB1, could only act in cis, whereas a new mutation, novC, could act in trans. An RNA polymerase mutation partially substituted for the novB1 mutation, suggesting that novB1 may be a mutation in a promoter region for the B subunit gene. Growth responses of strains containing various combinations of mutations on plasmids or on the chromosome indicated that low-level resistance to novobiocin or coumermycin may have resulted from multiple copies of wild-type genes coding for the gyrase B subunit, whereas high-level resistance required a structural change in the gyrase B gene and was also dependent on alteration in a regulatory region. When there was mismatch at the novB locus, with the novB1 mutation either on a plasmid or the chromosome, and the corresponding wild-type gene present in trans, chromosome to plasmid recombination during transformation was much higher than when the genes matched, probably because plasmid to chromosome recombination, eliminating the plasmid, was inhibited by the mismatch.
Collapse
|
24
|
Setlow JK, Cabrera-Juárez E, Griffin K. Mechanism of acquisition of chromosomal markers by plasmids in Haemophilus influenzae. J Bacteriol 1984; 160:662-7. [PMID: 6094481 PMCID: PMC214786 DOI: 10.1128/jb.160.2.662-667.1984] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The hybrid plasmid pNov1 readily acquired genetic information from the chromosome of wild-type, but not rec-2, cells. Most of the recombination had taken place 1 h after entrance of the plasmid into the cell, as judged by transformation of rec-2 by lysates made from wild-type cells exposed to pNov1. Measurement of physical transfer from radioactively labeled cellular DNA to plasmids recombining in wild-type cells failed, since there was little more radioactivity in plasmids from such cells than from labeled rec-2 recipients, in which no recombination took place. EcoRI digestion of pNov1 divided the DNA into a 1.7-kilobase-pair fragment containing the novobiocin resistance marker and a 13-kilobase-pair fragment containing all of the original vector and considerable portions homologous to the chromosome. Transformation by the large fragment alone resulted in a plasmid the size of the original pNov1. Our hypothesis to explain the data is that genetic transfer from chromosome to plasmid took place by a copy choice mechanism.
Collapse
|
25
|
Setlow JK, Spikes D, Ledbetter M. Loss of plasmids containing cloned inserts coding for novobiocin resistance or novobiocin sensitivity in Haemophilus influenzae. J Bacteriol 1984; 158:872-7. [PMID: 6327644 PMCID: PMC215522 DOI: 10.1128/jb.158.3.872-877.1984] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Plasmids pNov1 and pNov1s , coding for resistance and sensitivity to novobiocin, respectively, were readily lost from wild-type Haemophilus influenzae but retained in a strain lacking an inducible defective prophage. The plasmid loss could be partly or wholly eliminated by a low-copy-number mutation in the plasmid or by the presence of certain antibiotic resistance markers in the host chromosome. Release of both phage HP1c1 , measured by plaque assay, and defective phage, measured by electron microscopy, was increased when the plasmids were present. The frequency of recombination between pNov1 and the chromosome, causing the plasmid to be converted to pNov1s , could under some circumstances be decreased from the normal 60 to 70% to below 10% by the presence of a kanamycin resistance marker in the chromosome. This suggested that a gene product coded for by the plasmid, the expression of which was affected by the kanamycin resistance marker, was responsible for the high recombination frequency. Evidence was obtained from in vitro experiments that the gene product was a gyrase.
