1
|
Gibson AK, Mundim FM, Ramirez AL, Timper P. Do biological control agents adapt to local pest genotypes? A multiyear test across geographic scales. Evol Appl 2024; 17:e13682. [PMID: 38617827 PMCID: PMC11009426 DOI: 10.1111/eva.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 03/05/2024] [Indexed: 04/16/2024] Open
Abstract
Parasite local adaptation has been a major focus of (co)evolutionary research on host-parasite interactions. Studies of wild host-parasite systems frequently find that parasites paired with local, sympatric host genotypes perform better than parasites paired with allopatric host genotypes. In contrast, there are few such tests in biological control systems to establish whether biological control parasites commonly perform better on sympatric pest genotypes. This knowledge gap prevents the optimal design of biological control programs: strong local adaptation could argue for the use of sympatric parasites to achieve consistent pest control. To address this gap, we tested for local adaptation of the biological control bacterium Pasteuria penetrans to the root-knot nematode Meloidogyne arenaria, a global threat to a wide range of crops. We measured the probability and intensity of P. penetrans infection on sympatric and allopatric M. arenaria over the course of 4 years. Our design accounted for variation in adaptation across scales by conducting tests within and across fields, and we isolated the signature of parasite adaptation by comparing parasites collected over the course of the growing season. Our results are largely inconsistent with local adaptation of P. penetrans to M. arenaria: in 3 of 4 years, parasites performed similarly well in sympatric and allopatric combinations. In 1 year, however, infection probability was 28% higher for parasites paired with hosts from their sympatric plot, relative to parasites paired with hosts from other plots within the same field. These mixed results argue for population genetic data to characterize the scale of gene flow and genetic divergence in this system. Overall, our findings do not provide strong support for using P. penetrans from local fields to enhance biological control of Meloidogyne.
Collapse
Affiliation(s)
| | - Fabiane M. Mundim
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of BiologyUtah State UniversityLoganUtahUSA
| | - Abbey L. Ramirez
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Patricia Timper
- United States Department of Agriculture Agricultural Research ServiceTiftonGeorgiaUSA
| |
Collapse
|
2
|
Liu C, Ji P, Timper P. Maternal Stress Reduces the Susceptibility of Root-Knot Nematodes to Pasteuria Penetrans. J Nematol 2019; 51:e2019-40. [PMID: 34179816 PMCID: PMC6916145 DOI: 10.21307/jofnem-2019-040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 11/11/2022] Open
Abstract
Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.). Endospores of P. penetrans attach to the cuticle of second-stage juveniles (J2) and complete their life cycle within the nematode female body. Infected females will be filled with spores and will be sterilized. Studies with Daphnia magna and its parasite Pasteuria ramosa showed that a poor maternal environment can lead to offspring resistant to P. ramosa. Therefore, we hypothesized that Meloidogyne arenaria females raised under a stressed environment would produce offspring that were more resistant to P. penetrans. Females were exposed to a stressed environment created by crowding and low-food supply, or a non-stressed environment and their offspring evaluated for endospore attachment and infection by P. penetrans. No difference in spore attachment was observed between the two treatments. However, infection rate of P. penetrans in the stressed treatment was significantly lower than that in the non-stressed treatment (8 vs 18%). Mothers raised under stressed conditions appeared to produce more resistant offspring than did mothers raised under favorable conditions. Under stressful conditions, M. arenaria mothers may provide their progeny with enhanced survival traits. In the field, when nematode populations are not managed, they often reach the carrying capacity of their host plant by the end of the season. This study suggests that the next generation of inoculum may be more resistant to infection by P. penetrans.
Collapse
Affiliation(s)
- Chang Liu
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793
- Entomology and Nematology Department, 1881 Natural Area Dr, Gainesville, FL 32611
| | - Pingsheng Ji
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793
| | | |
Collapse
|
3
|
Liu C, Gibson AK, Timper P, Morran LT, Tubbs RS. Rapid change in host specificity in a field population of the biological control organism Pasteuria penetrans. Evol Appl 2019; 12:744-756. [PMID: 30976307 PMCID: PMC6439493 DOI: 10.1111/eva.12750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/29/2022] Open
Abstract
In biological control, populations of both the biological control agent and the pest have the potential to evolve and even to coevolve. This feature marks the most powerful and unpredictable aspect of biological control strategies. In particular, evolutionary change in host specificity of the biological control agent could increase or decrease its efficacy. Here, we tested for change in host specificity in a field population of the biological control organism Pasteuria penetrans. Pasteuria penetrans is an obligate parasite of the plant parasitic nematodes Meloidogyne spp., which are major agricultural pests. From 2013 through 2016, we collected yearly samples of P. penetrans from eight plots in a field infested with M. arenaria. Plots were planted either with peanut (Arachis hypogaea) or with a rotation of peanut and soybean (Glycine max). To detect temporal change in host specificity, we tested P. penetrans samples annually for their ability to attach to (and thereby infect) four clonal lines of M. arenaria. After controlling for temporal variation in parasite abundance, we found that P. penetrans from each of the eight plots showed temporal variation in their attachment specificity to the clonal host lines. The trajectories of change in host specificity were largely unique to each plot. This result suggests that local forces, at the level of individual plots, drive change in specificity. We hypothesize that coevolution with local M. arenaria hosts may be one such force. Lastly, we observed an overall reduction in attachment rate with samples from rotation plots relative to samples from peanut plots. This result may reflect lower abundance of P. penetrans under crop rotation, potentially due to suppressed density of host nematodes. As a whole, the results show local change in specificity on a yearly basis, consistent with evolution of a biological control organism in its ability to infect and suppress its target pest.
