1
|
Yuzbashev TV, Yuzbasheva EY, Melkina OE, Patel D, Bubnov D, Dietz H, Ledesma-Amaro R. A DNA assembly toolkit to unlock the CRISPR/Cas9 potential for metabolic engineering. Commun Biol 2023; 6:858. [PMID: 37596335 PMCID: PMC10439232 DOI: 10.1038/s42003-023-05202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
CRISPR/Cas9-based technologies are revolutionising the way we engineer microbial cells. One of the key advantages of CRISPR in strain design is that it enables chromosomal integration of marker-free DNA, eliminating laborious and often inefficient marker recovery procedures. Despite the benefits, assembling CRISPR/Cas9 editing systems is still not a straightforward process, which may prevent its use and applications. In this work, we have identified some of the main limitations of current Cas9 toolkits and designed improvements with the goal of making CRISPR technologies easier to access and implement. These include 1) A system to quickly switch between marker-free and marker-based integration constructs using both a Cre-expressing and standard Escherichia coli strains, 2) the ability to redirect multigene integration cassettes into alternative genomic loci via Golden Gate-based exchange of homology arms, 3) a rapid, simple in-vivo method to assembly guide RNA sequences via recombineering between Cas9-helper plasmids and single oligonucleotides. We combine these methodologies with well-established technologies into a comprehensive toolkit for efficient metabolic engineering using CRISPR/Cas9. As a proof of concept, we developed the YaliCraft toolkit for Yarrowia lipolytica, which is composed of a basic set of 147 plasmids and 7 modules with different purposes. We used the toolkit to generate and characterize a library of 137 promoters and to build a de novo strain synthetizing 373.8 mg/L homogentisic acid.
Collapse
Affiliation(s)
- Tigran V Yuzbashev
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
- Plant Sciences and the Bioeconomy, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | | | - Olga E Melkina
- NRC 'Kurchatov Institute'-GosNIIgenetika, Kurchatov Genomic Centre, 1-st Dorozhny Pr., 1, Moscow, 117545, Russia
| | - Davina Patel
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Dmitrii Bubnov
- NRC 'Kurchatov Institute'-GosNIIgenetika, Kurchatov Genomic Centre, 1-st Dorozhny Pr., 1, Moscow, 117545, Russia
| | - Heiko Dietz
- Kaesler Research Institute, Kaesler Nutrition GmbH, Fischkai 1, 27572, Bremerhaven, Germany
| | | |
Collapse
|
2
|
Yuzbashev T, Yuzbasheva E, Melkina O, Patel D, Bubnov D, Dietz H, Ledesma-Amaro R. A DNA assembly toolkit to unlock the CRISPR/Cas9 potential for metabolic engineering. RESEARCH SQUARE 2023:rs.3.rs-2738543. [PMID: 37066237 PMCID: PMC10104256 DOI: 10.21203/rs.3.rs-2738543/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
CRISPR/Cas9-based technologies are revolutionising the way we engineer microbial cells. One of the key advantages of CRISPR in strain design is that it enables chromosomal integration of marker-free DNA, eliminating laborious and often inefficient marker recovery procedures. Despite the benefits, assembling CRISPR/Cas9 editing systems is still not a straightforward process, which may prevent its use and applications. In this work, we have identified some of the main limitations of current Cas9 toolkits and designed improvements with the goal of making CRISPR technologies easier to access and implement. These include 1) A system to quickly switch between marker-free and marker-based integration constructs using both a Cre-expressing and standard Escherichia coli strains, 2) the ability to redirect multigene integration cassettes into alternative genomic loci via Golden Gate-based exchange of homology arms, 3) a rapid, simple in-vivo method to assembly guide RNA sequences via recombineering between Cas9-helper plasmids and single oligonucleotides. We combine these methodologies with well-established technologies into a comprehensive toolkit for efficient metabolic engineering using CRISPR/Cas9. As a proof of concept, we generated and characterized a library of 137 promoters and built a de novo Yarrowia lipolytica strain synthetizing 373.8 mg/L homogentisic acid.