Collapse
|
26
|
Albritton WL, Setlow JK, Thomas M, Sottnek F, Steigerwalt AG. Heterospecific transformation in the genus Haemophilus. MOLECULAR & GENERAL GENETICS : MGG 1984; 193:358-63. [PMID: 6607396 DOI: 10.1007/bf00330693] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The relationship between nine Haemophilus species and Haemophilus influenzae was studied by DNA-DNA hybridization, by transformation of H. influenzae to streptomycin resistance with heterospecific DNA, by competition of heterospecific DNA for transformation by homospecific DNA and by the lethal effect of heterospecific DNA on competent H. influenzae. H. parainfluenzae, H. parasuis, and H. aegyptius DNA transformed at more than 10% efficiency when compared to homologous transformation, but only H. aegyptius demonstrated, by hybridization, a relative binding ratio of more than 80%. H. aphrophilus and H. paraphrophilus DNA demonstrated a relative binding ratio of less than 30% and transformed H. influenzae at only 10(-5) the efficiency of homologous DNA, but they competed for H. influenzae transformation as well as or better than homospecific DNA. The data indicated that in some of the species sharing the common ecological habitat of the mammalian respiratory tract, sequences necessary for competition and efficient uptake into H. influenzae are present in large numbers in their DNAs, which nevertheless have little overall homology with H. influenzae DNA.
Collapse
|
27
|
12 The Minicell System as a Method for Studying Expression from Plasmid DNA. METHODS IN MICROBIOLOGY 1984. [DOI: 10.1016/s0580-9517(09)70060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
28
|
Cabrera-Juárez E, Setlow JK. Homology and repair of UV-irradiated plasmid DNA in haemophilus influenzae. J Bacteriol 1983; 153:1088-91. [PMID: 6600449 PMCID: PMC221740 DOI: 10.1128/jb.153.2.1088-1091.1983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
UV-irradiated plasmid pNov1 containing a cloned fragment of chromosomal DNA could be repaired by excision, but plasmid p2265 without homology to the chromosome could not. Establishment of pNov1 was more UV resistant in Rec(-) than in Rec(+) cells.
Collapse
|
29
|
Kooistra J, van Boxel T, Venema G. Characterization of a conditionally transformation-deficient mutant of Haemophilus influenzae that carries a mutation in the rec-1 gene region. J Bacteriol 1983; 153:852-60. [PMID: 6401707 PMCID: PMC221705 DOI: 10.1128/jb.153.2.852-860.1983] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A mutant of Haemophilus influenzae, designated HM5, carrying a mutation in the rec-1 gene region, is described. This mutant transformed approximately 100-fold less well than does the wild type, but approximately 100-fold better than rec1 mutants. The mutant was less sensitive to UV irradiation and less "reckless" than rec1 mutants. In contrast to rec1 lysogens, HP1c1 lysogens of the mutant were inducible, and during transformation, recombinant-type activity was formed to the same extent as in the wild type. Although the integration of donor DNA was complete, the integrated DNA was not replicated at 36 degrees C. Both the inhibition of replication of the donor-recipient DNA complex and the transformation deficiency could be suppressed when, after DNA entry, the cells were incubated under suboptimal conditions. The loss of colony formation after UV irradiation was suppressible by the same conditions.
Collapse
|
30
|
Grist RW, Butler LO. Effect of transforming DNA on growth and frequency of mutation of Streptococcus pneumoniae. J Bacteriol 1983; 153:153-62. [PMID: 6848482 PMCID: PMC217352 DOI: 10.1128/jb.153.1.153-162.1983] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We studied the effect of the presence of homologous transforming DNA on the growth of several transformable strains of Streptococcus pneumoniae and on the frequency of mutation of these strains to various antibiotic resistances. We observed no effect on growth until the strains became competent, when growth was depressed. At the end of the competence period, some strains showed recovery to varying degrees, whereas others showed evidence of cell death. Growth was also depressed by the presence of DNA from Escherichia coli, indicating that recombination was not likely to be the cause of the observed effect. Furthermore, cell death was not caused by the induction of a prophage. Several of the strains showed increased mutation frequencies during the competence period, although treatment with E. coli DNA gave no such effect, indicating that the mutagenesis was due to recombination. We observed no mutagenesis due to UV irradiation of the strains. The possibility that integration of the transforming DNA may produce lesions which induce error-prone repair is discussed. Furthermore, a strain that showed no mutability by transforming DNA, indicating the presence of a more efficient repair system, gave evidence of producing higher amounts of the hex system when competent, and the possible relationship between these properties is discussed.