Collapse
Affiliation(s)
- Chang Liu
- Department of Plant PathologyUniversity of GeorgiaTiftonGeorgia
| | | | | | | | - R. Scott Tubbs
- Crop and Soil Sciences, College of Agricultural and Environmental SciencesUniversity of GeorgiaTiftonGeorgia
| |
Collapse
|
4
|
Phani V, Somvanshi VS, Shukla RN, Davies KG, Rao U. A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita. BMC Genomics 2018; 19:850. [PMID: 30486772 PMCID: PMC6263062 DOI: 10.1186/s12864-018-5230-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. RESULTS A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. CONCLUSIONS Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.
Collapse
Affiliation(s)
- Victor Phani
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vishal S Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rohit N Shukla
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, India
| | - Keith G Davies
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, UK. .,Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Postboks 115 NO-1431, Ås, Norway.
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
5
|
Phani V, Rao U. Revisiting the Life-Cycle of Pasteuria penetrans Infecting Meloidogyne incognita under Soil-Less Medium, and Effect of Streptomycin Sulfate on its Development. J Nematol 2018; 50:91-98. [PMID: 30451430 DOI: 10.21307/jofnem-2018-022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pasteuria penetrans is a Gram-positive, endospore forming soil bacterium, infecting root-knot nematodes, Meloidogyne spp. Being obligate in nature, the bacterium is not easily grown in vitro, and the in vivo culturing technique is relied on the soil-based microcosm since long. Hence, culturing of P. penetrans using CYG germination pouches as a soil-less medium for plant growth, promises to provide a contamination free environment along with ease in isolation of infected females from the plant roots. Additionally, this method increases the percentage of P. penetrans infected nematode females as compared with the soil-based system. Schematic observation of all the life stages of P. penetrans was documented, which revealed chronological fragmentation of vegetative microcolony inside the nematode body demonstrating the formation of some stages not reported earlier. Further, germination of endospores attached to infective juveniles was found to be most likely asynchronous as single female nematode contained most of the developing stages of P. penetrans concurrently. Additionally, the effect of an antibiotic, streptomycin sulfate was evaluated for effects on the growth and development of the bacterium at different concentrations. Higher doses of antibiotic were found to exert a negative impact on the development of P. penetrans , which shows the incompatibility of Pasteuria and streptomycin sulfate.
Collapse
Affiliation(s)
- Victor Phani
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
6
|
Phani V, Shivakumara TN, Davies KG, Rao U. Meloidogyne incognita Fatty Acid- and Retinol- Binding Protein (Mi-FAR-1) Affects Nematode Infection of Plant Roots and the Attachment of Pasteuria penetrans Endospores. Front Microbiol 2017; 8:2122. [PMID: 29209280 PMCID: PMC5701614 DOI: 10.3389/fmicb.2017.02122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/18/2017] [Indexed: 11/13/2022] Open
Abstract
Root-knot nematode (RKN) Meloidogyne incognita is an economically important pest of crops. Pasteuria penetrans, is a nematode hyperparasitic bacterium capable of suppressing the reproduction of RKN and thereby useful for its management. Secreted fatty acid and retinol-binding proteins are unique in nematodes and are engaged in nutrient acquisition, development and reproduction; they are also a component of the nematode cuticle and thought to be involved in the interface between hosts and parasites. Attachment of endospores to the cuticle of second stage juveniles of RKN is the primary step of infection and several factors have been identified to facilitate attachment. In this study, the full length of Mi-far-1 (573 bp) was cloned from M. incognita and characterized. Analysis revealed that the Mi-far-1 was rich in α-helix structure, contained a predicted consensus casein kinase II phosphorylation site and a glycosylation site. Quantitative PCR showed the highest expression in the fourth stage juveniles and in situ hybridization revealed the presence of Mi-far-1 mRNA in the hypodermis below the cuticle. Single copy insertion pattern of Mi-far-1 in M. incognita genome was detected by Southern blotting. Knockdown of Mi-far-1 showed significantly increased attachment of P. penetrans’ endospores on juvenile cuticle surface and also affected host finding, root infection and nematode fecundity.
