1
|
Protonophore FCCP provides fitness advantage to PDR-deficient yeast cells. J Bioenerg Biomembr 2020; 52:383-395. [DOI: 10.1007/s10863-020-09849-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/06/2020] [Indexed: 01/02/2023]
|
2
|
Reiser J, Glumoff V, Kälin M, Ochsner U. Transfer and expression of heterologous genes in yeasts other than Saccharomyces cerevisiae. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 43:75-102. [PMID: 2291442 DOI: 10.1007/bfb0009080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the past few years, yeasts other than those belonging to the genus Saccharomyces have become increasingly important for industrial applications. Species such as Pichia pastoris, Hansenula polymorpha, Schizosaccharomyces pombe, Yarrowia lipolytica and Kluyveromyces lactis have been modified genetically and used for the production of heterologous proteins. For a number of additional yeasts such as Schwanniomyces occidentalis, Zygosaccharomyces rouxii, Trichosporon cutaneum, Pachysolen tannophilus, Pichia guilliermondii and members of the genus Candida genetic transformation systems have been worked out. Transformation was achieved using either dominant selection markers based on antibiotic resistance genes or auxotrophic markers in conjunction with cloned biosynthetic genes involved in amino acid or nucleotide metabolism.
Collapse
Affiliation(s)
- J Reiser
- Institut für Biotechnologie, ETH-Hönggerberg, Zürich, Switzerland
| | | | | | | |
Collapse
|
3
|
Wellmann H, Schauz K, Tiemann R. Resistance to Sterol Demethylation Inhibitors inUstilago maydis. III. Cross-Resistance Patterns and Sterol Analyses. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-9063(199611)48:3<239::aid-ps463>3.0.co;2-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Ehrenhofer-Murray AE, Würgler FE, Sengstag C. The Saccharomyces cerevisiae SGE1 gene product: a novel drug-resistance protein within the major facilitator superfamily. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:287-94. [PMID: 8058039 DOI: 10.1007/bf00285456] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several pleiotropic drug sensitivities have been described in yeast. Some involve the loss of putative drug efflux pumps analogous to mammalian P-glycoproteins, others are caused by defects in sterol synthesis resulting in higher plasma membrane permeability. We have constructed a Saccharomyces cerevisiae strain that exhibits a strong crystal violet-sensitive phenotype. By selecting cells of the supersensitive strain for normal sensitivity after transformation with a wild-type yeast genomic library, a complementing 10-kb DNA fragment was isolated, a 3.4-kb subfragment of which was sufficient for complementation. DNA sequence analysis revealed that the complementing fragment comprised the recently sequenced SGE1 gene, a partial multicopy suppressor of gal11 mutations. The supersensitive strain was found to be a sge1 null mutant. Overexpression of SGE1 on a high-copy-number plasmid increased the resistance of the supersensitive strain. Disruption of SGE1 in a wild-type strain increased the sensitivity of the strain. These features of the SGE1 phenotype, as well as sequence homologies of SGE1 at the amino acid level, confirm that the Sge1 protein is a member of the drug-resistance protein family within the major facilitator superfamily (MFS).
Collapse
|
5
|
Balzi E, Goffeau A. Multiple or pleiotropic drug resistance in yeast. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1073:241-52. [PMID: 2009277 DOI: 10.1016/0304-4165(91)90128-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- E Balzi
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
6
|
James SW, Lefebvre PA. Isolation and characterization of dominant, pleiotropic drug-resistance mutants in Chlamydomonas reinhardtii. Curr Genet 1989; 15:443-52. [PMID: 2776231 DOI: 10.1007/bf00376802] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Three independent pleiotropic drug-resistance (pdr) mutants were isolated by selecting for resistance to the anti-microtubule herbicides amiprophos-methyl (APM) and oryzalin (ORY). These three mutants and a previously isolated mutant, ani1 (anisomycin resistance), were semi-dominant in heterozygous diploids, and they displayed varying degrees of resistance to structurally and functionally unrelated inhibitors such as cycloheximide, cryptopleurine, emetine, atrazine, and nonidet P-40. Linkage analysis and genetic mapping suggested that three of the four mutants, including ani1, define a single locus, here named pdr1. The fourth mutant defined a new locus, pdr2, which is located on the left arm of linkage group VI. One pdr1 mutant exhibited unusual genetic interactions, including enhanced ts-lethality and synergistic increases in drug resistance, when combined with pdr2-1 and with herbicide-resistant alleles of three other genes.