Collapse
|
31
|
George M, Notani NK. Genetic control of prophage induction in haemophilus influenzae after exposure to psoralen plus near-UV light. J Virol 1980; 35:965-7. [PMID: 6968358 PMCID: PMC288891 DOI: 10.1128/jvi.35.3.965-967.1980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prophage S2 could be induced by psoralen plus near-UV light (PNUV) from a wild-type strain of Haemophilus influenzae, from UV light-sensitive strains uvr-1 and uvr-2 and PNUV-sensitive strains PSO1 amd PSO7, but not from a recombination-deficient strain, rec-1. The levels of prophage induction were comparable in the wild type and an ATP-dependent DNase-deficient strain, KW31, even though the PNUV-induced degradation in the latter strain was considerably lower. Prophage induction could be observed even with chloramphenicol present before, during, and 30 min after PNUV treatment.
Collapse
|
32
|
Notani NK, Setlow JK. Inducible repair system in Haemophilus influenzae unaccompanied by mutation. J Bacteriol 1980; 143:516-9. [PMID: 6967485 PMCID: PMC294280 DOI: 10.1128/jb.143.1.516-519.1980] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Weigle reactivation of ultraviolet-irradiated HPlc1 phage was observed after ultraviolet or mitomycin C treatment of Haemophilus influenzae cells. The amount of reactivation was considerably increased when the treated cells were incubated in growth medium before infection. The presence of chloramphenicol during this incubation abolished the reactivation. No mutation of this phage accompanied the reactivation. When cells were treated so as to produce a maximal reactivation of phage, neither reactivation or mutation of cells was observed. It is concluded that H. influenzae has an inducible repair system that is not accompanied by mutation.
Collapse
|
33
|
Ganesan AT. Genetic recombination during transformation in Bacillus subtilis: appearance of a deoxyribonucleic acid methylase. J Bacteriol 1979; 139:270-9. [PMID: 110783 PMCID: PMC216855 DOI: 10.1128/jb.139.1.270-279.1979] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In Bacillus subtilis the ability to take up deoxyribonucleic acid (DNA) and undergo genetic transformation may coincide with the induction of defective phage(s) and the expression of possibly related cryptic genes. A restriction-modification enzyme system appears to be expressed. Targets of the restriction activity on the DNA can be blocked my methylation catalyzed by the methyl transferase. It is shown that cellular DNA becomes progressively methylated and reaches the maxium level during the peak of competency. Deoxycytidine residues of both incoming donor and resident DNA are methylated. The possible participation of these enzymes in recombination and the general role of cryptic genes in inducible functions are discussed.
Collapse
|
34
|
Rascati RJ, Tennant RW. Involvement of DNA damage in hydroxyurea-mediated induction of endogenous murine retrovirus. Virology 1979; 94:273-81. [PMID: 222061 DOI: 10.1016/0042-6822(79)90461-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
|
36
|
Rascati RJ, Tennant RW. Induction of endogenous murine retrovius by hydroxyurea and related compounds. Virology 1978; 87:208-11. [PMID: 208267 DOI: 10.1016/0042-6822(78)90174-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
|
38
|
Abstract
Strains of Haemophilus influenzae that carry a defective prophage are more sensitive to heat than is a strain that does not, even in the presence of a rec-1 mutation, which normally renders prophage noninducible. The prophage of HP1c1, a nondefective phage, does not affect the heat sensitivity.