Collapse
Affiliation(s)
- Victor Phani
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Keith G Davies
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom.,Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
7
|
Zou X, Lu Y, Sun Q, Huang H, Liu M, Bao S. Transcriptome analysis of Meloidogyne incognita encumbered by Pasteuria penetrans endospores provides new insights into bacteria and nematode interaction. NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Root-knot nematodes (RKN,Meloidogynespp.) are one of the most harmful pests in agriculture.Pasteuria penetrans, an obligate hyperparasite of RKN, is an effective biological control agent. However, little is known about the molecular mechanisms of interaction betweenP. penetransand the second-stage juvenile (J2) ofMeloidogyne incognita. Here, we used transcriptome sequencing to characterise the differential expression profiles between control J2 ofM. incognitaand J2 encumbered byP. penetransendospores. A total of 445 genes were found to be differentially expressed, including 406 up-regulated and 39 down-regulated genes. Thirty-seven putative immune-related genes encoding collagens, cytochrome P450, lysozymes and other active proteins were identified. Genes involved in the ‘biosynthesis of unsaturated fatty acids’ pathway and several core sets of immune effectors were up-regulated, indicating conserved immune mechanisms among different nematodes. Down-regulation of cytochrome P450-related genes might suggest a specific defence response ofM. incognitaencumbered byP. penetransendospores.
Collapse
Affiliation(s)
- Xiaoxiao Zou
- Institute of Tropical Biosciences and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P.R. China
| | - Yan Lu
- Institute of Tropical Biosciences and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P.R. China
| | - Qianguang Sun
- Institute of Tropical Biosciences and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P.R. China
| | - Huiqin Huang
- Institute of Tropical Biosciences and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P.R. China
| | - Min Liu
- Institute of Tropical Biosciences and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P.R. China
| | - Shixiang Bao
- Institute of Tropical Biosciences and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P.R. China
| |
Collapse
|
8
|
Abstract
Endospore formation follows a complex, highly regulated developmental pathway that occurs in a broad range of Firmicutes. Although Bacillus subtilis has served as a powerful model system to study the morphological, biochemical, and genetic determinants of sporulation, fundamental aspects of the program remain mysterious for other genera. For example, it is entirely unknown how most lineages within the Firmicutes regulate entry into sporulation. Additionally, little is known about how the sporulation pathway has evolved novel spore forms and reproductive schemes. Here, we describe endospore and internal offspring development in diverse Firmicutes and outline progress in characterizing these programs. Moreover, comparative genomics studies are identifying highly conserved sporulation genes, and predictions of sporulation potential in new isolates and uncultured bacteria can be made from these data. One surprising outcome of these comparative studies is that core regulatory and some structural aspects of the program appear to be universally conserved. This suggests that a robust and sophisticated developmental framework was already in place in the last common ancestor of all extant Firmicutes that produce internal offspring or endospores. The study of sporulation in model systems beyond B. subtilis will continue to provide key information on the flexibility of the program and provide insights into how changes in this developmental course may confer advantages to cells in diverse environments.
Collapse
|
9
|
Ebert D, Duneau D, Hall MD, Luijckx P, Andras JP, Du Pasquier L, Ben-Ami F. A Population Biology Perspective on the Stepwise Infection Process of the Bacterial Pathogen Pasteuria ramosa in Daphnia. ADVANCES IN PARASITOLOGY 2015; 91:265-310. [PMID: 27015951 DOI: 10.1016/bs.apar.2015.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The infection process of many diseases can be divided into series of steps, each one required to successfully complete the parasite's life and transmission cycle. This approach often reveals that the complex phenomenon of infection is composed of a series of more simple mechanisms. Here we demonstrate that a population biology approach, which takes into consideration the natural genetic and environmental variation at each step, can greatly aid our understanding of the evolutionary processes shaping disease traits. We focus in this review on the biology of the bacterial parasite Pasteuria ramosa and its aquatic crustacean host Daphnia, a model system for the evolutionary ecology of infectious disease. Our analysis reveals tremendous differences in the degree to which the environment, host genetics, parasite genetics and their interactions contribute to the expression of disease traits at each of seven different steps. This allows us to predict which steps may respond most readily to selection and which steps are evolutionarily constrained by an absence of variation. We show that the ability of Pasteuria to attach to the host's cuticle (attachment step) stands out as being strongly influenced by the interaction of host and parasite genotypes, but not by environmental factors, making it the prime candidate for coevolutionary interactions. Furthermore, the stepwise approach helps us understanding the evolution of resistance, virulence and host ranges. The population biological approach introduced here is a versatile tool that can be easily transferred to other systems of infectious disease.