Collapse
Affiliation(s)
- S W James
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108-1095
| | | |
Collapse
|
7
|
McCusker JH, Haber JE. Cycloheximide-resistant temperature-sensitive lethal mutations of Saccharomyces cerevisiae. Genetics 1988; 119:303-15. [PMID: 3294103 PMCID: PMC1203413 DOI: 10.1093/genetics/119.2.303] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We describe the isolation and preliminary characterization of a set of pleiotropic mutations resistant to the minimum inhibitory concentration of cycloheximide and screened for ts (temperature-sensitive) growth. These mutations fall into 22 complementation groups of cycloheximide resistant ts lethal mutations (crl). None of the crl mutations appears to be allelic with previously isolated mutations. Fifteen of the CRL loci have been mapped. At the nonpermissive temperature (37 degrees), these mutants arrest late in the cell cycle after several cell divisions. Half of these mutants are also unable to grow at very low temperatures (5 degrees). Although mutants from all of the 22 complementation groups exhibit similar temperature-sensitive phenotypes, an extragenic suppressor of the ts lethality of crl3 does not relieve the ts lethality of most other crl mutants. A second suppressor mutation allows crl10, crl12, and crl14 to grow at 37 degrees but does not suppress the ts lethality of the remaining crl mutants. We also describe two new methods for the enrichment of auxotrophic mutations from a wild-type yeast strain.
Collapse
Affiliation(s)
- J H McCusker
- Department of Biology, Brandeis University, Waltham, Massachusetts 02254
| | | |
Collapse
|
8
|
Koshinsky HA, Schappert KT, Khachatourians GG. Isolation and characterization of Saccharomyces cerevisiae mutants resistant to T-2 toxin. Curr Genet 1988; 13:363-8. [PMID: 3042165 DOI: 10.1007/bf00365656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
T-2 toxin, a trichothecene mycotoxin, inhibits the growth of Saccharomyces cerevisiae. We have isolated nine spontaneous S. cerevisiae mutants resistant to this toxin. The mutants were distinguished from the wild type according to their degree of resistance to T-2 toxin on media with dextrose or glycerol as the carbon source. Generation time, mutation stability and level of cross-resistance to roridin A, another trichothecene, were determined for each mutant. The T-2 toxin resistant mutants were further characterized by subsequent tests involving cross-resistance and collateral sensitivity to chlorampenicol, neomycin, paromomycin, ethidium bromide and thiolutin. Mutants have been placed into three subgroups and the mechanism of T-2 toxin resistance in each group has been postulated. Mutant HK1 is the first S. cerevisiae isolate resistant to roridin A. One particular isolate, mutant HK11, carries a single recessive nuclear mutation. This mutation was termed ttt (for T-2 toxin resistant).
Collapse
Affiliation(s)
- H A Koshinsky
- Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
9
|
Abstract
We isolated a large number of mutations in the structural gene for the plasma membrane ATPase (PMA1) of Saccharomyces cerevisiae. These mutations were selected by their resistance to the aminoglycoside antibiotic hygromycin B. Biochemical analysis of purified membrane preparations showed that the plasma membrane ATPase activity of the mutants was reduced as much as 75%. Intragenic complementation of pma1 mutants suggested that the yeast plasma membrane ATPase was a multimeric enzyme. The pma1 mutants were apparently defective in maintaining internal pH; more than half of the mutants were unable to grow either at a low pH or in the presence of a weak acid. Most pma1 mutants were also osmotic pressure sensitive. At a very low temperature (5 degrees C) many pma1 mutants were unable to grow and were arrested as unbudded cells. The three most severely affected mutants were also unable to grow in the presence of NH4+. The most extreme mutant exhibited a severe defect in progression through the cell cycle; on synthetic medium, the cells progressively accumulated nucleus-containing small buds that generally failed to complete bud enlargement and cytokinesis. Most of the pleiotropic phenotypes of pma1 mutants could be suppressed by the addition of 50 mM KCl but not NaCl to the medium.
