1
|
Mutual supply of carbon and nitrogen sources in the co-culture of aerial microalgae and nitrogen-fixing bacteria. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
2
|
Production of Biohydrogen and/or Poly-β-hydroxybutyrate by Rhodopseudomonas sp. Using Various Carbon Sources as Substrate. Appl Biochem Biotechnol 2020; 193:307-318. [PMID: 32954484 DOI: 10.1007/s12010-020-03428-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
The polyhydroxyalkanoates (PHA) are family of biopolyesters synthesized by numerous bacteria which are attracting a great attention due to their thermoplastic properties. Polyhydroxybutyrate (PHB) is the most common type of PHA which presents thermoplastic and biodegradable properties. It is synthesized under stressful conditions by heterotrophic bacteria and many photosynthetic microorganisms such as purple non-sulfur bacteria and cyanobacteria. Biological hydrogen (H2) production is being evaluated for use as a fuel since it is a promising substitute for carbonaceous fuels owing to its high conversion efficiency and high specific content. In the present work, the purple non-sulfur photosynthetic bacterium Rhodopseudomonas sp. for the simultaneous H2 photo-evolution and poly-β-hydroxybutyrate (PHB) production has been investigated. Three different types of carbon sources were tested in the presence of glutamate as a nitrogen source in a batch cultivation system, under continuous irradiance. The results indicated the fact that the type of carbon source in the culture broth affects in various ways the metabolic activity of the bacterial biomass, as evidenced by the production of PHB and/or H2 and biomass. The best carbon source for PHB accumulation and H2 production by Rhodopseudomonas sp. turned out to be the acetate, having the highest H2 production (2286 mL/L) and PHB accumulation (68.99 mg/L, 18.28% of cell dry weight).
Collapse
|
3
|
Strodtman KN, Frank S, Stevenson S, Thelen JJ, Emerich DW. Proteomic Characterization of Bradyrhizobium diazoefficiens Bacteroids Reveals a Post-Symbiotic, Hemibiotrophic-Like Lifestyle of the Bacteria within Senescing Soybean Nodules. Int J Mol Sci 2018; 19:E3947. [PMID: 30544819 PMCID: PMC6320959 DOI: 10.3390/ijms19123947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023] Open
Abstract
The form and physiology of Bradyrhizobium diazoefficiens after the decline of symbiotic nitrogen fixation has been characterized. Proteomic analyses showed that post-symbiotic B. diazoefficiens underwent metabolic remodeling as well-defined groups of proteins declined, increased or remained unchanged from 56 to 119 days after planting, suggesting a transition to a hemibiotrophic-like lifestyle. Enzymatic analysis showed distinct patterns in both the cytoplasm and the periplasm. Similar to the bacteroid, the post-symbiotic bacteria rely on a non-citric acid cycle supply of succinate and, although viable, they did not demonstrate the ability to grow within the senescent nodule.
Collapse
Affiliation(s)
- Kent N Strodtman
- Department of Science, Columbia College, Columbia, MO 65216, USA.
| | - Sooyoung Frank
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | | | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | - David W Emerich
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
4
|
Reungsang A, Zhong N, Yang Y, Sittijunda S, Xia A, Liao Q. Hydrogen from Photo Fermentation. GREEN ENERGY AND TECHNOLOGY 2018. [DOI: 10.1007/978-981-10-7677-0_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
5
|
Lazaro CZ, Hitit ZY, Hallenbeck PC. Optimization of the yield of dark microaerobic production of hydrogen from lactate by Rhodopseudomonas palustris. BIORESOURCE TECHNOLOGY 2017; 245:123-131. [PMID: 28892681 DOI: 10.1016/j.biortech.2017.08.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Hydrogen yields of dark fermentation are limited due to the need to also produce reduced side products, and photofermentation, an alternative, is limited by the need for light. A relatively new strategy, dark microaerobic fermentation, could potentially overcome both these constraints. Here, application of this strategy demonstrated for the first time significant hydrogen production from lactate by a single organism in the dark. Response surface methodology (RSM) was used to optimize substrate and oxygen concentration as well as inoculum using both (1) regular batch and (2) O2 fed batch cultures. The highest hydrogen yield (HY) was observed under regular batch (1.4±0.1molH2/mollactate) and the highest hydrogen production (HP) (173.5µmolH2) was achieved using O2 fed batch. This study has provided proof of principal for the ability of microaerobic fermentation to drive thermodynamically difficult reactions, such as the conversion of lactate to hydrogen.
Collapse
Affiliation(s)
- Carolina Zampol Lazaro
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, CP6128 Succursale Centre-ville, Montréal, Québec H3C 3J7 Canada
| | - Zeynep Yilmazer Hitit
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, CP6128 Succursale Centre-ville, Montréal, Québec H3C 3J7 Canada; Faculty of Engineering, Department of Chemical Engineering, Ankara University, Tandogan, 06100 Ankara, Turkey
| | - Patrick C Hallenbeck
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, CP6128 Succursale Centre-ville, Montréal, Québec H3C 3J7 Canada; Life Sciences Research Center, Department of Biology, United States Air Force Academy, 2355 Faculty Drive, USAF Academy, CO 80840, United States.
