1
|
Cooper S. Synthesis of the cell surface during the division cycle of rod-shaped, gram-negative bacteria. Microbiol Rev 1991; 55:649-74. [PMID: 1779930 PMCID: PMC372841 DOI: 10.1128/mr.55.4.649-674.1991] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
When the growth of the gram-negative bacterial cell wall is considered in relation to the synthesis of the other components of the cell, a new understanding of the pattern of wall synthesis emerges. Rather than a switch in synthesis between the side wall and pole, there is a partitioning of synthesis such that the volume of the cell increases exponentially and thus perfectly encloses the exponentially increasing cytoplasm. This allows the density of the cell to remain constant during the division cycle. This model is explored at both the cellular and molecular levels to give a unified description of wall synthesis which has the following components: (i) there is no demonstrable turnover of peptidoglycan during cell growth, (ii) the side wall grows by diffuse intercalation, (iii) pole synthesis starts by some mechanism and is preferentially synthesized compared with side wall, and (iv) the combined side wall and pole syntheses enclose the newly synthesized cytoplasm at a constant cell density. The central role of the surface stress model in wall growth is distinguished from, and preferred to, models that propose cell-cycle-specific signals as triggers of changes in the rate of wall synthesis. The actual rate of wall synthesis during the division cycle is neither exponential nor linear, but is close to exponential when compared with protein synthesis during the division cycle.
Collapse
Affiliation(s)
- S Cooper
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620
| |
Collapse
|
2
|
de Jonge BL, Wientjes FB, Jurida I, Driehuis F, Wouters JT, Nanninga N. Peptidoglycan synthesis during the cell cycle of Escherichia coli: composition and mode of insertion. J Bacteriol 1989; 171:5783-94. [PMID: 2681142 PMCID: PMC210437 DOI: 10.1128/jb.171.11.5783-5794.1989] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The composition and the mode of insertion of peptidoglycan synthesized during the cell cycle of Escherichia coli were determined. This was carried out on peptidoglycan that was periodically pulse-labeled in synchronously growing cultures. The chemical composition of the pulse-labeled (newly synthesized) peptidoglycan remained constant throughout the cell cycle, as judged from high-pressure liquid chromatography analysis of the muropeptide composition. The mode of insertion was deduced from the acceptor-donor radioactivity ratio in the bis-disaccharide tetratetra compound. The ratio was low in elongating cells and high in constricting cells. This indicates that during elongation, peptidoglycan was inserted as single strands, whereas during constriction, a multistranded (or sequential single-stranded) insertion occurred. Experiments with an ftsA division mutant suggested that the composition and mode of insertion of newly synthesized peptidoglycan remained the same throughout the constriction process. Our results imply that the changed mode of insertion rather than the chemical structure of the peptidoglycan might be responsible for the transition from cell elongation to polar cap formation.
Collapse
Affiliation(s)
- B L de Jonge
- Department of Microbiology, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
3
|
Hiemstra H, Nanninga N, Woldringh CL, Inouye M, Witholt B. Distribution of newly synthesized lipoprotein over the outer membrane and the peptidoglycan sacculus of an Escherichia coli lac-lpp strain. J Bacteriol 1987; 169:5434-44. [PMID: 3316185 PMCID: PMC213969 DOI: 10.1128/jb.169.12.5434-5444.1987] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The insertion of newly synthesized lipoprotein molecules into the cell wall of Escherichia coli was studied topographically by immunoelectron microscopy. Lipoprotein was briefly induced with isopropyl-beta-D-thiogalactopyranoside in cells carrying lac-lpp on a low-copy-number plasmid in an E. coli lpp host. Specific antibodies bound to the newly inserted lipoprotein molecules, which were exposed at the cell surface after treatment of the cells with Tris-EDTA, were detected with a protein A-gold probe. The average distribution of the gold particles over the cell surface of noninduced cells was determined for cells induced for 5 and 10 min. Analysis of 250 to 350 cells showed that the distribution of newly synthesized lipoprotein over the cell surface was homogeneous in both cases. The binding of lipoprotein to the peptidoglycan layer was studied by the same technique, and visual inspection again revealed a homogeneous distribution of bound lipoprotein over the entire sacculus surface. It is therefore concluded that free lipoprotein is inserted equally over the entire cell wall of E. coli, while binding to peptidoglycan also occurs over the entire cell surface. The rate of lipoprotein synthesis increased with cell length in nondividing cells, whereas it was constant in cells which had initiated constriction. Analysis of cells having different amounts of lipoprotein in their cell wall revealed that the cell shape depended on the total lipoprotein content of the cell. Cells having no or only a small amount of lipoprotein grew as spheres, whereas cells with increasing numbers of lipoprotein molecules gradually changed their shape to short rods.