Collapse
|
10
|
Saxena PK, King J. Herbicide Resistance in Datura innoxia: Cross-Resistance of Sulfonylurea-Resistant Cell Lines to Imidazolinones. PLANT PHYSIOLOGY 1988; 86:863-7. [PMID: 16666001 PMCID: PMC1054584 DOI: 10.1104/pp.86.3.863] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cells resistant to the sulfonylurea herbicides chlorsulfuron and sulfometuron methyl were isolated from a predominantly haploid cell suspension culture of Datura innoxia P. Mill. Exponentially growing cell colonies (aggregates of about 40 cells) were mutagenized with ethyl methane sulfonate, subcultured for 10 days to allow growth recovery and plated on a medium containing either chlorsulfuron or sulfometuron methyl at a concentration (10(-8) molar) which killed wild type cells. Surviving clones were picked up after 3 to 4 weeks, further proliferated as callus or cell suspension cultures, and tested for their resistance to both the sulfonylureas and imidazolinones, a chemically different class of herbicides. The variants were stable and showed high (100- to 1000-fold) resistance to the sulfonylureas. While some also exhibited cross resistance to imidazolinones, others showed no cross-resistance at all or, as in one case, greater sensitivity than wild type cells to the imidazolinones. Both classes of herbicides tested inhibited acetolactate synthase activity isolated from wild type cells. The acetolactate synthase of the resistant variants, however, was found to be resistant to the sulfonylureas and also to the imidazolinone(s) in those cells showing cross-resistance to the latter. The lack of cross-resistance observed in some cases provides evidence that the two groups of herbicides have slightly different sites on the acetolactate synthase molecule.
Collapse
Affiliation(s)
- P K Saxena
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N OWO
| | | |
Collapse
|
11
|
Serrano R. Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 947:1-28. [PMID: 2894226 DOI: 10.1016/0304-4157(88)90017-2] [Citation(s) in RCA: 336] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- R Serrano
- European Molecular Biology Laboratory, Heidelberg (F.R.G.)
| |
Collapse
|
12
|
|
13
|
Balzi E, Chen W, Ulaszewski S, Capieaux E, Goffeau A. The multidrug resistance gene PDR1 from Saccharomyces cerevisiae. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45464-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
McCusker JH, Perlin DS, Haber JE. Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae. Mol Cell Biol 1987; 7:4082-8. [PMID: 2963211 PMCID: PMC368079 DOI: 10.1128/mcb.7.11.4082-4088.1987] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We isolated a large number of mutations in the structural gene for the plasma membrane ATPase (PMA1) of Saccharomyces cerevisiae. These mutations were selected by their resistance to the aminoglycoside antibiotic hygromycin B. Biochemical analysis of purified membrane preparations showed that the plasma membrane ATPase activity of the mutants was reduced as much as 75%. Intragenic complementation of pma1 mutants suggested that the yeast plasma membrane ATPase was a multimeric enzyme. The pma1 mutants were apparently defective in maintaining internal pH; more than half of the mutants were unable to grow either at a low pH or in the presence of a weak acid. Most pma1 mutants were also osmotic pressure sensitive. At a very low temperature (5 degrees C) many pma1 mutants were unable to grow and were arrested as unbudded cells. The three most severely affected mutants were also unable to grow in the presence of NH4+. The most extreme mutant exhibited a severe defect in progression through the cell cycle; on synthetic medium, the cells progressively accumulated nucleus-containing small buds that generally failed to complete bud enlargement and cytokinesis. Most of the pleiotropic phenotypes of pma1 mutants could be suppressed by the addition of 50 mM KCl but not NaCl to the medium.