| |
Collapse
|
6
|
|
7
|
Transcriptomic Responses of the Interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in a Cellulose-Grown Coculture for Enhanced Hydrogen Production. Appl Environ Microbiol 2016; 82:4546-4559. [PMID: 27208134 DOI: 10.1128/aem.00789-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/11/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Coculturing dark- and photofermentative bacteria is a promising strategy for enhanced hydrogen (H2) production. In this study, next-generation sequencing was used to query the global transcriptomic responses of an artificial coculture of Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009. By analyzing differentially regulated gene expression, we showed that, consistent with the physiological observations of enhanced H2 production and cellulose degradation, the nitrogen fixation genes in R. palustris and the cellulosomal genes in C. cellulovorans were upregulated in cocultures. Unexpectedly, genes related to H2 production in C. cellulovorans were downregulated, suggesting that the enhanced H2 yield was contributed mainly by R. palustris A number of genes related to biosynthesis of volatile fatty acids (VFAs) in C. cellulovorans were upregulated, and correspondingly, a gene that mediates organic compound catabolism in R. palustris was also upregulated. Interestingly, a number of genes responsible for chemotaxis in R. palustris were upregulated, which might be elicited by the VFA concentration gradient created by C. cellulovorans In addition, genes responsible for sulfur and thiamine metabolism in C. cellulovorans were downregulated in cocultures, and this could be due to a response to pH changes. A conceptual model illustrating the interactions between the two organisms was constructed based on the transcriptomic results. IMPORTANCE The findings of this study have important biotechnology applications for biohydrogen production using renewable cellulose, which is an industrially and economically important bioenergy process. Since the molecular characteristics of the interactions of a coculture when cellulose is the substrate are still unclear, this work will be of interest to microbiologists seeking to better understand and optimize hydrogen-producing coculture systems.
Collapse
|
8
|
Farmer RM, Tabita FR. Phosphoribulokinase mediates nitrogenase-induced carbon dioxide fixation gene repression in Rhodobacter sphaeroides. MICROBIOLOGY-SGM 2015; 161:2184-91. [PMID: 26306848 PMCID: PMC4806589 DOI: 10.1099/mic.0.000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In many organisms there is a balance between carbon and nitrogen metabolism. These observations extend to the nitrogen-fixing, nonsulfur purple bacteria, which have the classic family of P(II) regulators that coordinate signals of carbon and nitrogen status to regulate nitrogen metabolism. Curiously, these organisms also possess a reverse mechanism to regulate carbon metabolism based on cellular nitrogen status. In this work, studies in Rhodobacter sphaeroides firmly established that the activity of the enzyme that catalyses nitrogen fixation, nitrogenase, induces a signal that leads to repression of genes encoding enzymes of the Calvin–Benson–Bassham (CBB) CO2 fixation pathway. Additionally, genetic and metabolomic experiments revealed that NADH-activated phosphoribulokinase is an intermediate in the signalling pathway. Thus, nitrogenase activity appears to be linked to cbb gene repression through phosphoribulokinase.
Collapse
Affiliation(s)
- Ryan M Farmer
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| |
Collapse
|
9
|
Tsygankov AA, Khusnutdinova AN. Hydrogen in metabolism of purple bacteria and prospects of practical application. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715010154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Park TJ, Ding W, Cheng S, Brar MS, Ma APY, Tun HM, Leung FC. Microbial community in microbial fuel cell (MFC) medium and effluent enriched with purple photosynthetic bacterium (Rhodopseudomonas sp.). AMB Express 2014; 4:22. [PMID: 24949257 PMCID: PMC4052673 DOI: 10.1186/s13568-014-0022-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/20/2014] [Indexed: 12/24/2022] Open
Abstract
High power densities have been obtained from MFC reactors having a purple color characteristic of Rhodopseudomonas. We investigated the microbial community structure and population in developed purple MFC medium (DPMM) and MFC effluent (DPME) using 16S rRNA pyrosequencing. In DPMM, dominant bacteria were Comamonas (44.6%), Rhodopseudomonas (19.5%) and Pseudomonas (17.2%). The bacterial community of DPME mainly consisted of bacteria related to Rhodopseudomonas (72.2%). Hydrogen oxidizing bacteria were identified in both purple-colored samples: Hydrogenophaga and Sphaerochaeta in the DPMM, and Arcobacter, unclassified Ignavibacteriaceae, Acinetobacter, Desulfovibrio and Wolinella in the DPME. The methanogenic community of both purple-colored samples was dominated by hydrogenotrophic methanogens including Methanobacterium, Methanobrevibacter and Methanocorpusculum with significantly lower numbers of Methanosarcina. These results suggeste that hydrogen is actively produced by Rhodopseudomonas that leads to the dominance of hydrogen consuming microorganisms in both purple-colored samples. The syntrophic relationship between Rhodopseudomonas and hydrogenotrophic microbes might be important for producing high power density in the acetate-fed MFC under light conditions.