Collapse
Affiliation(s)
- Dieter Ebert
- Zoological Institute, University of Basel, Basel, Switzerland
| | - David Duneau
- Zoological Institute, University of Basel, Basel, Switzerland; Department Ecologie et Diversité Biologique, University Paul Sabatier-Toulouse III, Toulouse, France
| | - Matthew D Hall
- Zoological Institute, University of Basel, Basel, Switzerland; Monash University, School of Biological Sciences, Clayton Campus, Melbourne, VIC, Australia
| | - Pepijn Luijckx
- Zoological Institute, University of Basel, Basel, Switzerland; Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Jason P Andras
- Zoological Institute, University of Basel, Basel, Switzerland; Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | | | - Frida Ben-Ami
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Specific microbial attachment to root knot nematodes in suppressive soil. Appl Environ Microbiol 2014; 80:2679-86. [PMID: 24532076 DOI: 10.1128/aem.03905-13] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the interactions of plant-parasitic nematodes with antagonistic soil microbes could provide opportunities for novel crop protection strategies. Three arable soils were investigated for their suppressiveness against the root knot nematode Meloidogyne hapla. For all three soils, M. hapla developed significantly fewer galls, egg masses, and eggs on tomato plants in unsterilized than in sterilized infested soil. Egg numbers were reduced by up to 93%. This suggested suppression by soil microbial communities. The soils significantly differed in the composition of microbial communities and in the suppressiveness to M. hapla. To identify microorganisms interacting with M. hapla in soil, second-stage juveniles (J2) baited in the test soil were cultivation independently analyzed for attached microbes. PCR-denaturing gradient gel electrophoresis of fungal ITS or 16S rRNA genes of bacteria and bacterial groups from nematode and soil samples was performed, and DNA sequences from J2-associated bands were determined. The fingerprints showed many species that were abundant on J2 but not in the surrounding soil, especially in fungal profiles. Fungi associated with J2 from all three soils were related to the genera Davidiella and Rhizophydium, while the genera Eurotium, Ganoderma, and Cylindrocarpon were specific for the most suppressive soil. Among the 20 highly abundant operational taxonomic units of bacteria specific for J2 in suppressive soil, six were closely related to infectious species such as Shigella spp., whereas the most abundant were Malikia spinosa and Rothia amarae, as determined by 16S rRNA amplicon pyrosequencing. In conclusion, a diverse microflora specifically adhered to J2 of M. hapla in soil and presumably affected female fecundity.
Collapse
|
11
|
Luijckx P, Duneau D, Andras JP, Ebert D. Cross-species infection trials reveal cryptic parasite varieties and a putative polymorphism shared among host species. Evolution 2013; 68:577-86. [PMID: 24116675 DOI: 10.1111/evo.12289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/23/2013] [Indexed: 02/04/2023]
Abstract
A parasite's host range can have important consequences for ecological and evolutionary processes but can be difficult to infer. Successful infection depends on the outcome of multiple steps and only some steps of the infection process may be critical in determining a parasites host range. To test this hypothesis, we investigated the host range of the bacterium Pasteuria ramosa, a Daphnia parasite, and determined the parasites success in different stages of the infection process. Multiple genotypes of Daphnia pulex, Daphnia longispina and Daphnia magna were tested with four Pasteuria genotypes using infection trials and an assay that determines the ability of the parasite to attach to the hosts esophagus. We find that attachment is not specific to host species but is specific to host genotype. This may suggest that alleles on the locus controlling attachment are shared among different host species that diverged 100 million year. However, in our trials, Pasteuria was never able to reproduce in nonnative host species, suggesting that Pasteuria infecting different host species are different varieties, each with a narrow host range. Our approach highlights the explanatory power of dissecting the steps of the infection process and resolves potentially conflicting reports on parasite host ranges.
Collapse
Affiliation(s)
- Pepijn Luijckx
- University of Basel, Institute of Zoology, Evolutionsbiologie, Vesalgasse 1, 4051, Basel, Switzerland.
| | | | | | | |
Collapse
|
12
|
Pseudomonas and other Microbes in Disease-Suppressive Soils. SUSTAINABLE AGRICULTURE REVIEWS 2012. [DOI: 10.1007/978-94-007-4113-3_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Duneau D, Luijckx P, Ben-Ami F, Laforsch C, Ebert D. Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions. BMC Biol 2011; 9:11. [PMID: 21342515 PMCID: PMC3052238 DOI: 10.1186/1741-7007-9-11] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/22/2011] [Indexed: 11/30/2022] Open
Abstract
Background Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them. Results Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes. Conclusions Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary cycles. We discuss how different steps can explain different aspects of the coevolutionary dynamics of the system: the properties of the attachment step, explaining the rapid evolution of infectivity and the properties of later parasite proliferation explaining the evolution of virulence. Our study underlines the importance of resolving the infection process in order to better understand host-parasite interactions.
