1
|
Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids 2019; 51:1103-1127. [DOI: 10.1007/s00726-019-02757-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 11/26/2022]
|
2
|
Charlier D, Nguyen Le Minh P, Roovers M. Regulation of carbamoylphosphate synthesis in Escherichia coli: an amazing metabolite at the crossroad of arginine and pyrimidine biosynthesis. Amino Acids 2018; 50:1647-1661. [PMID: 30238253 PMCID: PMC6245113 DOI: 10.1007/s00726-018-2654-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
In all organisms, carbamoylphosphate (CP) is a precursor common to the synthesis of arginine and pyrimidines. In Escherichia coli and most other Gram-negative bacteria, CP is produced by a single enzyme, carbamoylphosphate synthase (CPSase), encoded by the carAB operon. This particular situation poses a question of basic physiological interest: what are the metabolic controls coordinating the synthesis and distribution of this high-energy substance in view of the needs of both pathways? The study of the mechanisms has revealed unexpected moonlighting gene regulatory activities of enzymes and functional links between mechanisms as diverse as gene regulation and site-specific DNA recombination. At the level of enzyme production, various regulatory mechanisms were found to cooperate in a particularly intricate transcriptional control of a pair of tandem promoters. Transcription initiation is modulated by an interplay of several allosteric DNA-binding transcription factors using effector molecules from three different pathways (arginine, pyrimidines, purines), nucleoid-associated factors (NAPs), trigger enzymes (enzymes with a second unlinked gene regulatory function), DNA remodeling (bending and wrapping), UTP-dependent reiterative transcription initiation, and stringent control by the alarmone ppGpp. At the enzyme level, CPSase activity is tightly controlled by allosteric effectors originating from different pathways: an inhibitor (UMP) and two activators (ornithine and IMP) that antagonize the inhibitory effect of UMP. Furthermore, it is worth noticing that all reaction intermediates in the production of CP are extremely reactive and unstable, and protected by tunneling through a 96 Å long internal channel.
Collapse
Affiliation(s)
- Daniel Charlier
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Phu Nguyen Le Minh
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Martine Roovers
- LABIRIS Institut de Recherches, Av. Emile Gryson 1, 1070, Brussels, Belgium
| |
Collapse
|
3
|
Huang S, Ai ZW, Sun XM, Liu GF, Zhai S, Zhang M, Chen H, Feng Z. Influence of arginine on the growth, arginine metabolism and amino acid consumption profiles of Streptococcus thermophilus T1C2 in controlled pH batch fermentations. J Appl Microbiol 2016; 121:746-56. [PMID: 27377190 DOI: 10.1111/jam.13221] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/20/2016] [Accepted: 06/29/2016] [Indexed: 11/30/2022]
Abstract
AIMS The aim of this study was to elucidate the effect of arginine on the growth, arginine metabolism and amino acid consumption profiles of Streptococcus thermophilus T1C2. METHODS AND RESULTS The growth kinetics, intracellular pH, extracellular osmotic pressure, expression of key genes in the arginine metabolism pathway and amino acid consumption profiles were analysed in chemically defined medium with different initial arginine concentrations. The results showed that arginine stimulated the growth of Strep. thermophilus T1C2 under low intracellular pH and high extracellular osmotic pressure. The expression of key genes in the arginine degradation pathway indicated that arginine relieved the drop in the intracellular pH by consuming protons and generating NH3 . Additionally, the results showed that arginine degradation did not occur via the arginine deiminase pathway but through the arginine decarboxylase-urease pathway. Furthermore, the utilization efficiency of amino acids was improved in the presence of arginine. CONCLUSIONS Arginine improved the growth of Strep. thermophilus due to protecting Strep. thermophilus against intracellular acid stress, which was revealed at the transcriptional level of key genes. This study showed that the acid resistance of Strep. thermophilus was achieved through the arginine decarboxylase-urease pathway. SIGNIFICANCE AND IMPACT OF THE STUDY The arginine-stimulated growth of Strep. thermophilus improved the utilization efficiency of amino acids and reduced nitrogen waste, which could be useful for the optimization of cultivation media.
Collapse
Affiliation(s)
- S Huang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Z W Ai
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - X M Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - G F Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - S Zhai
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - M Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - H Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Z Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Abstract
Early investigations on arginine biosynthesis brought to light basic features of metabolic regulation. The most significant advances of the last 10 to 15 years concern the arginine repressor, its structure and mode of action in both E. coli and Salmonella typhimurium, the sequence analysis of all arg structural genes in E. coli and Salmonella typhimurium, the resulting evolutionary inferences, and the dual regulation of the carAB operon. This review provides an overall picture of the pathways, their interconnections, the regulatory circuits involved, and the resulting interferences between arginine and polyamine biosynthesis. Carbamoylphosphate is a precursor common to arginine and the pyrimidines. In both Escherichia coli and Salmonella enterica serovar Typhimurium, it is produced by a single synthetase, carbamoylphosphate synthetase (CPSase), with glutamine as the physiological amino group donor. This situation contrasts with the existence of separate enzymes specific for arginine and pyrimidine biosynthesis in Bacillus subtilis and fungi. Polyamine biosynthesis has been particularly well studied in E. coli, and the cognate genes have been identified in the Salmonella genome as well, including those involved in transport functions. The review summarizes what is known about the enzymes involved in the arginine pathway of E. coli and S. enterica serovar Typhimurium; homologous genes were identified in both organisms, except argF (encoding a supplementary OTCase), which is lacking in Salmonella. Several examples of putative enzyme recruitment (homologous enzymes performing analogous functions) are also presented.