Collapse
|
11
|
Photobiological hydrogen production: Bioenergetics and challenges for its practical application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2013. [DOI: 10.1016/j.jphotochemrev.2013.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Chang JL, Lien CH, Vijayakumar P, Hsieh PH, Zen JM. Electrochemical regulation of microbial growth on disposable screen printed carbon electrodes. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Golomysova AN, Ivanov PS. Investigation of the anaerobic metabolism of Rhodobacter capsulatus by means of a flux model. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s000635091101009x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Waligórska M, Seifert K, Górecki K, Moritz M, Laniecki M. Kinetic model of hydrogen generation by Rhodobacter sphaeroides in the presence of NH ions. J Appl Microbiol 2009; 107:1308-18. [PMID: 19486388 DOI: 10.1111/j.1365-2672.2009.04314.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To examine the effects of ammonium ion concentration and illumination intensity on the effectivness of the hydrogen generation process of Rhodobacter sphaeroides. METHODS AND RESULTS In all experiments the amount of evolved hydrogen, biomass growth, concentration of ammonium ions, pH and chemical oxygen demand were measured. A nonstructural kinetic model was applied in description of biomass growth, the amount of evolved hydrogen and consumption of organic compounds and ammonium ions. An increase of ammonium ions concentration resulted in a decrease of maximal specific hydrogen potential production. At higher ammonium ion concentrations, no hydrogen evolution was observed. The efficiency of malic acid conversion into hydrogen and the PHB content in the biomass were the highest with lower concentrations of nitrogen compounds. CONCLUSION The presence of ammonium ions inhibits hydrogen photogeneration. A good agreement between the experimental data and model simulations were obtained. In all cases, hydrogen evolution started after an exhaustion of ammonium ions and the increase was proportional to the C/N ratio in the medium. The accumulation of PHB competes with the hydrogen evolution process while the conversion of acids into biomass was limited at higher levels of hydrogen generation. SIGNIFICANCE AND IMPACT OF THE STUDY Confirmation of the suitability of the selected model for kinetic studies of hydrogen photoevolution.
Collapse
Affiliation(s)
- M Waligórska
- A. Mickiewicz University, Poznań 60-780 , Poland
| | | | | | | | | |
Collapse
|
15
|
Suhaimi M, Liessens J, Verstraete W. NH+/4-N assimilation byRhodobacter capsulatusATCC 23782 grown axenically and non-axenically in N and C rich media. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1987.tb02380.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Rey FE, Heiniger EK, Harwood CS. Redirection of metabolism for biological hydrogen production. Appl Environ Microbiol 2007; 73:1665-71. [PMID: 17220249 PMCID: PMC1828789 DOI: 10.1128/aem.02565-06] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major route for hydrogen production by purple photosynthetic bacteria is biological nitrogen fixation. Nitrogenases reduce atmospheric nitrogen to ammonia with the concomitant obligate production of molecular hydrogen. However, hydrogen production in the context of nitrogen fixation is a rather inefficient process because about 75% of the reductant consumed by the nitrogenase is used to generate ammonia. In this study we describe a selection strategy to isolate strains of purple photosynthetic bacteria in which hydrogen production is necessary for growth and independent of nitrogen fixation. We obtained four mutant strains of the photosynthetic bacterium Rhodopseudomonas palustris that produce hydrogen constitutively, even in the presence of ammonium, a condition where wild-type cells do not accumulate detectable amounts of hydrogen. Some of these strains produced up to five times more hydrogen than did wild-type cells growing under nitrogen-fixing conditions. Transcriptome analyses of the hydrogen-producing mutant strains revealed that in addition to the nitrogenase genes, 18 other genes are potentially required to produce hydrogen. The mutations that caused constitutive hydrogen production mapped to four different sites in the NifA transcriptional regulator in the four different strains. The strategy presented here can be applied to the large number of diverse species of anoxygenic photosynthetic bacteria that are known to exist in nature to identify strains for which there are fitness incentives to produce hydrogen.
Collapse
Affiliation(s)
- Federico E Rey
- Department of Microbiology, Box 357242, 1959 N. E. Pacific Street, University of Washington, Seattle, WA 98195-7242, USA
| | | | | |
Collapse
|
17
|
Penfold D, Forster C, Macaskie L. Increased hydrogen production by Escherichia coli strain HD701 in comparison with the wild-type parent strain MC4100. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00115-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Jeong HS, Jouanneau Y. Enhanced nitrogenase activity in strains of Rhodobacter capsulatus that overexpress the rnf genes. J Bacteriol 2000; 182:1208-14. [PMID: 10671439 PMCID: PMC94404 DOI: 10.1128/jb.182.5.1208-1214.2000] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the photosynthetic bacterium Rhodobacter capsulatus, a putative membrane-bound complex encoded by the rnfABCDGEH operon is thought to be dedicated to electron transport to nitrogenase. In this study, the whole rnf operon was cloned under the control of the nifH promoter in plasmid pNR117 and expressed in several rnf mutants. Complementation analysis demonstrated that transconjugants which integrated plasmid pNR117 directed effective biosynthesis of a functionally competent complex in R. capsulatus. Moreover, it was found that strains carrying pNR117 displayed nitrogenase activities 50 to 100% higher than the wild-type level. The results of radioactive labeling experiments indicated that the intracellular content of nitrogenase polypeptides was marginally altered in strains containing pNR117, whereas the levels of the RnfB and RnfC proteins present in the membrane were four- and twofold, respectively, higher than the wild-type level. Hence, the enhancement of in vivo nitrogenase activity was correlated with a commensurate overproduction of the Rnf polypeptides. In vitro nitrogenase assays performed in the presence of an artificial electron donor indicated that the catalytic activity of the enzyme was not increased in strains overproducing the Rnf polypeptides. It is proposed that the supply of reductants through the Rnf complex might be rate limiting for nitrogenase activity in vivo. Immunoprecipitation experiments performed on solubilized membrane proteins revealed that RnfB and RnfC are associated with each other and with additional polypeptides which may be components of the membrane-bound complex.