Collapse
|
3
|
Kot EJ, Helbert JR. Two Verdant Types ofSaccharomyces Uvarum. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-35-0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- E. J. Kot
- Miller Brewing Company, Milwaukee, WI 53201
| | | |
Collapse
|
4
|
Kachroo AH, Laurent JM, Akhmetov A, Szilagyi-Jones M, McWhite CD, Zhao A, Marcotte EM. Systematic bacterialization of yeast genes identifies a near-universally swappable pathway. eLife 2017; 6:e25093. [PMID: 28661399 PMCID: PMC5536947 DOI: 10.7554/elife.25093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
Eukaryotes and prokaryotes last shared a common ancestor ~2 billion years ago, and while many present-day genes in these lineages predate this divergence, the extent to which these genes still perform their ancestral functions is largely unknown. To test principles governing retention of ancient function, we asked if prokaryotic genes could replace their essential eukaryotic orthologs. We systematically replaced essential genes in yeast by their 1:1 orthologs from Escherichia coli. After accounting for mitochondrial localization and alternative start codons, 31 out of 51 bacterial genes tested (61%) could complement a lethal growth defect and replace their yeast orthologs with minimal effects on growth rate. Replaceability was determined on a pathway-by-pathway basis; codon usage, abundance, and sequence similarity contributed predictive power. The heme biosynthesis pathway was particularly amenable to inter-kingdom exchange, with each yeast enzyme replaceable by its bacterial, human, or plant ortholog, suggesting it as a near-universally swappable pathway.
Collapse
Affiliation(s)
- Aashiq H Kachroo
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Jon M Laurent
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Azat Akhmetov
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Madelyn Szilagyi-Jones
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Claire D McWhite
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Alice Zhao
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Edward M Marcotte
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| |
Collapse
|
5
|
Role of heme in the antifungal activity of the azaoxoaporphine alkaloid sampangine. EUKARYOTIC CELL 2007; 7:387-400. [PMID: 18156292 DOI: 10.1128/ec.00323-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sampangine, a plant-derived alkaloid found in the Annonaceae family, exhibits strong inhibitory activity against the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. In the present study, transcriptional profiling experiments coupled with analyses of mutants were performed in an effort to elucidate its mechanism of action. Using Saccharomyces cerevisiae as a model organism, we show that sampangine produces a transcriptional response indicative of hypoxia, altering the expression of genes known to respond to low-oxygen conditions. Several additional lines of evidence obtained suggest that these responses could involve effects on heme. First, the hem1Delta mutant lacking the first enzyme in the heme biosynthetic pathway showed increased sensitivity to sampangine, and exogenously supplied hemin partially rescued the inhibitory activity of sampangine in wild-type cells. In addition, heterozygous mutants with deletions in genes involved in five out of eight steps in the heme biosynthetic pathway showed increased susceptibility to sampangine. Furthermore, spectral analyses of pyridine extracts indicated significant accumulation of free porphyrins in sampangine-treated cells. Transcriptional profiling experiments were also performed with C. albicans to investigate the response of a pathogenic fungal species to sampangine. Taking into account the known differences in the physiological responses of C. albicans and S. cerevisiae to low oxygen, significant correlations were observed between the two transcription profiles, suggestive of heme-related defects. Our results indicate that the antifungal activity of the plant alkaloid sampangine is due, at least in part, to perturbations in the biosynthesis or metabolism of heme.
Collapse
|
6
|
Abstract
The ascomycetous yeast Yarrowia lipolytica (formerly Candida, Endomycopsis, or Saccharomyces lipolytica) is one of the more intensively studied 'non-conventional' yeast species. This yeast is quite different from the well-studied yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe with respect to its phylogenetic evolution, physiology, genetics, and molecular biology. However, Y. lipolytica is not only of interest for fundamental research, but also for biotechnological applications. It secretes several metabolites in large amounts (i.e. organic acids, extracellular proteins) and the tools are available for overproduction and secretion of foreign proteins. This review presents a comprehensive overview on the available data on physiology, cell biology, molecular biology and genetics of Y. lipolytica.
