1
|
Sulfur Availability Impacts Accumulation of the 2-Thiouridine tRNA Modification in Bacillus subtilis. J Bacteriol 2022; 204:e0000922. [PMID: 35467390 DOI: 10.1128/jb.00009-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional modifications to tRNA are critical elements for the folding and functionality of these adaptor molecules. Sulfur modifications in tRNA are installed by specialized enzymes that act on cognate tRNA substrates at specific locations. Most studied organisms contain a general cysteine desulfurase to mobilize sulfur for the synthesis of S-tRNA and other thio-cofactors. Bacillus subtilis and other Gram-positive bacteria encode multiple cysteine desulfurases that partner with specific sulfur acceptors in the biosynthesis of thio-cofactors. This metabolic layout suggests an alternate mode of regulation in these biosynthetic pathways. In this study, tRNA modifications were exploited as a readout for the functionality of pathways involving cysteine desulfurases. These analyses showed that the relative abundance of 2-thiouridine-modified tRNA (s2U) responds to sulfur availability in the growth medium in a dose-dependent manner. This study found that low sulfur concentrations lead to decreased levels of the s2U cysteine desulfurase YrvO and thiouridylase MnmA, without altering the levels of other cysteine desulfurases, SufS, NifS, and NifZ. Analysis of pathway metabolites that depend on the activity of cysteine desulfurases indicates that sulfur nutrient availability specifically impacts s2U accumulation while having no effect on the levels of other S-modified tRNA or activity levels of Fe-S enzymes. Collectively, these results support a model in which s2U tRNA serves as a marker for sulfur availability in B. subtilis. IMPORTANCE The 2-thiouridine (s2U) tRNA modification is found ubiquitously across all domains of life. YrvO and MnmA, the enzymes involved in this modification, are essential in B. subtilis, confirming the well-established role of s2U in maintaining translational efficiency and, consequently, cellular viability. Herein, we show that in the model Gram-positive organism Bacillus subtilis, the levels of s2U are responsive to sulfur availability. Downregulation of the s2U biosynthetic components leads to lower s2U levels, which may serve as a signal for the slowing of the translational apparatus during cellular nutrient insufficiency. Our findings provide the basis for the identification of a potential bacterial mode of regulation during S-metabolite depletion that may use s2U as a marker of suboptimal metabolic status.
Collapse
|
2
|
Denmon AP, Wang J, Nikonowicz EP. Conformation effects of base modification on the anticodon stem-loop of Bacillus subtilis tRNA(Tyr). J Mol Biol 2011; 412:285-303. [PMID: 21782828 DOI: 10.1016/j.jmb.2011.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
Abstract
tRNA molecules contain 93 chemically unique nucleotide base modifications that expand the chemical and biophysical diversity of RNA and contribute to the overall fitness of the cell. Nucleotide modifications of tRNA confer fidelity and efficiency to translation and are important in tRNA-dependent RNA-mediated regulatory processes. The three-dimensional structure of the anticodon is crucial to tRNA-mRNA specificity, and the diverse modifications of nucleotide bases in the anticodon region modulate this specificity. We have determined the solution structures and thermodynamic properties of Bacillus subtilis tRNA(Tyr) anticodon arms containing the natural base modifications N(6)-dimethylallyl adenine (i(6)A(37)) and pseudouridine (ψ(39)). UV melting and differential scanning calorimetry indicate that the modifications stabilize the stem and may enhance base stacking in the loop. The i(6)A(37) modification disrupts the hydrogen bond network of the unmodified anticodon loop including a C(32)-A(38)(+) base pair and an A(37)-U(33) base-base interaction. Although the i(6)A(37) modification increases the dynamic nature of the loop nucleotides, metal ion coordination reestablishes conformational homogeneity. Interestingly, the i(6)A(37) modification and Mg(2+) are sufficient to promote the U-turn fold of the anticodon loop of Escherichia coli tRNA(Phe), but these elements do not result in this signature feature of the anticodon loop in tRNA(Tyr).