Collapse
Affiliation(s)
- H S Jeong
- CEA-Grenoble, Département de Biologie Moléculaire et Structurale, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, CNRS UMR 314, F-38054 Grenoble Cédex 9, France
| | | |
Collapse
|
19
|
Katsuda T, Azuma M, Kato J, Takakuwa S, Ooshima H. Effects of Ethanolamine as a nitrogen source on hydrogen production by Rhodobacter capsulatus. Biosci Biotechnol Biochem 2000; 64:248-53. [PMID: 10737177 DOI: 10.1271/bbb.64.248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ethanolamine was examined as a nitrogen source in the production of hydrogen by Rhodobacter capsulatus ST-410, a hydrogenase-deficient mutant of the strain B-100. It was found that ethanolamine supports cell growth as the sole nitrogen source and permits a large amount of hydrogen evolution, detected at 138 micromol/ml-culture from 3.5 mM ethanolamine and 30 mM DL-malate. The amount corresponded to a stoichiometric yield of 77% and was close to that obtained from 7.0 mM L-glutamate and 30 mM DL-malate. The hydrogen evolution rate per unit biomass (cells) was higher than that with L-glutamate, and the cells grown with ethanolamine had higher nitrogenase activity than the cells grown with L-glutamate. In terms of bioconversion of cellulosic and hemicellulosic biomass to hydrogen, D-glucose, D-xylose, and D-cellobiose were tested as substrates. The results indicated that those sugars permit a large evolution of hydrogen through cultivation with ethanolamine as a nitrogen source. For instance, the cells grown with 3.5 mM ethanolamine evolved hydrogen of 289 micromol/ml-culture (80% yield) from 30 mM D-glucose under a controlled pH of 6.4 to 6.9.
Collapse
Affiliation(s)
- T Katsuda
- Department of Bioapplied Chemistry, Osaka City University, Osaka, Japan
| | | | | | | | | |
Collapse
|
20
|
Zhu H, Wakayama T, Suzuki T, Asada Y, Miyake J. Entrapment of Rhodobacter sphaeroides RV in cationic polymer/agar gels for hydrogen production in the presence of NH4+. J Biosci Bioeng 1999; 88:507-12. [PMID: 16232653 DOI: 10.1016/s1389-1723(00)87667-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/1999] [Accepted: 07/28/1999] [Indexed: 10/18/2022]
Abstract
Cationic polyelectrolytes (chitosan, poly-L-lysine (PLL), polyethyleneimine (PEI) and trimethylammonium glycol chitosan iodide (TGCI)) were used to entrap anoxygenic phototrophic bacteria in order to prevent the inhibitory effect of NH4+ on hydrogen production. When combined with agar gel, chitosan and PLL demonstrated no obvious repressive effect on hydrogen production by Rhodobacter sphaeroides under light-anaerobic conditions with lactate and glutamate as the carbon and nitrogen sources, respectively. On the other hand, both PEI and TGCI exerted a detrimental effect on hydrogen production under these conditions. Hydrogen production in the presence of NH4+ by the bacteria entrapped in the complex gel containing chitosan and agar improved considerably compared to that in the control containing only agar. Evidence shows that chitosan improves the hydrogen production via various effects. Diffusion tests demonstrated that the addition of chitosan increased to some extent the resistance to the diffusion of positively charged NH4+, but had no effect on negatively charged lactate. A buffer effect in the complex gels was also revealed.
Collapse
Affiliation(s)
- H Zhu
- Division of Agricultural Science, The United Graduate School, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | |
Collapse
|
21
|
Abstract
Production of hydrogen by anaerobes, facultative anaerobes, aerobes, methylotrophs, and photosynthetic bacteria is possible. Anaerobic Clostridia are potential producers and immobilized C. butyricum produces 2 mol H2/mol glucose at 50% efficiency. Spontaneous production of H2 from formate and glucose by immobilized Escherichia coli showed 100% and 60% efficiencies, respectively. Enterobactericiae produces H2 at similar efficiency from different monosaccharides during growth. Among methylotrophs, methanogenes, rumen bacteria, and thermophilic archae, Ruminococcus albus, is promising (2.37 mol/mol glucose). Immobilized aerobic Bacillus licheniformis optimally produces 0.7 mol H2/mol glucose. Photosynthetic Rhodospirillum rubrum produces 4, 7, and 6 mol of H2 from acetate, succinate, and malate, respectively. Excellent productivity (6.2 mol H2/mol glucose) by co-cultures of Cellulomonas with a hydrogenase uptake (Hup) mutant of R. capsulata on cellulose was found. Cyanobacteria, viz., Anabaena, Synechococcus, and Oscillatoria sp., have been studied for photoproduction of H2. Immobilized A. cylindrica produces H2 (20 ml/g dry wt/h) continually for 1 year. Increased H2 productivity was found for Hup mutant of A. variabilis. Synechococcus sp. has a high potential for H2 production in fermentors and outdoor cultures. Simultaneous productions of oxychemicals and H2 by Klebseilla sp. and by enzymatic methods were also attempted. The fate of H2 biotechnology is presumed to be dictated by the stock of fossil fuel and state of pollution in future.