Collapse
Affiliation(s)
- G Barth
- Institut für Mikrobiologie, Technische Universität Dresden, Germany.
| | | |
Collapse
|
7
|
Matringe M, Camadro JM, Labbe P, Scalla R. Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem J 1989; 260:231-5. [PMID: 2775186 PMCID: PMC1138650 DOI: 10.1042/bj2600231] [Citation(s) in RCA: 173] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diphenyl ether herbicides induce an accumulation of protoporphyrin IX in plant tissues. By analogy to human porphyria, the accumulation could be attributed to decreased (Mg or Fe)-chelatase or protoporphyrinogen oxidase activities. Possible effects of acifluorfen-methyl on these enzymes were investigated in isolated corn (maize, Zea mays) etioplasts, potato (Solanum tuberosum) and mouse mitochondria, and yeast mitochondrial membranes. Acifluorfen-methyl was strongly inhibitory to protoporphyrinogen oxidase activities whatever their origins [concn. causing 50% inhibition (IC50) = 4 nM for the corn etioplast enzyme]. By contrast, it was roughly 100,000 times less active on (Mg or Fe)-chelatase activities (IC50 = 80-100 microM). Our results lead us to propose protoporphyrinogen oxidase as a cellular target for diphenyl ether herbicides.
Collapse
Affiliation(s)
- M Matringe
- Laboratoire des Herbicides, INRA, BV 1540, Dijon, France
| | | | | | | |
Collapse
|
8
|
Skoneczny M, Chełstowska A, Rytka J. Study of the coinduction by fatty acids of catalase A and acyl-CoA oxidase in standard and mutant Saccharomyces cerevisiae strains. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 174:297-302. [PMID: 3289921 DOI: 10.1111/j.1432-1033.1988.tb14097.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Evidence is presented that Saccharomyces cerevisiae can metabolize fatty acids via the inducible peroxisomal beta-oxidation pathway even when these acids are not the sole carbon source. The fatty acids of chain length of C10-C18 induce acyl-CoA oxidase simultaneously with catalase A but have no effect on catalase T and acyl-CoA dehydrogenase. The coinduction of both acyl-CoA oxidase and catalase A is recorded in strains with both active catalase A and T or displaying only catalase A activity. In mutants lacking catalase A, the induction of acyl-CoA oxidase is observed without a concomitant increase in catalase activity. After centrifugation in a linear Ficoll gradient of the particulate fraction from the cells grown on ethanol and oleate the activity of acyl-CoA oxidase cosediments with catalase A. The relationship of catalase A to acyl-CoA oxidase is discussed.
Collapse
Affiliation(s)
- M Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw
| | | | | |
Collapse
|
9
|
Barth G, Weber H. Genetic studies on the yeast Saccharomycopsis lipolytica. Inactivation and mutagenesis. ZEITSCHRIFT FUR ALLGEMEINE MIKROBIOLOGIE 1983; 23:147-57. [PMID: 6880247 DOI: 10.1002/jobm.3630230302] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Spontaneous mutants of Saccharomycopsis lipolytica were selected and partially characterized. Several antibiotics and antimetabolites were used for selection of spontaneous resistant mutants from Saccharomycopsis lipolytica. The frequencies of such mutants were mainly arranged between 1 X 10(-7) and 5 X 10(-6) mutants per cell. But one class of glucosamine resistant mutants (GAMRA) occurred more frequently. Among the resistant mutants different types of dominant and recessive resistant mutants could be observed. UV light was used for inactivation of cells and induction of mutants from S. lipolytica. Comparing four haploid strains only small differences were detected in sensitivity to UV light. UV light at a dosage of 135 J/m2 was applied to increase the mutant frequencies in three haploid strains. Besides auxotrophic, temperature sensitive and colony morphology mutants, some new mutant types like small colony forming mutants, red-brown coloured mutants, some new mutant types like small colony forming mutants, red-brown coloured mutants, allylalcohol, glucosamine, 2-deoxyglucose or nystatin resistant mutants, hitherto not described for S. lipolytica, were isolated and partially characterized.
Collapse
|
10
|
Ogrydziak D, Bassel J, Contopoulou R, Mortimer R. Development of genetic techniques and the genetic map of the yeast Saccharomycopis lipolytica. ACTA ACUST UNITED AC 1978. [DOI: 10.1007/bf00271953] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|