Collapse
Affiliation(s)
- Andria P Denmon
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | | | | |
Collapse
|
3
|
Anton BP, Russell SP, Vertrees J, Kasif S, Raleigh EA, Limbach PA, Roberts RJ. Functional characterization of the YmcB and YqeV tRNA methylthiotransferases of Bacillus subtilis. Nucleic Acids Res 2010; 38:6195-205. [PMID: 20472640 PMCID: PMC2952846 DOI: 10.1093/nar/gkq364] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Methylthiotransferases (MTTases) are a closely related family of proteins that perform both radical-S-adenosylmethionine (SAM) mediated sulfur insertion and SAM-dependent methylation to modify nucleic acid or protein targets with a methyl thioether group (-SCH(3)). Members of two of the four known subgroups of MTTases have been characterized, typified by MiaB, which modifies N(6)-isopentenyladenosine (i(6)A) to 2-methylthio-N(6)-isopentenyladenosine (ms(2)i(6)A) in tRNA, and RimO, which modifies a specific aspartate residue in ribosomal protein S12. In this work, we have characterized the two MTTases encoded by Bacillus subtilis 168 and find that, consistent with bioinformatic predictions, ymcB is required for ms(2)i(6)A formation (MiaB activity), and yqeV is required for modification of N(6)-threonylcarbamoyladenosine (t(6)A) to 2-methylthio-N(6)-threonylcarbamoyladenosine (ms(2)t(6)A) in tRNA. The enzyme responsible for the latter activity belongs to a third MTTase subgroup, no member of which has previously been characterized. We performed domain-swapping experiments between YmcB and YqeV to narrow down the protein domain(s) responsible for distinguishing i(6)A from t(6)A and found that the C-terminal TRAM domain, putatively involved with RNA binding, is likely not involved with this discrimination. Finally, we performed a computational analysis to identify candidate residues outside the TRAM domain that may be involved with substrate recognition. These residues represent interesting targets for further analysis.
Collapse
|
4
|
Emilsson V, Näslund AK, Kurland CG. Thiolation of transfer RNA in Escherichia coli varies with growth rate. Nucleic Acids Res 1992; 20:4499-505. [PMID: 1383926 PMCID: PMC334177 DOI: 10.1093/nar/20.17.4499] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have used an affinity electrophoresis assay which when combined with Northern hybridization techniques permits us to estimate the degree of thiolation of individual tRNA species in Escherichia coli. We observe that the levels of 4-thio 2'(3')-uridine (4-thioU) in many but not all tRNAs varies dramatically at different bacterial growth rates: Five tRNAs are completely thiolated at all growth rates, while another eight tRNAs are incompletely thiolated and the fraction of the unthiolated form of these tRNA species increases as the growth rates increase. Transfer RNA(2Glu) contains 4-thioU as well as (methylamino)methyl-2-thio uridine (mnm(5)2-thioU). The level of mnm(5)2-thioU of tRNA(2Glu) is invariant with growth rate. Surprisingly, none of the thirteen tRNA species that we have studied is completely unmodified in all growth media. In particular, at the slowest growth rates every tRNA class that we have studied contains a form that has 4-thioU residues.
Collapse
Affiliation(s)
- V Emilsson
- Department of Molecular Biology, Uppsala University, Sweden
| | | | | |
Collapse
|
5
|
Chapter 1 Synthesis and Function of Modified Nucleosides in tRNA. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/s0301-4770(08)61487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
6
|
Ajitkumar P, Cherayil JD. Thionucleosides in transfer ribonucleic acid: diversity, structure, biosynthesis, and function. Microbiol Rev 1988; 52:103-13. [PMID: 3280963 PMCID: PMC372707 DOI: 10.1128/mr.52.1.103-113.1988] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Mikulík K, Janda I, Weiser J, Stastná J, Jiránová A. RNA and ribosomal protein patterns during aerial spore germination in Streptomyces granaticolor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 145:381-8. [PMID: 6499849 DOI: 10.1111/j.1432-1033.1984.tb08565.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Disruption of the external sheath of Streptomyces granaticolor aerial spores and subsequent cultivation in a rich medium result in a synchronous germination. This method was used to analyze RNA and protein patterns during the germination. The germination process took place through a sequence of time-ordered events. RNA and protein synthesis started during the first 5 min and net DNA synthesis at 60-70 min of germination. Within the first 10 min of germination, synthesis of RNA was not sensitive to the inhibitory effect of rifamycin. During this period rRNA and other species including 4-5-S RNA were synthesized. Dormant spores contained populations of ribosomes or ribosomal precursors that were structurally and functionally defective. The ribosomal particles bound a sporulation pigment(s) of the melanine type. The ribosomal proteins complexed to the pigments formed insoluble aggregates which were easily removed from the ribosomes by one wash with 1 M NH4Cl. During the first 10 min of germination, pigment(s) were liberated from the complexes with the ribosomes and protein extracts of the washed ribosomes had essentially the same pattern as the extracts of ribosomes of vegetative cells. These structural alterations were accompanied by enhancement of the ribosome activities in polypeptide synthesis in vivo and in vitro. When the spores were incubated with a 14C-labelled amino acid mixture in the presence of rifamycin, only three proteins (GS1, GL1 and GS9) were identified to be radiolabelled in the extracts from the washed ribosomes. These experiments indicate that liberation of the sporulation pigment(s) from the complexes with ribosomal proteins and assembly of de novo synthesized proteins and proteins from a preexisting pool in the spore are involved in the reactivation of the ribosomes of dormant spores of S. granaticolor.