Collapse
Affiliation(s)
- R Nandi
- Department of Applied Biochemistry, Indian Institute of Chemical Biology, Calcutta, India
| | | |
Collapse
|
22
|
Ooshima H, Takakuwa S, Katsuda T, Okuda M, Shirasawa T, Azuma M, Kato J. Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(98)80064-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Hydrogen photoproduction from CO2-fixing microalgal biomass: Application of lactic acid fermentation by Lactobacillus amylovorus. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0922-338x(97)82003-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Sasikala C, Ramana CV. Biotechnological potentials of anoxygenic phototrophic bacteria. II. Biopolyesters, biopesticide, biofuel, and biofertilizer. ADVANCES IN APPLIED MICROBIOLOGY 1995; 41:227-78. [PMID: 7572334 DOI: 10.1016/s0065-2164(08)70311-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C Sasikala
- Department of Botany, Osmania University, Hyderabad, India
| | | |
Collapse
|
25
|
|
26
|
The Ecological and Physiological Significance of the Growth of Heterotrophic Microorganisms with Mixtures of Substrates. ADVANCES IN MICROBIAL ECOLOGY 1995. [DOI: 10.1007/978-1-4684-7724-5_8] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Willison JC, Tissot G. The Escherichia coli efg gene and the Rhodobacter capsulatus adgA gene code for NH3-dependent NAD synthetase. J Bacteriol 1994; 176:3400-2. [PMID: 8195100 PMCID: PMC205516 DOI: 10.1128/jb.176.11.3400-3402.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The essential gene efg, which complements ammonia-dependent growth (adgA) mutations in Rhodobacter capsulatus and is located at 38.1 min on the Escherichia coli chromosome, was found to code for NH3-dependent NAD synthetase. Crude extracts from a strain which overproduces the efg gene product contained up to 400 times more activity than crude extracts from the control strain, and the purified Efg protein possessed-NH3-dependent NAD synthetase activity. Glutamine-dependent NAD synthetase activity was found in crude extracts of E. coli but not in the purified enzyme, suggesting that it may be catalyzed by an additional subunit. An R. capsulatus strain carrying an adgA mutation was found to be deficient in NAD synthetase activity, and activity was restored by complementation with the E. coli gene. In accordance with the nomenclature proposed for Salmonella typhimurium (K. T. Hughes, B. M. Olivera, and J. R. Roth, J. Bacteriol. 170:2113-2120, 1988), the efg and adgA genes should now be designated nadE.
Collapse
Affiliation(s)
- J C Willison
- Laboratoire de Biochimie Microbinne (Centre National de la Recherche Scientifique URA 1130), Département de Biologie Moléculaire et Structurale, Centre d'Etudes Nucléaires de Grenoble, France
| | | |
Collapse
|
28
|
Gest H. A microbiologist's odyssey: Bacterial viruses to photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 1994; 40:129-146. [PMID: 24311283 DOI: 10.1007/bf00019331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/1994] [Accepted: 01/13/1994] [Indexed: 06/02/2023]
Abstract
Perspective can be defined as the relationships or relative importance of facts or matters from any special point of view. Thus, my Personal perspective reflects the threads I followed in a 50-year journey of research in the complex tapestry of bioenergetics and various aspects of microbial metabolism. An early interest in biochemical and microbial evolution led to the fertile hunting grounds of anoxygenic photosynthetic bacteria. Viewed as a physiological class, these organisms show remarkable metabolic versatility in that certain individual species are capable of using all the known major types of energy conversion (photosynthetic, respiratory, and fermentative) to support growth. Since such anoxyphototrophs are readily amenable to molecular genetic/biological manipulation, it can be expected that they will eventually provide important clues for unraveling the evolutionary relationships of the several kinds of energy conversion. I gradually came to believe that understanding the evolution of phototrophs would require detailed knowledge not only of how light is converted to chemical energy, but also of a) pathways of monomer production from extracellular sources of carbon and nitrogen and b) mechanisms cells use for integrating ATP regeneration with the energy-requiring biosyntheses of biological macromolecules. Serendipic observation of photoproduction of H2 from organic compounds by Rhodospirillum rubrum in 1949 led to discovery of N2 fixation by anoxyphototrophs, and this capacity was later exploited for the isolation of hitherto unknown species of photosynthetic prokaryotes, including the heliobacteria. Recent studies on the reaction centers of the heliobacteria suggest the possibility that these bacteria are descendents of early phototrophs that gave rise to oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- H Gest
- Photosynthetic Bacteria Group, Department of Biology, Indiana University, 47405, Bloomington, IN, USA
| |
Collapse
|
29
|
Kinetics of light limited growth and biological hydrogen production from carbon monoxide and water by Rhodospirillum rubrum. J Biotechnol 1993. [DOI: 10.1016/0168-1656(93)90049-s] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Pierrard J, Ludden PW, Roberts GP. Posttranslational regulation of nitrogenase in Rhodobacter capsulatus: existence of two independent regulatory effects of ammonium. J Bacteriol 1993; 175:1358-66. [PMID: 8444798 PMCID: PMC193222 DOI: 10.1128/jb.175.5.1358-1366.1993] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the photosynthetic bacterium Rhodobacter capsulatus, nitrogenase activity is regulated by ADP-ribosylation of component II in response to the addition of ammonium to cultures or to the removal of light. The ammonium stimulus results in a fast and almost complete inhibition of the in vivo acetylene reduction activity, termed switch-off, which is reversed after the ammonium is exhausted. In the present study of the response of cells to ammonium, ADP-ribosylation of component II occurred but could not account for the extent and timing of the inhibition of activity. The presence of an additional response was confirmed with strains expressing mutant component II proteins; although these proteins are not a substrate for ADP-ribosylation, the strains continued to exhibit a switch-off response to ammonium. This second regulatory response of nitrogenase to ammonium was found to be synchronous with ADP-ribosylation and was responsible for the bulk of the observed effects on nitrogenase activity. In comparison, ADP-ribosylation in R. capsulatus was found to be relatively slow and incomplete but responded independently to both known stimuli, darkness and ammonium. Based on the in vitro nitrogenase activity of both the wild type and strains whose component II proteins cannot be ADP-ribosylated, it seems likely that the second response blocks either the ATP or the electron supply to nitrogenase.