Collapse
Affiliation(s)
- David Duneau
- University of Basel, Zoological Institute, Vesalgasse 1, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
14
|
Bishop AH. Pasteuria penetrans and Its Parasitic Interaction with Plant Parasitic Nematodes. SOIL BIOLOGY 2011. [DOI: 10.1007/978-3-642-19577-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
15
|
Schmidt LM, Hewlett TE, Green A, Simmons LJ, Kelley K, Doroh M, Stetina SR. Molecular and Morphological Characterization and Biological Control Capabilities of a Pasteuria ssp. Parasitizing Rotylenchulus reniformis, the Reniform Nematode. J Nematol 2010; 42:207-17. [PMID: 22736858 PMCID: PMC3380488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Indexed: 06/01/2023] Open
Abstract
Rotylenchulus reniformis is one of 10 described species of reniform nematodes and is considered the most economically significant pest within the genus, parasitizing a variety of important agricultural crops. Rotylenchulus reniformis collected from cotton fields in the Southeastern US were observed to have the nematode parasitic bacterium Pasteuria attached to their cuticles. Challenge with a Pasteuria-specific monoclonal antibody in live immuno-fluorescent assay (IFA) confirmed the discovery of Pasteuria infecting R. reniformis. Scanning and transmission electron microscopy were employed to observe endospore ultrastructure and sporogenesis within the host. Pasteuria were observed to infect and complete their life-cycle in juvenile, male and female R. reniformis. Molecular analysis using Pasteuria species-specific and degenerate primers for 16s rRNA and spoII, and subsequent phylogenetic assessment, placed the Pasteuria associated with R. reniformis in a distinct clade within established assemblages for the Pasteuria infecting phytopathogenic nematodes. A global phylogenetic assessment of Pasteuria 16s rDNA using the Neighbor-Joining method resulted in a clear branch with 100% boot-strap support that effectively partitioned the Pasteuria infecting phytopathogenic nematodes from the Pasteuria associated with bacterivorous nematodes. Phylogenetic analysis of the R. reniformis Pasteuria and Pasteuria spp. parasitizing a number of economically important plant parasitic nematodes revealed that Pasteuria with different host specificities are closely related and likely constitute biotypes of the same species. This suggests host preference, and thus effective differentiation and classification are most likely predicated by an influential virulence determinant(s) that has yet to be elucidated. Pasteuria Pr3 endospores produced by in vitro fermentation demonstrated efficacy as a commercial bionematicide to control R. reniformis on cotton in pot tests, when applied as a seed treatment and in a granular formulation. Population control was comparable to a seed-applied nematicide/insecticide (thiodicarb/imidacloprid) at a seed coating application rate of 1.0 x 10(8) spores/seed.
Collapse
Affiliation(s)
- Liesbeth M Schmidt
- Pasteuria Bioscience Inc., 12085 Research Drive Suite 185, Alachua, FL 32615
| | | | | | | | | | | | | |
Collapse
|
16
|
Timper P. Population dynamics of Meloidogyne arenaria and Pasteuria penetrans in a long-term crop rotation study. J Nematol 2009; 41:291-9. [PMID: 22736828 PMCID: PMC3381465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Indexed: 06/01/2023] Open
Abstract
The endospore-forming bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.). The primary objective of this study was to determine the effect of crop sequence on abundance of P. penetrans. The experiment was conducted from 2000 to 2008 at a field site naturally infested with both the bacterium and its host Meloidogyne arenaria and included the following crop sequences: continuous peanut (Arachis hypogaea) (P-P-P) and peanut rotated with either 2 years of corn (Zea mays) (C-C-P), 1 year each of cotton (Gossypium hirsutum) and corn (Ct-C-P), or 1 year each of corn and a vegetable (V-C-P). The vegetable was a double crop of sweet corn and eggplant (Solanum melongena). A bioassay with second-stage juveniles (J2) of M. arenaria from a greenhouse (GH) population was used to estimate endospore abundance under the different crop sequences. A greater numerical increase in endospore densities was expected in the P-P-P and V-C-P sequences than in the other sequences because both peanut and eggplant are good hosts for M. arenaria. However, endospore densities, as determined by bioassay, did not substantially increase in any of the sequences during the 9-year experiment. To determine whether the nematode population had developed resistance to the resident P. penetrans, five single egg-mass (SEM) lines from the field population of M. arenaria were tested alongside the GH population for acquisition of endospores from the field soil. Four of the five SEM lines acquired 9 to 14 spores/J2 whereas the GH population and one of the SEM lines acquired 3.5 and 1.8 spores/J2, respectively. Endospore densities estimated with the four receptive SEM lines were highest in the P-P-P plots (14-20 spores/J2), intermediate in the V-C-P plots (6-7 spores/J2), and lowest in the Ct-C-P plots (< 1 spore/J2). These results indicate that the field population of M. arenaria is heterogeneous for attachment of P. penetrans endospores. Moreover, spore densities increased under intensive cropping of hosts for M. arenaria, but the GH population of the nematode was not receptive to spore attachment. However, previously, the GH population was very receptive to spore acquisition from this field site. One explanation for this inconsistency is that the M. arenaria population in the field became resistant to the dominant subpopulation of P. penetrans that had been present, and this led to the selection of a different subpopulation of the bacterium that is incompatible with the GH population.