Collapse
Affiliation(s)
- J H McCusker
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254
| | | | | |
Collapse
|
15
|
Genetics of the mammalian oxidative phosphorylation system: characterization of a new oligomycin-resistant Chinese hamster ovary cell line. Mol Cell Biol 1987. [PMID: 6242755 DOI: 10.1128/mcb.2.7.772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The properties of a new type of oligomycin-resistant Chinese hamster ovary (CHO) cell line (Olir 2.2) are described in this paper. Olir 2.2 cells were approximately 50,000-fold more resistant to oligomycin than were wild-type CHO cells when tested in glucose-containing medium, but only 10- to 100-fold more resistant when tested in galactose-containing medium. Olir 2.2 cells grew with a doubling time similar to that of wild-type cells both in the presence or absence of oligomycin. Oligomycin resistance in Olir 2.2 cells was stable in the absence of drug. In vitro assays indicated that there was approximately a 25-fold increase in the resistance of the mitochondrial ATPase to inhibition by oligomycin in Olir 2.2 cells, with little change in the total ATPase activity. The electron transport chain was shown to be functional in Olir 2.2 cells. Olir 2.2 cells were cross-resistant to other inhibitors of the mitochondrial ATPase (such as rutamycin, ossamycin, peliomycin, venturicidin, leucinostatin, and efrapeptin) and to other inhibitors of mitochondrial functions (such as chloramphenicol, rotenone, and antimycin). Oligomycin resistance was expressed codominantly in hybrids between Olir 2.2 cells and wild-type cells. Cross-resistance to ossamycin, peliomycin, chloramphenicol, antimycin, venturicidin, leucinostatin, and efrapeptin was also expressed codominantly in hybrids. Fusions of enucleated Olir 2.2 cells with wild-type cells and characterization of the resulting cybrid clones indicated that resistance to oligomycin and ossamycin results from a mutation in both a nuclear gene and a cytoplasmic gene. Cross-resistance to efrapeptin, leucinostatin, venturicidin, and antimycin results from a mutation in only a nuclear gene.
Collapse
|
16
|
Subik J, Ulaszewski S, Goffeau A. Genetic mapping of nuclear mucidin resistance mutations in Saccharomyces cerevisiae. A new pdr locus on chromosome II. Curr Genet 1986; 10:665-70. [PMID: 3329042 DOI: 10.1007/bf00410914] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the yeast Saccharomyces cerevisiae, two nuclear pleiotropic drug resistance mutations pdr3-1 (former designation mucPR) and pdr3-2 (former designation DRI9/T7) have been selected as resistant to mucidin and as resistant to chloramphenicol plus cycloheximide, respectively. The pdr3 mutations were found not to affect the plasma membrane ATPase activity measured in a crude membrane fraction. Meiotic mapping using strains with standard genetic markers revealed that mutation pdr3-1 is centromere linked on the left arm of chromosome II at a distance of 5.9 +/- 3.3 cM from its centromere and 11.6 +/- 3.1 cM from the marker pet9. The centromere linked pdr3-2 mutation exhibited also genetic linkage to pet9 with a map distance of 9.8 +/- 3.2 cM. These results indicate that pdr3-1 and pdr3-2 are alleles of the same pleiotropic drug resistance locus PDR3 which is involved in the control of the plasma membrane permeability in yeast.
Collapse
Affiliation(s)
- J Subik
- Food Research Institute, Bratislava, Czechoslovakia
| | | | | |
Collapse
|
17
|
Falco SC, Dumas KS. Genetic analysis of mutants of Saccharomyces cerevisiae resistant to the herbicide sulfometuron methyl. Genetics 1985; 109:21-35. [PMID: 3881312 PMCID: PMC1202477 DOI: 10.1093/genetics/109.1.21] [Citation(s) in RCA: 165] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sulfometuron methyl (SM), a potent new sulfonylurea herbicide, inhibits growth of the yeast Saccharomyces cerevisiae on minimal media. Sixty-six spontaneous mutants resistant to SM were isolated. All of the resistance mutations segregate 2:2 in tetrads; 51 of the mutations are dominant, five are semidominant and ten are recessive. The mutations occur in three linkage groups, designated SMR1, smr2 and smr3. Several lines of evidence demonstrate that the SMR1 mutations (47 dominant and four semidominant) are alleles of ILV2 which encodes acetolactate synthase (ALS), the target of SM. First, SMR1 mutations result in the production of ALS enzyme activity with increased resistance to SM. Second, molecular cloning of the ILV2 gene permitted the isolation of mutations in the cloned gene which result in the production of SM-resistant ALS. Finally, SMR1 mutations map at the ILV2 locus. The smr2 mutations (four recessive, two dominant and one semidominant) map at the pdr 1 (pleiotropic drug resistance) locus and show cross-resistance to other inhibitors, typical of mutations at this locus. The smr3 mutations (six recessive and two dominant) define a new gene which maps approximately midway between ADE2 and HIS3 on the right arm of chromosome XV.