Collapse
|
5
|
Coupled Effects of Light and Nitrogen Source on the Urea Cycle and Nitrogen Metabolism over a Diel Cycle in the Marine Diatom Thalassiosira pseudonana. Protist 2012; 163:232-51. [DOI: 10.1016/j.protis.2011.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 07/10/2011] [Indexed: 11/21/2022]
|
6
|
|
7
|
Weyens G, Rose K, Falmagne P, Glansdorff N, Piérard A. Synthesis of Escherichia coli carbamoylphosphate synthetase initiates at a UUG codon. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 150:111-5. [PMID: 3894020 DOI: 10.1111/j.1432-1033.1985.tb08995.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ribosome binding region of the messenger RNA for the Escherichia coli carA gene contains two adjacent putative translational start codons, UUG and AUU, both of them unusual. By Edman degradation and mass spectrometry of purified carA protein, we show that only UUG is used in vivo. Translation initiation at UUG in carA appears about half as efficient as at AUG in lacZ.
Collapse
|
8
|
Piette J, Nyunoya H, Lusty CJ, Cunin R, Weyens G, Crabeel M, Charlier D, Glansdorff N, Piérard A. DNA sequence of the carA gene and the control region of carAB: tandem promoters, respectively controlled by arginine and the pyrimidines, regulate the synthesis of carbamoyl-phosphate synthetase in Escherichia coli K-12. Proc Natl Acad Sci U S A 1984; 81:4134-8. [PMID: 6330744 PMCID: PMC345383 DOI: 10.1073/pnas.81.13.4134] [Citation(s) in RCA: 119] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The carAB operon of Escherichia coli K-12, which encodes the two subunits of carbamoyl-phosphate synthetase (glutamine hydrolyzing) [carbon-dioxide: L-glutamine amido-ligase (ADP-forming, carbamate-phosphorylating); EC 6.3.5.5], is cumulatively repressed by arginine and the pyrimidines. We describe the structure of the control region of carAB and the sequence of the carA gene. Nuclease S1 mapping experiments show that two adjacent tandem promoters within the carAB control region serve as initiation sites. The upstream promoter P1 is controlled by pyrimidines; the downstream promoter P2 is regulated by arginine. Attenuation control does not appear to be involved in the expression of carAB. A possible mechanism by which control at these promoters concurs to produce a cumulative pattern of repression is discussed. The translational start of carA is atypical; it consists of a UUG or AUU codon.
Collapse
|
9
|
Bouvier J, Patte JC, Stragier P. Multiple regulatory signals in the control region of the Escherichia coli carAB operon. Proc Natl Acad Sci U S A 1984; 81:4139-43. [PMID: 6377309 PMCID: PMC345384 DOI: 10.1073/pnas.81.13.4139] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The first reaction in pyrimidine and arginine biosynthesis in Escherichia coli is catalyzed by a single enzyme, carbamoyl-phosphate synthetase (EC 6.3.5.5), the product of the carAB operon. Expression of this operon is cumulatively repressed by arginine and pyrimidines. The nucleotide sequence of the carAB control region was determined and transcriptional starts were localized. Two adjacent promoters, 70 base pairs apart, appear to be used in vivo, the downstream one overlapping a typical arginine operator. The absence of any attenuation-like sequence excludes such a mechanism for pyrimidine-mediated repression. Various fragments of the carA promoter-proximal region were fused in vitro with the lacZ gene. Results obtained with these fusions indicate that (i) translation of the carA gene can be initiated in vivo without an AUG codon but very likely with an UUG or an AUU codon; (ii) the carAB downstream promoter is repressed by arginine; and (iii) the carAB upstream promoter is repressed by pyrimidines and subject to stringent control. When carried by a multicopy plasmid the carAB control region escapes repression by arginine and pyrimidines. The existence of a pyrimidine repressor, present in limiting amounts in the cell, is therefore postulated.
Collapse
|
10
|
Cunin R, Eckhardt T, Piette J, Boyen A, Piérard A, Glansdorff N. Molecular basis for modulated regulation of gene expression in the arginine regulon of Escherichia coli K-12. Nucleic Acids Res 1983; 11:5007-19. [PMID: 6348703 PMCID: PMC326233 DOI: 10.1093/nar/11.15.5007] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We compare the nucleotide sequences of the regulatory regions of five genes or groups of genes of the arginine regulon of Escherichia coli K-12: argF, argI, argR, the bipolar argECBH operon and the carAB operon. All these regions harbour one or two copies of a conserved 18 bp sequence which appears to constitute the basic arginine operator sequence (ARG box). We discuss the influence of ARG box copy number, degree of dyad symmetry, base composition, and position relative to the cognate promoter site on the derepression-repression ratios of the genes of the regulon. A novel hypothesis, based on structural considerations, is also put forward to account for the absence ot attenuation control.