Collapse
Affiliation(s)
- Patricia Timper
- Crop Protection and Management Research Unit, USDA ARS, P. O. Box 748, Tifton, GA 31793, USA
| |
Collapse
|
17
|
The influence of the actionmycete,Pasteuria penetrans, on the host–parasite relationship of the plant-parasitic nematode,Meloidogyne javanica. Parasitology 2009. [DOI: 10.1017/s0031182000081270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThe actinomycete,Pasteuria penetrans, is a specific endoparasite of various plant-parasitic nematodes. When parasitizing the root-knot nematode (Meloidogyne javanical) the nematode's capacity to reproduce is destroyed and feeding on and stimulation of the plant host are unaffected even though the bulbous body of the female nematode becomes filled with spores. Parasitism by the actinomycete does not alter the rate of growth in the early stages of nematode development although the non-parasitized female grows more rapidly than the parasitized one for a short time immediately after the final moult.Pasteuriadid not invade or inactivate the anterior oesophageal region of the femaleMeloidogyneor influence the morphology of the giant cells induced by these nematodes in their hosts' roots. The influence of this parasite on the developmental physiology of its nematode host is discussed.
Collapse
|
18
|
Abstract
SUMMARYBiological control is understood here in the classical sense, which is precisely defined by De Bach (1964) as ‘the action of parasites, predators or pathogens in maintaining another organism's population density at a lower average than would occur in their absence’. This account consists of a survey of the principal causes of disease in nematodes, with a summary of the efforts made to use certain pathogens in practise and a discussion of nematode pathology with reference to destruction of plant pathogenic nematodes.
Collapse
|
19
|
Williams AB, Stirling G, Hayward A, Perry J. Properties and attempted culture ofPasteuria penetrans, a bacterial parasite of root-knot nematode (Meloidogyne javanica). ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1989.tb03389.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Darban DA, Pathan MA, Bhatti AG, Maitelo SA. The effect of different initial densities of nematode (Meloidogyne javanica) on the build-up of Pasteuria penetrans population. J Zhejiang Univ Sci B 2005; 6:113-8. [PMID: 15633246 PMCID: PMC1389625 DOI: 10.1631/jzus.2005.b0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pasteuria penetrans will build-up faster where there is a high initial nematode density and can suppress root-knot nematode populations in the roots of tomato plants. The effect of different initial densities of nematode (Meloidogyne javanica) (150, 750, 1500, 3000) and P. penetrans infected females (F1, F3) densities (F0=control and AC=absolute control without nematode or P. penetrans inoculum) on the build-up of Pasteuria population was investigated over four crop cycles. Two major points of interest were highlighted. First, that within a confined soil volume, densities of P. penetrans can increase >100 times within 2 or 3 crop cycles. Second, from a relatively small amount of spore inoculum, infection of the host is very high. There were more infected females in the higher P. penetrans doses. The root growth data confirms the greater number of females in the controls particularly at the higher inoculum densities in the third and fourth crops. P. penetrans generally caused the fresh root weights to be higher than those in the control. P. penetrans has shown greater reduction of egg masses per plant at most densities. The effects of different initial densities of M. javanica and P. penetrans on the development of the pest and parasite populations were monitored. And no attempt was made to return the P. penetrans spores to the pots after each crop so the build-up in actual numbers of infected females and spores under natural conditions may be underestimated.
Collapse
Affiliation(s)
- Daim Ali Darban
- Faculty of Crop Proctection, Sindh Agriculture University, Tandojam, Pakistan.
| | | | | | | |
Collapse
|
21
|
Trotter JR, Bishop AH. Phylogenetic analysis and confirmation of the endospore-forming nature of Pasteuria penetrans based on the spo0A gene. FEMS Microbiol Lett 2003; 225:249-56. [PMID: 12951249 DOI: 10.1016/s0378-1097(03)00528-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pasteuria penetrans is an obligate parasite of plant parasitic nematodes and has yet to be grown in vitro. We have cloned the pivotal sporulation gene, spo0A, which is the first whole gene yet to come from this organism. Partial spo0A sequences were also obtained from the related bacteria, Pasteuria ramosa and Alicyclobacillus acidocaldarius. Phylogenetic analyses using the spo0A sequence data from this and previous studies confirmed the closeness of the genera Pasteuria and members of the supergenus Bacillus. A segment of the spo0A gene was also used to show that genetic heterogeneity exists within and between populations of P. penetrans. This may explain, partly at least, the variability of P. penetrans as a biological control agent of nematodes.