Collapse
|
18
|
Isolation and characterization of an uncoupler-resistant mutant of Saccharomyces cerevisiae. Curr Genet 1984; 8:507-16. [DOI: 10.1007/bf00410437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/1984] [Indexed: 10/26/2022]
|
19
|
Schappert KT, Khachatourians GG. Influence of the membrane on T-2 toxin toxicity in Saccharomyces spp. Appl Environ Microbiol 1984; 47:681-4. [PMID: 6372690 PMCID: PMC239748 DOI: 10.1128/aem.47.4.681-684.1984] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In growing cells of Saccharomyces cerevisiae and Saccharomyces carlsbergensis, T-2 toxin inhibits cell growth. We have examined the role of the yeast membranes in the uptake mechanism(s) of T-2 toxin. The effects of membrane-modulating agents, ethanol, cetyltrimethylammonium bromide, Triton X-100, and heat were studied; these agents were found to increase the sensitivity of the yeasts toward T-2 toxin. In the presence of 5% (vol/vol) ethanol, 2 micrograms of T-2 toxin per ml caused complete inhibition of growth. In the presence of 1 microgram of cetyltrimethylammonium bromide per ml, yeast cells became sensitive to T-2 toxin, starting with a concentration of 0.5 micrograms/ml. Triton X-100 at concentrations below 1% (vol/vol) sensitized the cells toward T-2 toxin, but at higher concentrations it protected the cells from T-2 toxin. Temperatures of incubation between 7 and 30 degrees C influenced the growth reduction caused by T-2 toxin. The greatest observed reduction of growth in T-2 toxin-treated cultures occurred at 30 degrees C. To further prove that the membrane influences the interaction of T-2 toxin with yeasts, we have studied a yeast mutant with a reduced plasma membrane permeability (G. H. Rank et al., Mol. Gen. Genet. 152:13-18, 1977). This yeast mutant proved to be resistant to T-2 toxin concentrations of up to 50 micrograms/ml. These results show that the membrane plays a significant role in the interaction of T-2 toxin with yeast cells.
Collapse
|
20
|
Multiple drug resistance in the fission yeast Schizosaccharomyces pombe: Correlation between drug and amino acid uptake and membrane ATPase activities. Curr Genet 1983; 7:299-307. [DOI: 10.1007/bf00376075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/1983] [Indexed: 10/26/2022]
|
21
|
Saunders GW, Rank GH. Allelism of pleiotropic drug resistance in Saccharomyces cerevisiae. CANADIAN JOURNAL OF GENETICS AND CYTOLOGY. JOURNAL CANADIEN DE GENETIQUE ET DE CYTOLOGIE 1982; 24:493-503. [PMID: 6762918 DOI: 10.1139/g82-053] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Allelism of pleiotropic drug resistant (pdr) mutants was evaluated by complementation tests, linkage to chromosome-VII centromere markers and response to a partial suppressor (sur). Complementation tests were confounded by incomplete dominance and somatic segregation. Phenotypic suppression by sur was observed for all mutant and wild type alleles and thus could not be used to distinguish alleles. Five different alleles were tentatively identified by their close linkage to leul; 88 tetrads from three factor crosses produced the following linkages--leul (4.7) pdrl (17.0) trp5. Resistance of DRI 9/T7, a [cir o] strain of French origin, was not inherited as an allele of pdr but was controlled by a different pleiotropic centromere linked gene. An evaluation of published data suggest that antl, AMYl, till, cyh3, BOR2, and axe1 may be alleles of pdr. Thus pdr appears to be an allele that influences permeability to many inhibitors.
Collapse
|
22
|
Podospora anserina mutants defective in cell regeneration and ascospore germination: The presence of a possible lesion of the plasma membrane. ACTA ACUST UNITED AC 1982. [DOI: 10.1016/0147-5975(82)90113-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Breen GA. Genetics of the mammalian oxidative phosphorylation system: characterization of a new oligomycin-resistant Chinese hamster ovary cell line. Mol Cell Biol 1982; 2:772-81. [PMID: 6242755 PMCID: PMC369859 DOI: 10.1128/mcb.2.7.772-781.1982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The properties of a new type of oligomycin-resistant Chinese hamster ovary (CHO) cell line (Olir 2.2) are described in this paper. Olir 2.2 cells were approximately 50,000-fold more resistant to oligomycin than were wild-type CHO cells when tested in glucose-containing medium, but only 10- to 100-fold more resistant when tested in galactose-containing medium. Olir 2.2 cells grew with a doubling time similar to that of wild-type cells both in the presence or absence of oligomycin. Oligomycin resistance in Olir 2.2 cells was stable in the absence of drug. In vitro assays indicated that there was approximately a 25-fold increase in the resistance of the mitochondrial ATPase to inhibition by oligomycin in Olir 2.2 cells, with little change in the total ATPase activity. The electron transport chain was shown to be functional in Olir 2.2 cells. Olir 2.2 cells were cross-resistant to other inhibitors of the mitochondrial ATPase (such as rutamycin, ossamycin, peliomycin, venturicidin, leucinostatin, and efrapeptin) and to other inhibitors of mitochondrial functions (such as chloramphenicol, rotenone, and antimycin). Oligomycin resistance was expressed codominantly in hybrids between Olir 2.2 cells and wild-type cells. Cross-resistance to ossamycin, peliomycin, chloramphenicol, antimycin, venturicidin, leucinostatin, and efrapeptin was also expressed codominantly in hybrids. Fusions of enucleated Olir 2.2 cells with wild-type cells and characterization of the resulting cybrid clones indicated that resistance to oligomycin and ossamycin results from a mutation in both a nuclear gene and a cytoplasmic gene. Cross-resistance to efrapeptin, leucinostatin, venturicidin, and antimycin results from a mutation in only a nuclear gene.