Collapse
|
39
|
Kimball RF, Boling ME, Perdue SW. Evidence that UV-inducible error-prone repair is absent in Haemophilus influenzae Rd, with a discussion of the relation to error-prone repair of alkylating-agent damage. Mutat Res 1977; 44:183-96. [PMID: 302410 DOI: 10.1016/0027-5107(77)90076-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Haemophilus influenzae Rd and its derivatives are mutated either not at all or to only a very small extent by ultraviolet (UV) radiation, X-rays, methyl methanesulfonate, and nitrogen mustard, though they are readily mutated by such agents as N-methyl-N'-nitro-N-nitrosoguanidine, ethyl methanesulfonate, and nitrosocarbaryl. In these respects H. influenzae Rd resembles the lexA mutants of Escherichia coli that lack the SOS or reclex UV-inducible error-prone repair system. This similarity is further brought out by the observation that chloramphenicol has little or no effect on post-replication repair after UV irradiation. In E. coli, chloramphenicol has been reported to considerably inhibit post-replication repair in the wild type but not in the lexA mutant. Earlier work has suggested that most or all the mutations induced in H. influenzae by NC result from error-prone repair. Combined treatment with NC and either X-rays or UV shows that the NC error-prone repair system does not produce mutations from the lesions induced by these radiations even while it is producing them from its own lesions. It is concluded that the NC error-prone repair system or systems and the reclex error-prone system are different.
Collapse
|
40
|
Yasbin RE. DNA repair in Bacillus subtilis. II. Activation of the inducible system in competent bacteria. MOLECULAR & GENERAL GENETICS : MGG 1977; 153:219-25. [PMID: 407446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Competent B. subtilis are more UV sensitive than the non-competent population of the culture. This increased sensitivity is lose in mutants unable to induce the 'SOS system' (recA1,, recG13), in mutants defective in the induction of prophage PBSX (xin), and in late stage competent cells. Moreover, bacteriophage phi 105 produced from transfected cells are less restricted on strain YB880 than bacteriophage produced from infected cells. Therefore, competent cells (those capable of being transfected) have a DNA modification system, whereas the average log phase cell does not. These data support the hypothesis that the development of competence is correlated with the activation of derepression of the "SOS" system in B. subtilis.
Collapse
|
41
|
Abstract
phi 227, a temperate phage from a group H streptococcus (Streptococcus sanguis), was propagated vegetatively in group H strain Wicky 4-EryR, and its characteristics were determined. A procedure dependent on multiplicity of infection, incubation time, and treatment of crude lysates with diatomaceous earth was found to optimize phage yield, resulting in titers of 1 X 10(10) to 2 X 10(10) PFU/ml. Without prior treatment with diatomaceous earth, subsequent purification procedures (methanol, ammonium sulfate, polyethylene glycol) gave recoveries of less than 1% of crude lysate titers. Adsorption of phi227 to host cells was relatively unaffected by the medium, but calcium (not substituted by magnesium) was required for formation of infectious centers. The phage receptor was present on purified cell walls, resisted trypsin and heat, and was removed ty hydrochloric acid, trichloracetic acid, and hot formamide: however, formamide-extracted material failed to inactivate phage, and the nature of the receptor is unknown. Single-step growth experiments showed a latent period of 39 min and a burst size of 100 PFU/infectious center; results were unaffected by omission of supplemental Ca2+, by supplementation with Mg2, addition of glucose, or changes of pH between 6.35 and 8.0; but increased temperature (40 to 43 degrees C) shortened the latent period and decreased the burst size. The latent period was prolonged in genetically competent host cells and in chemically defined medium; and in the latter, the burst size was smaller. Phage replication was sensitive to those metabolic inhibitors which inhibited the host streptococcus: these included rifampin, fluorodeoxyuridine, hydroxyurea, dihydrostreptomycin, and 6-P-hydroxyphenylazouracil. The data suggest that phi227 does not code for a rifampin-resistant RNA polymerase. However, in a rifampin-resistant host strain, phage replication and lysogen formation were both decreased suggesting that altered host core polymerase had less affinity for (some) promotors on the phi227 template. In transfection, a Ca2+-dependent stabilization step that was inhibited by Mg2+ was demonstrated; transformation was not affected by either Ca2+ or Mg2+, and the site and nature of the stabilization are unknown. More than one molecule of DNA was required for plaque formation. Biophysical characterization showed a type B phage of buoyant density (CsCl) 1.50, containing five proteins and 54.8% DNA. The duplex linear DNA had a molecular weight (calculated from contour length) of 23.2 X 10(6) and a guanine plus cytosine content (calculated from melting point) of 42.3 mol%. Similar characterizations of streptococcal phages, including biophysical data, have not been previously available.