Collapse
Affiliation(s)
- J Pierrard
- Department of Bacteriology, University of Wisconsin-Madison 53706
| | | | | |
Collapse
|
31
|
Willison JC. Biochemical genetics revisited: the use of mutants to study carbon and nitrogen metabolism in the photosynthetic bacteria. FEMS Microbiol Rev 1993; 10:1-38. [PMID: 8431308 DOI: 10.1111/j.1574-6968.1993.tb05862.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The biochemical genetics approach is defined as the use of mutants, in comparative studies with the wild-type, to obtain information about biochemical and physiological processes in complex metabolic systems. This approach has been used extensively, for example in studies on the bioenergetics of the photosynthetic bacteria, but has been applied less frequently to studies of intermediary carbon and nitrogen metabolism in phototrophic organisms. Several important processes in photosynthetic bacteria--the regulation of nitrogenase synthesis and activity, the control of intracellular redox balance during photoheterotrophic growth, and chemotaxis--have been shown to involve metabolism. However, current understanding of carbon and nitrogen metabolism in these organisms is insufficient to allow a complete understanding of these phenomena. The purpose of the present review is to give an overview of carbon and nitrogen metabolism in the photosynthetic bacteria, with particular emphasis on work carried out with mutants, and to indicate areas in which the biochemical genetics approach could be applied successfully. In particular, it will be argued that, in the case of Rhodobacter capsulatus and Rb. sphaeroides, two species which are fast-growing, possess a versatile metabolism, and have been extensively studied genetically, it should be possible to obtain a complete, integrated description of carbon and nitrogen metabolism, and to undertake a qualitative and quantitative analysis of the flow of carbon and reducing equivalents during photoheterotrophic growth. This would require a systematic biochemical genetic study employing techniques such as HPLC, NMR, and mass spectrometry, which are briefly discussed. The review is concerned mainly with Rb. capsulatus and Rb. sphaeroides, since most studies with mutants have been carried out with these organisms. However, where possible, a comparison is made with other species of purple non-sulphur bacteria and with purple and green sulphur bacteria, and recent literature relevant to these organisms has been cited.
Collapse
Affiliation(s)
- J C Willison
- Département de Biologie Moléculaire et Structurale, Centre d'Etudes Nucléaires de Grenoble, France
| |
Collapse
|
32
|
Anoxygenic Phototrophic Bacteria: Physiology and Advances in Hydrogen Production Technology. ADVANCES IN APPLIED MICROBIOLOGY 1993. [DOI: 10.1016/s0065-2164(08)70217-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Cauvin B, Colbeau A, Vignais PM. The hydrogenase structural operon in Rhodobacter capsulatus contains a third gene, hupM, necessary for the formation of a physiologically competent hydrogenase. Mol Microbiol 1991; 5:2519-27. [PMID: 1791762 DOI: 10.1111/j.1365-2958.1991.tb02098.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The hupM gene, previously called ORFX, found downstream from and contiguous with the structural hydrogenase genes hupS and hupL in Rhodobacter capsulatus, is shown here to form a single hupSLM transcription unit with the two other genes. The hupM gene was inactivated by interposon mutagenesis. The two selected mutants, BCX1 and BCX2, which contained the kanamycin-resistance gene in opposite orientation, still exhibited hydrogenase activity when assayed with the artificial electron acceptors benzylviologen and methylene blue. However, the hydrogenase was not physiologically active in these mutants, which could not grow autotrophically and were unable to recycle electrons to nitrogenase or to respire on H2. The hupM gene starts nine base pairs downstream from the TGA stop codon of hupL gene, which encodes the large subunit of the [NiFe]hydrogenase of Rhodobacter capsulatus. The three contiguous genes hupS, hupL and hupM were subcloned downstream from the promoter of hupSL, either with the promoter in the correct orientation (plasmid pBC8) or with the promoter in the opposite orientation (plasmid pBC9), then the constructs were introduced into the mutant strains. Only plasmid pBC8 could restore the formation of a competent hydrogenase in mutants BCX1 and BCX2, indicating that the hupM gene is expressed only from the hupSL promoter.