Collapse
|
24
|
Johnston PA, Coddington A. Multiple drug resistance in the fission yeast Schizosaccharomyces pombe: evidence for the existence of pleiotropic mutations affecting dependent transport systems. MOLECULAR & GENERAL GENETICS : MGG 1982; 185:311-4. [PMID: 6953308 DOI: 10.1007/bf00330803] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The uptake of L-tyrosine into wild type and antibiotic resistant strains of Schizosaccharomyces pombe requires an energy source, is initially linear with respect to time, is inhibited by 2,4-dinitrophenol and sodium azide and is saturable. However the initial uptake rates and the amount of L-tyrosine accummulated by antibiotic resistant strains are much less than wild type. Comparison of the kinetic constants of uptake shows that mutant strains have a reduced maximum velocity of uptake compared to wild type and a larger Km. Since the three mutant strains possess a permeability barrier to L-tyrosine as well as being drug resistant this is an indication that antibiotic resistance may be caused by a decrease in plasma membrane permeability.
Collapse
|
25
|
Baranowska H, Putrament A. Mitochondrial mutagenesis in Saccharomyces cerevisiae. III. Nitrous acid. Mutat Res 1979; 63:291-300. [PMID: 392311 DOI: 10.1016/0027-5107(79)90060-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitrous acid (NA) induced mutations efficiently in mitDNA, conferring resistance to erythromycin and weakly induces mit- mutations. In some strains of yeast it also enhanced rho- mutations. The frequencies of nuclear and mitochondrial mutations induced with NA are compared.
Collapse
|
26
|
Polakowska R, Putrament A. Mitochondrial mutagenesis in Saccharomyces cerevisiae. II. Methyl methanesulphonate and diepoxybutane. Mutat Res 1979; 61:207-13. [PMID: 384223 DOI: 10.1016/0027-5107(79)90127-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In Saccharomyces cerevisiae, methyl methanesulphonate and diepoxybutane produced efficiently lethal, as well as mutagenic, damage in nuclear DNA. However, in the same conditions, these agents did not induce cytoplasmic petite mutations and poorly induced point mutations (resistance to erythromycin and chloramphenicol) in mitochondrial DNA. Possible reasons for these differences are discussed.
Collapse
|
27
|
Ejchart A, Putrament A. Mitochondrial mutagenesis in Saccharomyces cerevisiae. I. Ultraviolet radiation. Mutat Res 1979; 60:173-80. [PMID: 379626 DOI: 10.1016/0027-5107(79)90181-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UV efficiently induces mutations in mitDNA , conferring resistance to erythromycin. Mitochondrial chloramphenicol-resistant mutants are probably also induced by UV, but almost 90% of mutants with such phenotype are non-mitochondrial; therefore it is possible to estimate accurately the frequences of the induced presumptive mitochondrial capr mutations.