Collapse
|
42
|
Piekarowicz A, Siwińska M. Inhibition of transformation and transfection in Haemophilus influenzae Rd9 by lysogeny. J Bacteriol 1977; 129:22-9. [PMID: 299746 PMCID: PMC234889 DOI: 10.1128/jb.129.1.22-29.1977] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Haemophilus influenzae Rd9 lysogenic for temperate bacteriophage N3 was found to be virtually nontransformable and nontransfectable. This inhibition of transformation and transfection was due partly to the decreased capacity of competent lysogenic cells for irreversible binding of deoxyribonucleic acid (DNA) and partly to some events taking place after adsorption of the DNA. The unadsorbed DNA was not degraded by the competent lysogenic cells.
Collapse
|
43
|
|
44
|
Stuy JH. Restriction enzymes do not play a significant role in Haemophilus homospecific or heterospecific transformation. J Bacteriol 1976; 128:212-20. [PMID: 185196 PMCID: PMC232845 DOI: 10.1128/jb.128.1.212-220.1976] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Competent Haemophilus influenzae Rd recipients, either as phage HP1 restricting (r+) or nonrestricting (r-) nonlysogens or defective lysogens, were exposed to deoxyribonucleic acids from various wild-type phage HP1 lysogenic H. influenzae serotype strains (non-encapsulated derivatives of serotypes a,b, c, d, and e), to DNA from lysogenic Haemophilus parahaemolyticus, and to DNA from modified and nonmodified phage HP1. Transformation of antibiotic resistance markers and of prophage markers in homospecific crosses was observed to be unaffected by the recipient restriction phenotype, whereas the transfection response was much reduced in r+ recipients. Heterospecific transformation of prophage markers was reduced by only 80 to 90%, whereas antibiotic resistance marker transformation was 1,000 to 10,000 times lower. Heterspecific transfection was at least 100 times lower than homospecific transfection in both r+ and r- recipients. The general conclusion is that neither class I nor class II restriction enzymes affect significantly the transformation efficiency in homospecific and heterospecific crosses. The efficiency of heterospecific transformation may depend mainly on the deoxyribonucleic acid homology in the genetic marker region.
Collapse
|
45
|
Abstract
Analysis of the induction curves for UV light-irradiated Haemophilus influenzae lysogens and the distribution of pyrimidine dimers in a repair-deficient lysogen suggests that one dimer per prophage-size segment of the host bacterial chromosome is necessary as a preinduction event. The close correlations obtained prompted a renewed consideration of the possibility that direct prophage induction occurs when one dimer is stabilized within the prophage genome. The host excision-repair system apparently functions to reduce the probability of "stabilizing" within the prophage those dimers that are necessary for induction and inactivation. The presence of the inducible defective prophage in strain Rd depresses the inducibility of prophage HP1c1.