Collapse
Affiliation(s)
- B Cauvin
- Laboratoire de Biochimie Microbienne, Unité 1130 du CNRS alliée à l'INSERM/DBMS, Centre d'Etudes, Nucléaires, Grenoble, France
| | | | | |
Collapse
|
34
|
Chadwick LJ, Irgens RL. Hydrogen Gas Production by an
Ectothiorhodospira vacuolata
Strain. Appl Environ Microbiol 1991; 57:594-6. [PMID: 16348423 PMCID: PMC182755 DOI: 10.1128/aem.57.2.594-596.1991] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A hydrogen gas (H
2
)-producing strain of
Ectothiorhodospira vacuolata
isolated from Soap Lake, Washington, possessed nitrogenase activity. Increasing evolution of H
2
with decreasing ammonium chloride concentrations provided evidence that nitrogenase was the catalyst in gas production. Cells were grown in a mineral medium plus 0.2% acetate with sodium sulfide as an electron donor. Factors increasing H
2
production included addition of reduced carbon compounds such as propionate and succinate, increased reducing power by increasing sodium sulfide concentrations, and increased energy charge (ATP) by increasing light intensity.
Collapse
Affiliation(s)
- L J Chadwick
- Department of Biology, Southwest Missouri State University, 901 S. National, Springfield, Missouri 65804
| | | |
Collapse
|
35
|
Shen J, Hirayama O. Hydrogen photoproduction and denitrification by photosynthetic bacteria isolated from Lake Nakaumi and its vicinity. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0922-338x(91)90083-s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Hyun MS, Okuda SI, Izaki K. Purification and characterization of a neutral serine protease from non-sulfur purple photosynthetic bacterium. Curr Microbiol 1989. [DOI: 10.1007/bf01571132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Ito K, Sakakibara SI, Izaki K. Cloning of two protease genes fromRhodocyclus gelatinosa APR 3-2 and their expression inEscherichia coli. Curr Microbiol 1989. [DOI: 10.1007/bf01568829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Ferguson SJ, Jackson J, McEwan AG. Anaerobic respiration in the Rhodospirillaceae: characterisation of pathways and evaluation of roles in redox balancing during photosynthesis. FEMS Microbiol Lett 1987. [DOI: 10.1111/j.1574-6968.1987.tb02455.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
Abstract
The photosynthetic prokaryotes possess diverse metabolic capabilities, both in carrying out different types of photosynthesis and in their other growth modes. The nature of the coupling of these energy-generating processes with the basic metabolic demands of the cell, such as nitrogen fixation, has stimulated research for many years. In addition, nitrogen fixation by photosynthetic prokaryotes exhibits several unique features; the oxygen-evolving cyanobacteria have developed various strategies for protection of the oxygen-labile nitrogenase proteins, and some photosynthetic bacteria have been found to regulate their nitrogenase (N2ase) activity in a rapid response to fixed nitrogen, thus saving substantial amounts of energy. Recent advances in the biochemistry, physiology, and genetics of nitrogen fixation by cyanobacteria and photosynthetic bacteria are reviewed, with special emphasis on the unique features found in these organisms. Several major topics in cyanobacterial nitrogen fixation are reviewed. The isolation and characterization of N2ase and the isolation and sequence of N2ase structural genes have shown a great deal of similarity with other organisms. The possible pathways of electron flow to N2ase, the mechanisms of oxygen protection, and the control of nif expression and heterocyst differentiation will be discussed. Several recent advances in the physiology and biochemistry of nitrogen fixation by the photosynthetic bacteria are reviewed. Photosynthetic bacteria have been found to fix nitrogen microaerobically in darkness. The regulation of nif expression and possible pathways of electron flow to N2ase are discussed. The isolation of N2ase proteins, particularly the covalent modification of the Fe protein, the nature of the modifying group, properties of the activating enzyme, and regulating factors of the inactivation/activation process are reviewed.
Collapse
|
40
|
Moreno-Vivián C, Cárdenas J, Castillo F. In vivo short-term inhibition of nitrogenase by nitrate inRhodopseudomonas capsulataE1F1. FEMS Microbiol Lett 1986. [DOI: 10.1111/j.1574-6968.1986.tb01358.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Stimulation by light of nitrogenase synthesis in cells of Rhodopseudomonas capsulata growing in N-limited continuous cultures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1985. [DOI: 10.1016/0005-2728(85)90037-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Nordlund S, Kanemoto RH, Murrell SA, Ludden PW. Properties and regulation of glutamine synthetase from Rhodospirillum rubrum. J Bacteriol 1985; 161:13-7. [PMID: 2857158 PMCID: PMC214828 DOI: 10.1128/jb.161.1.13-17.1985] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glutamine synthetase from Rhodospirillum rubrum was purified and characterized with respect to its pH optimum and the effect of Mg2+ on its active and inactive forms. Both adenine and phosphorus were incorporated into the inactive form of the enzyme, indicating covalent modification by AMP. The modification could not be removed by phosphodiesterase. Evidence for regulation of the enzyme by oxidation was obtained. Extracts from oxygen-treated cells had lower specific activities than did extracts from cells treated anaerobically. Glutamine synthetase activity was found to decrease in the dark in phototrophically grown cells; activity was recovered on re-illumination.