Collapse
|
28
|
Rank GH, Sheard JW. Revertants of pleiotropic cross resistance and collateral sensitivity in yeast: a multivariate analysis. MOLECULAR & GENERAL GENETICS : MGG 1979; 167:309-16. [PMID: 368595 DOI: 10.1007/bf00267424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Vaughan PR, Loewe H, Nagley P. Studies on the induction of petite mutants in yeast by analogues of berenil. Characterization of three mutants resistant to the compound Hoe 15,030. MOLECULAR & GENERAL GENETICS : MGG 1979; 172:259-69. [PMID: 45609 DOI: 10.1007/bf00271725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Compound Hoe 15,030 is an analogue of berenil which is as effective as berenil in inducing petite mutants in Saccharomyces cerevisiae. Hoe 15,030 has greater stability than berenil in aqueous solution, and is less toxic to yeast at high drug concentrations. Mutants of S. cerevisiae strain J69-1B have been isolated which are resistant to the petite inducing effects of Hoe 15,030. Three mutant strains (HR7, HR8 and HR10) were characterized and each was shown to carry a recessive nuclear mutation determining resistance to Hoe 15,030. The degree of resistance to Hoe 15,030 is different for each mutant, and each was found to be co-ordinately cross-resistant both to berenil and to another analogue of berenil, Hoe 13,548. However, the three mutants show no cross-resistance to other unrelated petite inducing drugs, including ethidium bromide, euflavine and 1-methyl phenyl neutral red. Further studies on the mutants revealed that each strain exhibits characteristic new properties indicative of changes in mitochondrial membrane functions concerned with the replication (and probably also repair) of mitochondrial DNA. Thus, mutant HR7 is hypersensitive to petite induction by the detergent sodium dodecyl sulphate under conditions where the parent J69-1B is unaffected by this agent. Mutant HR8 is even more sensitive to sodium dodecyl sulphate than is HR7, and additionally shows a markedly elevated spontaneous petite frequency. Isolated mitochondria from strains HR8 and HR10 (but not HR7) show resistance to the inhibitory effects of Hoe 15,030 on the replication of mitochondrial DNA in vitro.
Collapse
Affiliation(s)
- P R Vaughan
- Department of Biochemistry, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
30
|
Rank GH, Robertson AJ, Gerlach JH. Single gene alteration of plasma and mitochondrial membrane function in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1977; 152:13-8. [PMID: 141002 DOI: 10.1007/bf00264934] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Some physiological properties of a multiple-drug-resistant mutant with a permeability barrier to chloramphenicol and its isogenic parental strain were compared. The ATPase specific activity of plasma and mitochondrial membranes isolated from the mutant strain was approximately 20% lower (P less than 0.001, Tables 1 and 2) than that of membranes isolated from the isogenic parental strain. Additional evidence of altered mitochondrial function was: (i) the enhanced growth of the parental strain was eliminted by the [rho-] state (Table 3); (ii) the mutant strain had a greater resistance to petite induction by ethidium bromide (Table 4); (iii) the mutant strain was unable to use a nonfermentable energy source for respiratory adaptation (Table 5). It is proposed that a single gene mutation has resulted in an alteration of some physiological properties of the plasma and mitochondrial membranes.
Collapse
|
31
|
Subík J, Kovácová V, Takáscová G. Mucidin resistance in yeast. Isolation, characterization and genetic analysis of nuclear and mitochondrial mucidin-resistant mutants of Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1977; 73:275-86. [PMID: 138589 DOI: 10.1111/j.1432-1033.1977.tb11317.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutants of Saccharomyces cerevisiae resistant to the antibiotic mucidin, a specific inhibitor of electron transport between cytochrome b and c, were isolated and divided into three phenotypic groups, as follows. Class 1 mutants were cross-resistant to a variety of mitochondrial inhibitors and exhibited no resistance at the mitochondrial level. Class 2 mutants were specifically resistant to mucidin exhibiting resistance also at the level of isolated mitochondria. Biochemical studies indicated that the mucidin resistance in class 2 mutants involved a modification of mucidin binding of inhibitory sites on the mitochondrial inner membrane without a significance change in the sensitivity of mitochondrial oxygen uptake to antimycin A, 2-heptyl-4-hydroxyquinoline-N-oxide, and 2,3-dimercaptopropanol. Class 3 was represented by a mutant which showed a high degree of resistance to mucidin and was cross-resistant to a variety of mitochondrial inhibitors at the cellular level but exhibited only a resistance to mucidin at the mitochondrial level. Genetic analysis of mucidin-resistant mutants revealed the presence of both nuclear and mitochondrial genes determining mucidin resistance/sensitivity in yeast. Resistance to mucidin in class 1 mutants was due to a single-gene nuclear recessive mutation (mucPR) whereas that in class 2 mutants was caused by mutations of mitochondrial genes. Resistance in class 3 mutant was determined both by single-gene nuclear and mitochondrial mutations. In the mitochondrial mutants the mucidin resistance segregated mitotically and the resistance determinant was lost upon induction of petite mutation by ethidium bromide. Allelism tests indicated that the mucidin resistance mutations fell into two genetic loci (MUC1 and MUC2) which were apparently not closely linked in the mitochondrial genome. Recombination studies showed that the two mitochondrial mucidin loci were not allelic with other mitochondrial loci RIB1, RIB2 and OLI1. An extremely high mucidin resistance at the cellular level was shown to arise from synergistic interaction of the nuclear gene mucPR and the mitochondrial mucidin-resistance gene (MR) in a cell. The results suggest that at least two mitochondrial gene products, responsible for mucidin resistance/sensitivity in yeast, take part in the formation of the cytochrome bc1 region of the mitochondrial respiratory chain.