Collapse
Affiliation(s)
- James R Trotter
- School of Chemical and Life Sciences, University of Greenwich, MedwayCampus, Central Avenue, Chatham Maritime Kent ME4 4TB, UK
| | | |
Collapse
|
22
|
Abstract
In response to starvation, bacilli and clostridia undergo a specialized program of development that results in the production of a highly resistant dormant cell type known as the spore. A proteinacious shell, called the coat, encases the spore and plays a major role in spore survival. The coat is composed of over 25 polypeptide species, organized into several morphologically distinct layers. The mechanisms that guide coat assembly have been largely unknown until recently. We now know that proper formation of the coat relies on the genetic program that guides the synthesis of spore components during development as well as on morphogenetic proteins dedicated to coat assembly. Over 20 structural and morphogenetic genes have been cloned. In this review, we consider the contributions of the known coat and morphogenetic proteins to coat function and assembly. We present a model that describes how morphogenetic proteins direct coat assembly to the specific subcellular site of the nascent spore surface and how they establish the coat layers. We also discuss the importance of posttranslational processing of coat proteins in coat morphogenesis. Finally, we review some of the major outstanding questions in the field.
Collapse
Affiliation(s)
- A Driks
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153,
| |
Collapse
|
23
|
Ebert D, Weisser WW. Optimal killing for obligate killers: the evolution of life histories and virulence of semelparous parasites. Proc Biol Sci 1997; 264:985-91. [PMID: 9263465 PMCID: PMC1688549 DOI: 10.1098/rspb.1997.0136] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many viral, bacterial and protozoan parasites of invertebrates first propagate inside their host without releasing any transmission stages and then kill their host to release all transmission stages at once. Life history and the evolution of virulence of these obligately killing parasites are modelled, assuming that within-host growth is density dependent. We find that the parasite should kill the host when its per capita growth rate falls to the level of the host mortality rate. The parasite should kill its host later when the carrying capacity, K, is higher, but should kill it earlier when the parasite-independent host mortality increases or when the parasite has a higher birth rate. When K(t), for parasite growth, is not constant over the duration of an infection, but increases with time, the parasite should kill the host around the stage when the growth rate of the carrying capacity decelerates strongly. In case that K(t) relates to host body size, this deceleration in growth is around host maturation.
Collapse
Affiliation(s)
- D Ebert
- NERC Centre for Population Biology, Imperial College at Silwood Park, Ascot, Berkshire, UK.
| | | |
Collapse
|
24
|
Winkelheide R, Sturhan D. Light-microscopical studies on development and morphology of a bacterium of the genus Pasteuria parasitizing Heterodera goettingiana. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0232-4393(11)80113-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Sayre RM, Wergin WP, Schmidt JM, Starr MP. Pasteuria nishizawae sp. nov., a mycelial and endospore-forming bacterium parasitic on cyst nematodes of genera Heterodera and Globodera. Res Microbiol 1991; 142:551-64. [PMID: 1947427 DOI: 10.1016/0923-2508(91)90188-g] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study describes Pasteuria nishizawae sp. nov., a fourth species of the genus Pasteuria. This mycelial and endospore-forming bacterium parasitizes the adult females of cyst-forming nematodes in the genera Heterodera and Globodera. The distinct ultrastructural features and unique host range found for this bacterium separate it from two closely related species, Pasteuria penetrans, which parasitizes several species of root-knot nematodes of the genus Meloidogyne, and Pasteuria thornei, which appears to parasitize only one species of the root-lesion nematode, Pratylenchus brachyurus. Because these obligate bacterial parasites of nematodes have not been cultured axenically, the taxonomic relationships described here for each species are based mainly on developmental morphology, fine structure of the respective sporangia and endospores, and their pathogenicity on nematode species.