Collapse
Affiliation(s)
- H Hiemstra
- Department of Biochemistry, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
4
|
Hiemstra H, de Hoop MJ, Inouye M, Witholt B. Induction kinetics and cell surface distribution of Escherichia coli lipoprotein under lac promoter control. J Bacteriol 1986; 168:140-51. [PMID: 3531164 PMCID: PMC213430 DOI: 10.1128/jb.168.1.140-151.1986] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The induction kinetics and surface accessibility of the outer membrane lipoprotein were studied in an Escherichia coli strain with the lpp gene under control of the lac promoter. Free lipoprotein appeared rapidly after induction with isopropyl-beta-D-thiogalactopyranoside and reached a steady-state level after 30 min. The newly induced lipoprotein was slowly bound to the peptidoglycan layer. Immunological methods were developed to detect lipoprotein accessible at the cell surface after various pretreatments as well as peptidoglycan-bound lipoprotein at the surface of isolated peptidoglycan sacculi with specific antibodies in combination with 125I-protein A. With these methods an increase in lipoprotein molecules at the cell surface and bound to the peptidoglycan sacculus could be detected following induction. The topology of newly synthesized lipoprotein was examined in thin sections as well as at the cell surface and the surface of the peptidoglycan sacculus with immunoelectron microscopy. Ultrathin cell sections, whole cells, and isolated peptidoglycan sacculi showed lipoprotein distributed homogeneously over the entire surface.
Collapse
|
5
|
|
6
|
Abstract
This review summarizes present knowledge of the bacterial cell cycle with particular emphasis on Escherichia coli. We discuss data coming from three different types of approaches to the study of cell extension and division: The search for discrete events occurring once per division cycle. It is generally agreed that the initiation and termination of DNA replication and cell septation are discrete events; there is less agreement on the sudden doubling in rate of cell surface extension, murein biosynthesis and the synthesis of membrane proteins and phospholipids. We discuss what is known about the temporal relationship amongst the various cyclic events studied. The search for discrete growth zones in the cell envelope layers. We discuss conflicting reports on the existence of murein growth zones and protein insertion sites in the inner and outer membranes. Elucidation of the mechanism regulating the initiation of DNA replication. The concept of "critical initiation mass" is examined. We review data suggesting that the DNA is attached to the envelope and discuss the role of the latter in the initiation of DNA replication.
Collapse
|
7
|
Pierucci O, Melzer M, Querini C, Rickert M, Krajewski C. Comparison among patterns of macromolecular synthesis in Escherichia coli B/r at growth rates of less and more than one doubling per hour at 37 degrees C. J Bacteriol 1981; 148:684-96. [PMID: 7028724 PMCID: PMC216256 DOI: 10.1128/jb.148.2.684-696.1981] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In Escherichia coli B/r, the relationship between the patterns of chromosome replication and of synthesis of envelope components differs at various growth rates. At growth rates greater than 1.0 doubling per h at 37 degrees C, the average mass and age at initiation of rounds of chromosome replication are similar to those at increase in incorporation of precursors into a major outer membrane protein and phosphatidylethanolamine. At growth rates less than 1.0 doubling per h at 37 degrees C the average mass and age at increase in the synthesis of these envelope components differ from those at initiation of chromosome replication. The average cell mass per chromosomal origin at initiation of rounds of chromosome replication is not a constant and varies between growth rates greater and less than 1.0 doubling per h.
Collapse
|
8
|
|
9
|
Inouye M, Halegoua S. Secretion and membrane localization of proteins in Escherichia coli. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1980; 7:339-71. [PMID: 6993100 DOI: 10.3109/10409238009105465] [Citation(s) in RCA: 320] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The envelope of Escherichia coli consists of two distinct membranes, the outer membrane and the cytoplasmic membrane. The space between the two membranes is called the periplasmic space, and each fraction contains its own specific proteins. In this review, it is discussed how proteins are localized in their final locations in the envelope. Proteins localized in the outer membrane and the periplasmic space as well as transmembranous proteins in the cytoplasmic membranes appear to be produced from their precursors which have peptide extensions of about 20 amino acid residues at the amino terminal ends. General features for the peptide extension are deduced from the known sequences of the peptide extensions, and, based on their known properties, a hypothesis (loop model) is proposed to explain the possible functions of the peptide extension during the mechanism of secretion across the cytoplasmic membrane.