Collapse
|
32
|
|
33
|
Waard MA, Gieskes SA. Characterization of fenarimol-resistant mutants of Aspergillus nidulans. ACTA ACUST UNITED AC 1977. [DOI: 10.1007/bf03041433] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Rank GH, Gerlach JH, Robertson AJ. Some physiological alteration associated with pleiotropic cross resistance and collateral sensitivity in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1976; 144:281-8. [PMID: 775299 DOI: 10.1007/bf00341726] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A mutant strain (2-20) isolated by growth on medium containing oligomycin and cycloheximide was also found to be cross resistant to antimyicn, cerulenin, chloramphenicol, tetracycline, triethyltin and triphenylmethylphosphonium bromide, but collaterally sensitive to dequalinium chloride, gentamycin, neomycin, paromomycin and thiolutin. Growth of 2-20, compared to the parental strain and 2 complete revertants, under a variety of environmental conditions revealed that strain 2-20 had an enhanced sensitivity to increased osmolality, elevated pH, and high temperature; in addition, strain 2-20 was unable to polymerize aminoimidazole ribotide at 37 degrees C as shown by the failure to develop a red colony in the presence of ade 2. Four complex solid media (glucose--KCI, galactose, ethanol, ethanol--KCI, Table 1) unable to sustain the growth of strain 2-20 were arbitrarily chosen to monitor cellular growth under different physiological conditions. Tetrad analysis indicated that the complex phenotype (cross resistance, collateral sensitivity, inablity to polymerize aminoimidazole ribotide, absence of growth under adverse physiological conditions) was inherited by an allele of a locus previously shown to result in a permeability barrier of the plasma membrane to chloramphenicol. 582 of 640 subclones used to isolate revertants of 2-20, under four different physiological conditions, were observed to produce a complete revertant of the complex phenotype. It is proposed that the pleiotropic phenotype could result from an alteration of the plasma membrane and mitochondrial inner membrane by a single nuclear gene mutation.
Collapse
|
35
|
Bacchi CJ, Lambros C, Ellenbogen BB, Penkovsky LN, Sullivan W, Eyinna EE, Hutner SH. Drug-resistant Leptomonas: cross-resistance in trypanocide-resistant clones. Antimicrob Agents Chemother 1975; 8:688-92. [PMID: 1211922 PMCID: PMC429449 DOI: 10.1128/aac.8.6.688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A Leptomonas of insect origin was highly susceptible to several standard trypanocides and leishmanicides in vitro. Resistance was induced to some of these drugs; clones were isolated from each strain. Cross-resistance patterns of the clones were derived for diamidines, quinapyramine (Antrycide), acriflavin, phenanthridines, and other drugs active against trypanosomes and leishmanias. Clones tested included two each that were resistant to acriflavin, Antrycide, diminazene aceturate (Berenil), and pentamidine and one that was resistant to stilbamidine. Appreciable cross-resistance was evident for all clones. Differences were observed between clones from the same parent strain. Collateral susceptibility towards isometamidium and oxophenarsine was detected in most clone-derived populations. In clones passaged without drug to test for drug fastness, acriflavin and pentamidine clones lost resistance within 10 transfers, whereas Berenil and Antrycide clones retained considerable resistance after 20 to 30 subcultures without drug. Considerations of differences in life cycles suggest that the clone collection may be useful in screening for agents effective against leishmanias and stercorarian trypanosomes rather than against salivary trypanosomes.
Collapse
|