Collapse
Affiliation(s)
- R M Sayre
- Nematology Laboratory, Beltsville Agricultural Research Center, USDA ARS, MD 20705-2350
| | | | | | | |
Collapse
|
26
|
Davies KG, De Leij FAAM, Kerry BR. Microbial agents for the biological control of plant‐parasitic nematodes in tropical agriculture. ACTA ACUST UNITED AC 1991. [DOI: 10.1080/09670879109371606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Bird A, Brisbane P, McClure S, Kimber R. Studies on the properties of the spores of some populations of Pasteuria penetrans. J Invertebr Pathol 1990. [DOI: 10.1016/0022-2011(90)90052-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Mackie RI, Krecek RC, Els HJ, van Niekerk JP, Kirschner LM, Baecker AA. Characterization of the microbial community colonizing the anal and vulvar pores of helminths from the hindgut of zebras. Appl Environ Microbiol 1989; 55:1178-86. [PMID: 2667460 PMCID: PMC184273 DOI: 10.1128/aem.55.5.1178-1186.1989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Scanning and transmission electron microscopy were used to examine the adherence and in situ morphology of the microbial community colonizing the anal and vulvar pores of the subfamily Cyathostominae (Nematoda: Strongylidae) from the colon of Burchell's zebra (Equus burchelli antiquorum). Two different morphological types of asporogenous rod were prominent in the microbial community. One was a thin, septate, filamentous organism (0.4 to 0.5 micron by 2 to 3 microns) with blunt ends, which was more prominent at the site of attachment. The other was a larger (1.8 to 2.4 microns by 5 to 10 microns) multicellular rod with round ends in the form of a trichome. Spiral- and vibrio-shaped bacteria were also present in the thin sections. The septate filaments were shown to contain a cell spacer similar to those described in Methanospirillum hungatei. Attachment to the cuticle was by means of an amorphous electron-dense material with fibrillar appearance and not by specialized holdfast segments. Ten isolates were obtained from a habitat-simulating medium on which a homogenate from the posterior region was plated. Antibodies were raised to whole cells of five rod-shaped isolates in rabbits and fluorescein isothiocyanate labeled. Positive bright-yellow fluorescence was obtained with one of the clostridial isolates. The results are discussed with reference to other bacteria with similar morphology, the nature of this unique interrelationship between the microbial community and its parasitic host inside the equine hindgut, and the possibility of biological control of parasitic helminths.
Collapse
Affiliation(s)
- R I Mackie
- Animal and Dairy Science Research Institute, Irene, Republic of South Africa
| | | | | | | | | | | |
Collapse
|
29
|
Bio-efficacy of two bacterial insecticide strains ofBacillus thuringiensis as a biological control agent in comparison with a nematicide, nemacur, on certain parasitic nematoda. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/bf01905720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Starr MP, Sayre RM. Pasteuria thornei sp. nov. and Pasteuria penetrans sensu stricto emend., mycelial and endospore-forming bacteria parasitic, respectively, on plant-parasitic nematodes of the genera Pratylenchus and Meloidogyne. ANNALES DE L'INSTITUT PASTEUR. MICROBIOLOGY 1988; 139:11-31. [PMID: 3382544 DOI: 10.1016/0769-2609(88)90094-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Descriptions are presented of two members of the Pasteuria penetrans group of mycelial and endospore-forming bacteria, parasitic on plant-parasitic nematodes. In one case, the epithet P. penetrans sensu stricto emend. has now been limited to members of this group with cup-shaped sporangia and ellipsoidal endospores, parasitic primarily on the root-knot nematode Meloidogyne incognita. The second organism, with rhomboidal sporangia and nearly spherical endospores, which is parasitic primarily on the root-lesion nematode Pratylenchus brachyurus, is assigned to P. thornei sp. nov. An updated and emended description is offered of the genus Pasteuria Metchnikoff 1888 emend. The relationships are analysed among these two nematode parasites and the type species of this genus, P. ramosa Metchnikoff 1888, a parasite of cladoceran invertebrates. Because none of these microbes has been publicly reported to have been cultivated axenically, these relationships are based mainly on morphological, developmental, and pathological criteria.
Collapse
Affiliation(s)
- M P Starr
- Department of Bacteriology, University of California, Davis 95616
| | | |
Collapse
|
31
|
Alan Bird F, Donald Riddle L. Effect of attachment of Corynebacterium rathayi on movement of Anguina agrostis larvae. Int J Parasitol 1984. [DOI: 10.1016/0020-7519(84)90032-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Tekniepe BL, Schmidt JM, Starr P. Life cycle of a budding and appendaged bacterium belonging to morphotype IV of theBlastocaulis-Planctomyces group. Curr Microbiol 1981. [DOI: 10.1007/bf01566588] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Abstract
Although antibiotics and conventional vaccines are the two most familiar examples of man's exploitation of microorganisms as clinical allies, microorganisms and their products are assuming an increasingly prominent role in the diagnosis, treatment and prevention of human diseases. This report attempts to give a brief overview of the status of the use of microorganisms in clinical medicine and to identify potentially fertile areas for future progress in their clinical application, concentrating on areas other than the already extensively reviewed ones of antibiotics and classic immunization.
Collapse
|
34
|
|