Collapse
|
10
|
Geyer R, Galanos C, Westphal O, Golecki JR. A lipopolysaccharide-binding cell-surface protein from Salmonella minnesota. Isolation, partial characterization and occurrence in different Enterobacteriaceae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1979; 98:27-38. [PMID: 111933 DOI: 10.1111/j.1432-1033.1979.tb13156.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. Protein extracts obtained from Salmonella minnesota Re mutant cells by treatment with EDTA/NaC1 solution contain a protein which exhibits high affinity to bacterial lipopolysaccharides. The isolation and partial characterization of this lipopolysaccharide-binding protein is described. 2. The protein was purified from EDTA extracts by a two-step procedure consisting of ion-exchange chromatography on CM-Sephadex and preparative polyacrylamide gel electrophoresis at pH 9.5. The yield of the total purification procedure was around 16%. 3. The resulting protein preparation was homogeneous on the basis of disc gel electrophoresis, dodecylsulfate gel electrophoresis, isoelectric focusing in polyacrylamide gel and immunoelectrophoresis. 4. The isoelectric point of the protein was found to be 10.3 at 4 degrees C. Its molecular weight determined by dodecylsulfate gel electrophoresis is 15000. Its amino acid composition is characterized by the absence of histidine and proline, a low content in tyrosine and high amounts of alanine, lysine, aspartic and glutamic acid residues, or their respective amides. 5. The lipopolysaccharide-protein association was shown to be mainly due to ionic interactions of the basic protein with negatively charged groups (probably phosphate and pyrophosphate groups) of the lipid A moiety. 6. Purified lipopolysaccharide-binding protein is immunogenic in rabbits, thus enabling the preparation of specific antiserum. 7. The protein is located at the surface of Salmonella minnesota Re mutant cells as revealed by antiserum absorption with total bacteria. Ferritin-labelling studies further demonstrated that it is evenly spread over the entire cell surface. 8. Comparative antiserum absorption studies using smooth and rough strains of Salmonella minnesota, Salmonella typhimurium, Escherichia coli, Klebsiella and Shigella revealed the presence of lipopolysaccharide-binding protein (or a serologically cross-reacting antigen) in most of the strains tested. From these results the protein can be considered as a common antigen of Enterobacteriaceae.
Collapse
|
11
|
Sato T, Ohki M, Yura T, Ito K. Genetic studies of an Escherichia coli K-12 temperature-sensitive mutant defective in membrane protein synthesis. J Bacteriol 1979; 138:305-13. [PMID: 374381 PMCID: PMC218178 DOI: 10.1128/jb.138.2.305-313.1979] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mutant divE42(Ts) of Escherichia coli K-12, defective in the synthesis of membrane proteins and in the transcription of the lac operon at high temperature, has been further characterized. It was found that a mutation (divE42) located at about min 22 on the E. coli chromosome map is responsible for the Lac- phenotype and temperature-sensitive growth. The mutation could be contransduced with serC, pyrD, or pyrC by phage P1 at a frequency of 4, 16, or 0.5%, respectively, the gene order being serC-pyrD-ompA-sulA-divE-pyrC. Examination of temperature-independent revertants and Pyr+ transductants revealed that all the mutant phenotypes examined (deficiencies in the increase of activities of some membrane enzymes, expression of the lac operon, and synthesis of several other proteins) are due to a single mutation (divE42) which is recessive to the wild-type (divE+) allele. Protein synthesis in the mutant was also analyzed by dodecyl sulfate-polyacrylamide gel electrophoresis. Synthesis of a number of proteins, including membrane proteins, was found to decrease significantly, whereas that of an elongation factor, EF-Tu, increased upon transfer of a log-phase culture to high temperature (42 degrees C). These effects of temperature shift-up on protein synthesis were evident within 5 min under the conditions used.
Collapse
|
12
|
|
13
|
Mug-Opstelten D, Witholt B. Preferential release of new outer membrane fragments by exponentially growing Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 508:287-95. [PMID: 346062 DOI: 10.1016/0005-2736(78)90331-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have examined whether the outer membrane fragments released by normally growing Escherichia coli contain relatively old or new outer membrane. Double-label experiments show that after incorporation of radioactive leucine into E. coli protein, there is a preferential release of outer membrane material which contains a high percentage of newly labeled protein. This implies that outer membrane fragments are preferentially released from those regions where newly synthesized proteins are inserted into the outer membrane. We estimate that these insertion regions cover no more than 13% of the total outer membrane, and that newly inserted proteins diffuse in the plane of the outer membrane with a diffusion constant less than or equal to 5.10(-13) cm2/s.