Collapse
|
46
|
Small GD, Setlow JK, Kooistra J, Shapanka R. Lethal effect of mitomycin C on Haemophilus influenzae. J Bacteriol 1976; 125:643-54. [PMID: 173712 PMCID: PMC236126 DOI: 10.1128/jb.125.2.643-654.1976] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The sensitivity of ultraviolet-sensitive strains to inactivation by mitomycin C (MC) is at the most only a factor of two greater than that of the wild type. The presence of inducible prophage has very little effect on the sensitivity. Genes which control excision of ultraviolet-induced pyrimidine dimers also control repair of MC-induced cross-links, as measured by resistance of denatured deoxyribonucleic acid (DNA) from treated cells to S1 nuclease digestion. However, endonucleolytic breaks in MC-damaged DNA, as judged by decreased single-strand molecular weight upon incubation of treated cells, are independent of these genes and probably are caused by monoadducts. After long periods of incubation there is a return to the molecular weight of untreated DNA. DNA degradation after MC treatment of various strains is not correlated with sensitivity to inactivation. Stationary-phase cells of all strains are more than twice as sensitive to MC as exponentially growing cells, and the sensitivity difference agrees with the measured difference in the number of cross-links after MC treatment of cells in the two growth stages. Evidence has been obtained that these phenomena result from differences in uptake of MC, which can be influenced by cyclic adenosine monophosphate. Small deviations in MC sensitivity from that of the wild type observed in mutants lacking the adenosine 5'-triphosphate-dependent nuclease are postulated to result from differences in MC uptake. These mutants, although no more ultraviolet sensitive than the wild type, are more sensitive to streptomycin, which also must be taken up by the cell to be effective.
Collapse
|
47
|
Sedgwick B, Setlow JK, Boling ME, Allison DP. Minicell production and bacteriophage superinducibility of thymidine-requiring strains of Haemophilus influenzae. J Bacteriol 1975; 123:1208-17. [PMID: 1080486 PMCID: PMC235846 DOI: 10.1128/jb.123.3.1208-1217.1975] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aminopterin- or trimethoprin-resistant thymidine-requiring strains of Haemophilus influenzae produce minicells, and the ratio of minicells to cells increases during the stationary phase of growth. Strain LB11, isolated after mutagenesis of a thymidine-requiring strain (Rd thd), produces more minicells than the parent strain. The mutations involved in high frequency minicell production have been transferred into the wild type (strain Rd) by transformation. The thymidine requirement in the resulting strain, MCl, is essential for minicell production, since spontaneous revertants of MCl to prototrophy do not produce minicells. The ratio of minicells to cells was increased more than 10(3)-fold by differential centrifugation. The minicells contain little or no deoxyribonucleic acid (DNA). Phage HPlcl apparently cannot attach to minicells. Competent cells of LB11 and its thymidine-requiring parent strain produce defective phage as a result of exposure to transforming DNA, whereas only LB11 produces many defective phage in response to the competence regime alone. Competent HP1c1 and S2 lysogens of MC1 and Rd thd are also superinducible by transforming DNA, but competent LB11 lysogens produced about the same amount of HP1c1 or S2 phage with or without exposure to transforming DNA possibly because of competition between the induced defective phage and Hp1c1 or S2 phage.
Collapse
|
48
|
Ingram LO, Olson GJ, Blackwell MM. Isolation of a small-cell mutant in the blue-green bacterium Agmenellum quadruplicatum. J Bacteriol 1975; 123:743-6. [PMID: 1150628 PMCID: PMC235782 DOI: 10.1128/jb.123.2.743-746.1975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A new type of high-temperature conditional cell division mutant has been isolated in Agmenellum quadruplicatum strain BG1 in which the process of cell division is uncoupled from that of growth at 39 C. This mutant produces abnormally small cells under conditions of nutrient limitation and forms multinucleoid filaments under normal growth conditions.
Collapse
|
49
|
Smith P, Duffy A, Dunican LK. Indirect induction of a Staphylococcus aureus prophage by P11de a plasmid phage hybrid. MOLECULAR & GENERAL GENETICS : MGG 1975; 137:79-83. [PMID: 126362 DOI: 10.1007/bf00332541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to mediate indirect induction of staphylococcal prophages was found to be a property of the cryptic high frequency transducing phage P11de but not of three other phages tested. P11de is the product of a recombination between a P11 phage and a gamma plasmid. Irradiated P11de preparations could not induce prophage development in strains which contained either a P11 prophage or a gamma plasmid. The establishment of P11de in a strain was not, however, inhibited by the presence of a P11 prophage. It is inferred that the inhibition of indirect induction exerted by the resident P11 prophage occurs at a stage other than the establishment of the P11de replicon.
Collapse
|
50
|
|