Collapse
|
8
|
Buck M, Connick M, Ames BN. Complete analysis of tRNA-modified nucleosides by high-performance liquid chromatography: the 29 modified nucleosides of Salmonella typhimurium and Escherichia coli tRNA. Anal Biochem 1983; 129:1-13. [PMID: 6190418 DOI: 10.1016/0003-2697(83)90044-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A high-performance liquid chromatography (HPLC) method has been developed to quantify the major and modified nucleoside composition of total, unfractionated transfer RNA. The method is rapid and sensitive and offers a high degree of chromatographic resolution suitable for quantifying both stable and unstable modified nucleosides. It is nondestructive and allows the recovery of nucleosides for further characterization. We apply the method in the analysis of the 29 modified nucleosides in tRNA from Salmonella typhimurium (and Escherichia coli) and show it to be useful in examining changes in the modified nucleoside content of tRNA. Such changes may be important in regulation.
Collapse
|
9
|
Dirheimer G. Chemical nature, properties, location, and physiological and pathological variations of modified nucleosides in tRNAs. Recent Results Cancer Res 1983; 84:15-46. [PMID: 6342070 DOI: 10.1007/978-3-642-81947-6_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Smith DW, McNamara AL, Vold BS. Lysine tRNAs from Bacillus subtilis 168: function of the isoacceptors in a rabbit reticulocyte cell-free protein-synthesizing system. Nucleic Acids Res 1982; 10:3117-23. [PMID: 6808463 PMCID: PMC320694 DOI: 10.1093/nar/10.10.3117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The two principal tRNA Lys isoaccepting species of Bacillus subtilis were compared in their functional activity in translating rabbit globin. Although neither species demonstrates any preference in reading either of the lysine codons, there is an overall preference for tRNa Lys 3 in lysine incorporation. The ratios of lysine incorporated by the two species into the different lysine-containing sites in the globin subunits vary over a more than two-fold range. As described in the accompanying paper, tRNA Lys 1 is a hypomodified form of tRNA Lys 3. Consistent with studies on other rRNA species, the fully modified isoacceptor functions preferentially. In contrast to these results, however, the fully modified isoacceptor (tRNA Lys 3) is found predominantly in rapidly dividing cells while the hypomodified isoacceptor (tRNA Lys 1) predominates in the stationary cells and spores of B.l subtilis.
Collapse
|
11
|
Vold BS, Keith DE, Buck M, McCloskey JA, Pang H. Lysine tRNAs from Bacillus subtilis 168: structural analysis. Nucleic Acids Res 1982; 10:3125-32. [PMID: 6808464 PMCID: PMC320695 DOI: 10.1093/nar/10.10.3125] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The primary sequence was established for two lysine tRNA isoacceptors which differ in abundance during development in Bacillus subtilis. Both tRNAs shared the same primary sequence but differed in the degree of post-transcriptional modification in the anticodon loop. The earlier eluting species, tRNA lys 1, had an unmodified C in position 32 and a mixture of N-[9-beta-ribofuranosyl) purin-6-ylcarbamoyl]-L-threonine, t6A, and N-[(9-beta-D-ribofuranosyl-2-methylthio-purin-6-yl)carbamoyl]threonine, ms2t6A, in position 37. The later eluting species, tRNA Lys 3, which is the more efficient in protein synthesis, had a modified C in position 32 and only ms2t6A in position 37. The possibility exists that modification to make a more efficient tRNA species may be part of a functional interaction between the translational and transcriptional changes that are part of the differentiation process in B. subtilis.