Collapse
|
11
|
Wirth R, Kohles V, Böck A. Factors modulating transcription and translation in vitro of ribosomal protein S20 and isoleucyl-tRNA synthetase from Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 114:429-37. [PMID: 7011813 DOI: 10.1111/j.1432-1033.1981.tb05164.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The DNA-dependent protein-synthesizing system developed by Zubay [Zubay, G. (1973) Annu. Rev. Genet. 7, 267--287] was optimized for the transcription and translation of genes from the 0.5-min region of the Escherichia coli chromosome carried by transducing lambda phages. The E. coli gene products synthesized were isoleucyl tRNA synthetase, ribosomal protein S20, dihydrodipicolinic acid reductase and (possibly) the two subunits carbamoyl-phosphate synthetase. Formation of ribosomal protein S20 is specifically stimulated by the addition of 16-S rRNA and not by 5-S or 23-S rRNA. 16-S rRNA increases the rate of S20 synthesis, the final yield of product depends on the duration of persistence of the RNA added. Addition of 16-S rRNA to the separate transcription and translation systems showed that it is the translation of the S20 mRNA which is enhanced. Furthermore, S20 synthesis is stimulated more than fourfold when concomitant synthesis of rRNA occurs from a plasmid carrying an rrn transcriptional unit. The results described are explained in terms of a model which suggests that ribosomal protein S20 feedback inhibits its synthesis at the translational level and that removal of S20 into ribosomal assembly (i.e. binding to 16-S rRNA) releases inhibition. The model postulates a direct link between synthesis of ribosomal RNA and ribosomal protein and between the rates of ribosomal assembly and ribosomal protein synthesis. The stimulatory effect of guanosine 3'-diphosphate 5'-diphosphate on isoleucyl-tRNA synthetase formation and its inhibition of the synthesis of ribosomal protein S20 in vitro occurs at the level of transcription. Its relevance in vivo, however, remains to be demonstrated. Formation of isoleucyl-tRNA synthetase in vitro is not influenced either by the addition of a surplus of purified enzyme nor by the limitation of protein synthesis by the addition of anti-(isoleucyl-tRNA synthetase) serum. There is no evidence, therefore, that isoleucyl-tRNA synthetase is autogenously regulated.
Collapse
|
12
|
Gigot D, Crabeel M, Feller A, Charlier D, Lissens W, Glansdorff N, Piérard A. Patterns of polarity in the Escherichia coli car AB gene cluster. J Bacteriol 1980; 143:914-20. [PMID: 6162837 PMCID: PMC294393 DOI: 10.1128/jb.143.2.914-920.1980] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The direction of transcription of the carAB gene cluster, which codes for Escherichia coli carbamoylphosphate synthase, was deduced from the effects of phage Mu-1 insertions in each of the two genes and from the results of ribonucleic acid-deoxyribonucleic acid hybridization experiments relating the quantity of car messenger ribonucleic acid to the location of various car mutations. The car locus appears to constitute an operon polarized from carA to carB. The levels of carA and carB products were determined in a large number of car mutants by using in vitro and in vivo complementation assays. The results obtained display strong anomalies, which are discussed in light of the conclusions described above.
Collapse
|
13
|
Lissens W, Cunin R, Kelker N, Glansdorff N, Piérard A. In vitro synthesis of Escherichia coli carbamoylphosphate synthase: evidence for participation of the arginine repressor in cumulative repression. J Bacteriol 1980; 141:58-66. [PMID: 6243630 PMCID: PMC293530 DOI: 10.1128/jb.141.1.58-66.1980] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A deoxyribonucleic acid-directed in vitro system for the synthesis of Escherichia coli carbamoylphosphate synthase has been developed, and its properties have been studied. The system uses the deoxyribonucleic acid of a lambda phage carrying the car genes (lambdadcarAB) as template and mediates the synthesis of both subunits of the enzyme. This newly synthesized enzyme exhibits the properties of native carbamoylphosphate synthase. A study of the in vitro synthetic capacities of S-30 extracts from strains containing either a mutated or the wild-type allele of gene argR supports earlier suggestions, based on in vivo evidence, that the argR product is involved in cumulative repression of carbamoylphosphate synthase by arginine and the pyrimidines. Repression in vitro is as efficient as in vivo. In keeping with such observation it is shown that in vitro synthesis of carbamoylphosphate synthase is repressed by partially purified arginine repressor. Evidence was obtained which indicates that arginine repression of carbamoylphosphate synthase mainly operates at the level of transcription. This was based on the design of an in vitro transcription system for gene carA, the structural gene for the light subunit of carbamoylphosphate synthase. This system also allowed us to demonstrate that free arginine is the corepressor involved in carbamoylphosphate synthase repression. The present in vitro approaches, in addition to the information they have already provided, open new possibilities for further investigations on the mechanism of cumulative repression and, in particular, on the participation of pyrimidine end products in this regulatory mechanism.
Collapse
|