Collapse
|
43
|
|
44
|
Vignais PM, Colbeau A, Willison JC, Jouanneau Y. Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. Adv Microb Physiol 1985; 26:155-234. [PMID: 3913292 DOI: 10.1016/s0065-2911(08)60397-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Paul TD, Ludden PW. Adenine nucleotide levels in Rhodospirillum rubrum during switch-off of whole-cell nitrogenase activity. Biochem J 1984; 224:961-9. [PMID: 6441571 PMCID: PMC1144534 DOI: 10.1042/bj2240961] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Adenine nucleotide pools were measured in Rhodospirillum rubrum cultures that contained nitrogenase. The average energy charge [([ATP] + 1/2[ADP])/([ATP] + [ADP] + [AMP])] was found to be 0.66 and 0.62 in glutamate-grown and N-limited cultures respectively. Treatment of glutamate-grown cells with darkness, ammonia, glutamine, carbonyl cyanide m-chlorophenylhydrazone, or phenazine methosulphate resulted in perturbations in the adenine nucleotide pools, and led to loss of whole-cell nitrogenase activity and modification in vivo of the Fe protein. Treatment of N-limited cells resulted in similar changes in adenine nucleotide pools but not enzyme modification. No correlations were found between changes in adenine nucleotide pools or ratios of these pools and switch-off of nitrogenase activity by Fe protein modification in vivo. Phenazine methosulphate inhibited whole-cell activity at low concentrations. The effect on nitrogenase activity was apparently independent of Fe protein modification.
Collapse
|
46
|
Jouanneau Y, Lebecque S, Vignais PM. Ammonia and light effect on nitrogenase activity in nitrogen-limited continuous cultures of Rhodopseudomonas capsulata. Role of glutamine synthetase. Arch Microbiol 1984. [DOI: 10.1007/bf00408374] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Abstract
Revertible, spontaneous Nif- mutants of Rhodopseudomonas capsulata have been shown to accumulate in cultures growing photosynthetically with an amino acid as the nitrogen source such that H2 is maximally produced. The majority of such strains carry mutations which are clustered in a short region of the chromosome, probably representing one or two genes. Because this cluster includes temperature-sensitive mutations, it is also likely that it identifies the structural gene of a polypeptide. The phenotypic characterization of these spontaneous mutants showed (i) an inability to grow with N2 as the nitrogen source, no measurable nitrogenase activity, a reduction or absence of the three polypeptides of the MoFe and Fe proteins of the nitrogenase complex, a faster growth rate on glutamate as the nitrogen source under saturating light, and frequently a small increase in glutamine synthetase activity relative to that of the wild type when grown with glutamate as the nitrogen source. Alterations in other ammonium-assimilatory enzyme activities were not observed. Taken together, these properties suggest that the mutations have affected a regulatory protein necessary for nitrogen fixation.
Collapse
|
48
|
Allibert P, Odom J, Wall J, Vignais P. Phenotypic changes in hydrogen evolving chemostat cultures ofRhodopseudomonas capsulata. FEMS Microbiol Lett 1984. [DOI: 10.1111/j.1574-6968.1984.tb01067.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
49
|
Hoover TR, Ludden PW. Derepression of nitrogenase by addition of malate to cultures of Rhodospirillum rubrum grown with glutamate as the carbon and nitrogen source. J Bacteriol 1984; 159:400-3. [PMID: 6145702 PMCID: PMC215647 DOI: 10.1128/jb.159.1.400-403.1984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rhodospirillum rubrum grown in continuous culture with glutamate as the sole fixed C and N source produced no nitrogenase, and the cultures were characterized by high extracellular ammonium concentrations. Addition of organic acids derepressed nitrogenase. Glutamate dehydrogenase, glutamine synthetase, glutamate synthase, malate dehydrogenase, nitrogenase, and ammonium were assayed before and after malate addition.
Collapse
|
50
|
Willison JC, Madern D, Vignais PM. Increased photoproduction of hydrogen by non-autotrophic mutants of Rhodopseudomonas capsulata. Biochem J 1984; 219:593-600. [PMID: 6146310 PMCID: PMC1153517 DOI: 10.1042/bj2190593] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Non-autotrophic ( Aut -) mutants of Rhodopseudomonas capsulata B10 were tested for their efficiency of nitrogenase-mediated H2 production. Three of these mutants ( IR3 , IR4 and IR5 ) showed an increase stoichiometry of H2 production, mediated by nitrogenase, from certain organic substrates. For example, in a medium containing 7 mM-L-glutamate as nitrogen source, strain IR4 produced 10-20% more H2 than did the wild type with DL-lactate or L-malate as major carbon source, 20-50% more H2 with DL-malate, and up to 70% more with D-malate. Strain IR4 was deficient in 'uptake' hydrogenase activity as measured by H2-dependent reduction of Methylene Blue or Benzyl Viologen. However, this observation did not explain the increased efficiency of H2 production, since H2 uptake (H2 recycling) was undetectable in cells of the wild type. Instead, increased H2 production by the mutant appeared to be due to an improved conversion of organic substrates to H2 and CO2, presumably due to an altered carbon metabolism. The metabolism of D-malate by different strains was studied. An NAD+-dependent D-malic enzyme was synthesized constitutively by the wild type, and showed a Km for D-malate of 3 mM. The activity of this enzyme was approx. 50% higher in strain IR4 than in the wild type, and the mutant also grew twice as fast as the wild type with D-malate as sole carbon source.
Collapse
|