Collapse
|
12
|
Vold BS, Longmire ME, Keith DE. Thiolation and 2-methylthio- modification of Bacillus subtilis transfer ribonucleic acids. J Bacteriol 1981; 148:869-76. [PMID: 6171558 PMCID: PMC216286 DOI: 10.1128/jb.148.3.869-876.1981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Six thionucleosides found in Bacillus subtilis transfer ribonucleic acids were investigated: N6-(delta 2-isopentenyl)-2-methylthioadenosine, 5-carboxymethylaminomethyl-2-thiouridine, 4-thiouridine, 2-methylthioadenosine, N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine, and one unknown (X1). The presence of N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine was demonstrated based on the affinity of the transfer ribonucleic acid containing it for an immunoadsorbent made with the antibody directed toward N-[9-(beta-D-ribofuranosyl)purin-6-ylcarbamoyl]-L-threonine. The existance of N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine in two species of lysine transfer ribonucleic acids was also confirmed by high-resolution mass spectrometry. Four of these thionucleosides--N6-(delta 2-isopenenyl)-2-methylthioadenosine, 2-methylthioadenosine, 5-carboxymethylaminomethyl-2-thiouridine, and the unknown designated X1--occurred only in specific areas in the elution profile of an RPC-5 column and probably affect the chromatographic properties of the transfer ribonucleic acids containing them. In contrast with Escherichia coli, where 4-thiouridine is the most frequent type of sulfur-containing modification, approximately one-third of the sulfur groups in B. subtilis transfer ribonucleic acid are present as thiomethyl groups on the 2 position of an adenosine or modified adenosine residue.
Collapse
|
13
|
Morris RO, Regier DA, Olson RM, Struxness LA, Armstrong DJ. Distribution of cytokinin-active nucleosides in isoaccepting transfer ribonucleic acids from Agrobacterium tumefaciens. Biochemistry 1981; 20:6012-7. [PMID: 7306490 DOI: 10.1021/bi00524a014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cytokinin-active isoprenoid nucleosides of Agrobacterium tumefaciens transfer ribonucleic acid were identified by high-pressure liquid chromatography, permethylation, and mass spectroscopy. Besides the expected 6-[(3-methylbut-2-enyl)amino]-9-(beta-D-ribofuranosyl)purine (i6A) and its 2-methylthio derivative (ms2i6A), substantial amounts of cis- and trans-ribosylzeatin (io6A) and cis-2-(methylthio)ribosylzeatin (c-ms2io6A) were present. These hydroxylated side chain derivatives are normally characteristic of plant tRNA. Fractionation of the total bacterial tRNA on BD-cellulose and RPC-5 allowed isolation of purified iso-accepting species whose cytokinin nucleoside contents were then determined. Distribution of the isoprenoid nucleosides among the U-group tRNA species was not uniform. cis-Ribosylzeatin was found almost exclusively in one tRNASer while ms2io6A was found predominantly in tRNAPhe, tRNASer, and tRNATyr. Not all cytokinin-active species were found in every member of the U-group tRNAs. The only species present in tRNATrp was i6A; it contained no zeatin derivatives. The hydroxylation and methylthiolation processes appear to be highly specific and dependent upon tRNA structure or sequence.