Collapse
|
14
|
Beck BD, Park JT. Basis for the observed fluctuation of carboxypeptidase II activity during the cell cycle in BUG 6, a temperature-sensitive division mutant of Escherichia coli. J Bacteriol 1977; 130:1292-302. [PMID: 405375 PMCID: PMC235353 DOI: 10.1128/jb.130.3.1292-1302.1977] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diaminopimelyl-d-alanyl carboxypeptidase (carboxypeptidase II) is most active at the time of division, whether measured in toluene-treated cells of Escherichia coli K-12 strain D11-1, fractionated by size, or in toluene-treated cells of the temperature-sensitive division mutant, BUG 6 (B. D. Beck and J. T. Park, 1976). The present investigation has now shown that, under conditions that permit division, the increased carboxypeptidase II activity in toluenetreated cells of BUG 6 is probably not due to protein synthesis. Although dividing cells are more permeable than nondividing cells, permeability differences are not sufficient to account for the changes in carboxypeptidase II activity. Thus, in the toluene-treated nondividing cells, carboxypeptidase II is present, but its activity is masked, which suggests the presence of an inhibitor. Another striking difference between nondividing and dividing cells is that carboxypeptidase II is much more readily released from dividing cells by both tris(hydroxymethyl)aminomethane-ethylenediaminetetraacetic acid and toluene treatment. Carboxypeptidase II was partially purified and found to be an 86,000-molecular-weight protein consisting of two 43,000-molecular-weight polypeptides. Tris(hydroxymethyl)aminomethane-ethylenediaminetetraacetic acid treatment of nondividing cells releases less than 10% of the carboxypeptidase II and other periplasmic proteins that are releasable from dividing cells.
Collapse
|
15
|
Randall LL, Hardy SJ. Synthesis of exported proteins by membrane-bound polysomes from Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1977; 75:43-53. [PMID: 405218 DOI: 10.1111/j.1432-1033.1977.tb11502.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A membrane-bound fraction of polysomes of Escherichia coli has been isolated after lysis of cells without the use of lysozyme. Protein-synthesis studies in vitro show that membrane-bound and free polysomes are different in the following respects. 1. Membrane-bound polysomes synthesize proteins which are exported from the cell. The products include proteins of the outer membrane and a secreted periplasmic protein, the maltose-binding protein. 2. The major product synthesized by free polysomes is elongation factor Tu, a soluble cytoplasmic protein. 3. The activity of membrane-bound polysomes in vitro is more resistant to puromycin than is the activity of free polysomes. In addition, the mRNA associated with membrane-bound polysomes is more stable than the bulk of cellular mRNA as revealed by studies with rifampicin.
Collapse
|
16
|
Munford RS, Gotschlich EC. Iodination of Escherichia coli with chloramine T: selective labeling of the outer membrane lipoprotein. J Bacteriol 1977; 130:775-80. [PMID: 400793 PMCID: PMC235280 DOI: 10.1128/jb.130.2.775-780.1977] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Iodination of Escherichia coli cells with chloramine T preferentially labels the free and murein-bound forms of the outer membrane lipoprotein. Iodination for 15 s at 15 degrees C labels the two forms of the lipoprotein almost exclusively, whereas iodination for 60 s at 25 degrees C also labels the other major outer membrane proteins. Chloramine T iodination is a rapid, simple technique for labeling the outer membrane lipoprotein.
Collapse
|
17
|
Hakenbeck R, Messer W. Activity of murein hydrolases in synchronized cultures of Escherichia coli. J Bacteriol 1977; 129:1239-44. [PMID: 321419 PMCID: PMC235089 DOI: 10.1128/jb.129.3.1239-1244.1977] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Murein hydrolase activities were analyzed in synchronized cultures of Escherichia coli B/r. Cell wall-bound murein hydrolase activities, including the penicillin-sensitive endopeptidase, increased discontinuously during the cell cycle and showed maximum activity at a cell age of 30 to 35 min (generation time, 43 min). Maximum activity was observed at the same time that the rate of cell wall synthesis reached its maximum. These oscillations depended on the termination of replication: no increase in hydrolase activity was found if deoxyribonucleic acid synthesis was inhibited at an early time in the life cycle. In contrast, the activity of another murein hydrolase that was not tightly bound to the membrane (transglycosylase) increased exponentially with time, even when deoxyribonucleic acid synthesis was inhibited.
Collapse
|
18
|
Hakenbeck R, Messer W. Oscillations in the synthesis of cell wall components in synchronized cultures of Escherichia coli. J Bacteriol 1977; 129:1234-8. [PMID: 321418 PMCID: PMC235086 DOI: 10.1128/jb.129.3.1234-1238.1977] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The rate of cell wall synthesis with respect to both proteins and lipids was determined in synchronized cultures of Escherichia coli B/r. Whereas the rate of total protein synthesis showed an exponential increase with cell age, the rate of incorporation of proteins and lipids into cell wall had a maximum at a cell age of 30 to 35 min, 15 min before cell division. This oscillation was observed in both the cytoplasmic membrane and in the outer membrane of the cell envelope.
Collapse
|
19
|
Torti SV, Park JT. Lipoprotein of gram-negative bacteria is essential for growth and division. Nature 1976; 263:323-6. [PMID: 785286 DOI: 10.1038/263323a0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|