Collapse
|
14
|
Weissenbach J, Grosjean H. Effect of threonylcarbamoyl modification (t6A) in yeast tRNA Arg III on codon-anticodon and anticodon-anticodon interactions. A thermodynamic and kinetic evaluation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 116:207-13. [PMID: 6788546 DOI: 10.1111/j.1432-1033.1981.tb05320.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The effect of N-[9-(beta-D-ribofuranosyl) purin-6-ylcarbamoyl]threonine (t6A) adjacent to anticodon U-C-U of yeast tRNA Arg III (where U is a modified U), compared to its unmodified adenosine counterpart, has been evaluated by three independent methods: (a) the polynucleotide-directed binding of tRNA on ribosomes, (b) the ribosome-free trinucleotide binding to the anticodon, (c) the anticodon-anticodon binding test. The results obtained by these three methods indicate a small but significant stabilization effect of t6A on the binding of yeast tRNA Arg III with (a) poly(A,G) in the presence of Escherichia coli ribosomes, (b) free A-G-A triplet, and (c) E. coli tRNA Ser V (anticodon G-G-A). We therefore conclude that the stabilization effect of t6A occurs on U x A and U x G base pairs adjacent to the 5' side of the modified nucleoside, most probably by stacking.
Collapse
|
15
|
|
16
|
Grosjean H, Chantrenne H. On codon- anticodon interactions. MOLECULAR BIOLOGY, BIOCHEMISTRY, AND BIOPHYSICS 1980; 32:347-67. [PMID: 7003350 DOI: 10.1007/978-3-642-81503-4_27] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Henner DJ, Steinberg W. Transfer ribonucleic acid synthesis during sporulation and spore outgrowth in Bacillus subtilis studied by two-dimensional polyacrylamide gel electrophoresis. J Bacteriol 1979; 140:555-66. [PMID: 115846 PMCID: PMC216682 DOI: 10.1128/jb.140.2.555-566.1979] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The synthesis of transfer ribonucleic acid (tRNA) was examined during spore formation and spore outgrowth in Bacillus subtilis by two-dimensional polyacrylamide gel electrophoresis of in vivo 32P-labeled RNA. The two-dimensional gel system separated the B. subtilis tRNA's into 32 well-resolved spots, with the relative abundances ranging from 0.9 to 17% of the total. There were several spots (five to six) resolved which were not quantitated due to their low abundance. All of the tRNA species resolved by this gel system were synthesized at every stage examined, including vegetative growth, different stages of sporulation, and different stages of outgrowth. Quantitation of the separated tRNA's showed that in general the tRNA species were present in approximately the same relative abundances at the different developmental periods. tRNA turnover and compartmentation occurring during sporulation were examined by labeling during vegetative growth followed by the addition of excess phosphate to block further 32P incorporation. The two-dimensional gels of these samples showed the same tRNA's seen during vegetative growth, and they were in approximately the same relative abundances, indicating minimal differences in the rates of turnover of individual tRNA's. Vegetatively labeled samples, chased with excess phosphate into mature spores, also showed all of the tRNA species seen during vegetative growth, but an additional five to six minor spots were also observed. These are hypothesized to arise from the loss of 3'-terminal residues from preexisting tRNA's.
Collapse
|
18
|
Vold BS. Radioimmunoassays for the modified nucleosides N[9-(beta-D-ribofuranosyl)purin-6-ylcarbamoyl]-L-threonine and 2-methylthioadenosine. Nucleic Acids Res 1979; 7:193-204. [PMID: 493139 PMCID: PMC328005 DOI: 10.1093/nar/7.1.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Radioimmunoassays were established for the modified nucleosides N-[9-(beta-D-ribofuranosyl)purin-6-ylcarbamoyl]-L-threonine, t6A, and 2-methylthioadenosine, ms2A. The assays depended on the production of antisera specific for t6A and ms2A that have not been previously reported. The nitrocellulose membrane filtration and saturated ammonium sulfate RIA techniques were compared for efficiency. Various radioactive antigens were employed to establish which type of antigen would give the best binding. The tritium post-labeling procedure of Randerath and Randerath was used to obtain labeled nucleosides of high enough specific activity to be useful for RIAs when the labeled nucleoside was not available commerically. The specificity of the antibodies toward nucleosides and purified tRNAs is reported. Although the titer of the t6A antiserum was low, the specificity was very sharp. An interesting finding was that threonine, a major structural component of the side-chain modification of t6A, was completely infective as an inhibitor.
Collapse
|
19
|
Katze JR. Q-factor: a serum component required for the appearance of nucleoside Q in tRNA in tissue culture. Biochem Biophys Res Commun 1978; 84:527-35. [PMID: 718694 DOI: 10.1016/0006-291x(78)90201-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|