1
|
Machado LFM, Galán JE. Loss of function of metabolic traits in typhoidal Salmonella without apparent genome degradation. mBio 2024; 15:e0060724. [PMID: 38572992 PMCID: PMC11077982 DOI: 10.1128/mbio.00607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Salmonella enterica serovar Typhi and Paratyphi A are the cause of typhoid and paratyphoid fever in humans, which are systemic life-threatening illnesses. Both serovars are exclusively adapted to the human host, where they can cause life-long persistent infection. A distinct feature of these serovars is the presence of a relatively high number of degraded coding sequences coding for metabolic pathways, most likely a consequence of their adaptation to a single host. As a result of convergent evolution, these serovars shared many of the degraded coding sequences although often affecting different genes in the same metabolic pathway. However, there are several coding sequences that appear intact in one serovar while clearly degraded in the other, suggesting differences in their metabolic capabilities. Here, we examined the functionality of metabolic pathways that appear intact in S. Typhi but that show clear signs of degradation in S. Paratyphi A. We found that, in all cases, the existence of single amino acid substitutions in S. Typhi metabolic enzymes, transporters, or transcription regulators resulted in the inactivation of these metabolic pathways. Thus, the inability of S. Typhi to metabolize Glucose-6-Phosphate or 3-phosphoglyceric acid is due to the silencing of the expression of the genes encoding the transporters for these compounds due to point mutations in the transcriptional regulatory proteins. In contrast, its inability to utilize glucarate or galactarate is due to the presence of point mutations in the transporter and enzymes necessary for the metabolism of these sugars. These studies provide additional support for the concept of adaptive convergent evolution of these two human-adapted S. enterica serovars and highlight a limitation of bioinformatic approaches to predict metabolic capabilities. IMPORTANCE Salmonella enterica serovar Typhi and Paratyphi A are the cause of typhoid and paratyphoid fever in humans, which are systemic life-threatening illnesses. Both serovars can only infect the human host, where they can cause life-long persistent infection. Because of their adaptation to the human host, these bacterial pathogens have changed their metabolism, leading to the loss of their ability to utilize certain nutrients. In this study we examined the functionality of metabolic pathways that appear intact in S. Typhi but that show clear signs of degradation in S. Paratyphi A. We found that, in all cases, the existence of single amino acid substitutions in S. Typhi metabolic enzymes, transporters, or transcription regulators resulted in the inactivation of these metabolic pathways. These studies provide additional support for the concept of adaptive convergent evolution of these two human-adapted S. enterica serovars.
Collapse
Affiliation(s)
- Leopoldo F. M. Machado
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Machado LFM, Galán JE. Loss of function of metabolic traits in typhoidal Salmonella without apparent genome degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580360. [PMID: 38405738 PMCID: PMC10888927 DOI: 10.1101/2024.02.14.580360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Salmonella enterica serovar Typhi and Paratyphi A are the cause of typhoid and paratyphoid fever in humans, which are systemic life-threatening illnesses. Both serovars are exclusively adapted to the human host, where they can cause life-long persistent infection. A distinct feature of these serovars is the presence of a relatively high number of degraded coding sequences coding for metabolic pathways, most likely a consequence of their adaptation to a single host. As a result of convergent evolution, these serovars shared many of the degraded coding sequences although often affecting different genes in the same metabolic pathway. However, there are several coding sequences that appear intact in one serovar while clearly degraded in the other, suggesting differences in their metabolic capabilities. Here, we examined the functionality of metabolic pathways that appear intact in S . Typhi but that show clear signs of degradation in S . Paratyphi A. We found that, in all cases, the existence of single amino acid substitutions in S. Typhi metabolic enzymes, transporters, or transcription regulators resulted in the inactivation of these metabolic pathways. Thus, the inability of S . Typhi to metabolize Glucose-6-Phosphate or 3-phosphoglyceric acid is due to the silencing of the expression of the genes encoding the transporters for these compounds due to point mutations in the transcriptional regulatory proteins. In contrast, its inability to utilize glucarate or galactarate is due to the presence of point mutations in the transporter and enzymes necessary for the metabolism of these sugars. These studies provide additional support for the concept of adaptive convergent evolution of these two human-adapted Salmonella enterica serovars and highlight a limitation of bioinformatic approaches to predict metabolic capabilities.
Collapse
|
3
|
Powers TR, Haeberle AL, Predeus AV, Hammarlöf DL, Cundiff JA, Saldaña-Ahuactzi Z, Hokamp K, Hinton JCD, Knodler LA. Intracellular niche-specific profiling reveals transcriptional adaptations required for the cytosolic lifestyle of Salmonella enterica. PLoS Pathog 2021; 17:e1009280. [PMID: 34460873 PMCID: PMC8432900 DOI: 10.1371/journal.ppat.1009280] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/10/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes diarrheal disease in humans and animals. During salmonellosis, S. Typhimurium colonizes epithelial cells lining the gastrointestinal tract. S. Typhimurium has an unusual lifestyle in epithelial cells that begins within an endocytic-derived Salmonella-containing vacuole (SCV), followed by escape into the cytosol, epithelial cell lysis and bacterial release. The cytosol is a more permissive environment than the SCV and supports rapid bacterial growth. The physicochemical conditions encountered by S. Typhimurium within the epithelial cytosol, and the bacterial genes required for cytosolic colonization, remain largely unknown. Here we have exploited the parallel colonization strategies of S. Typhimurium in epithelial cells to decipher the two niche-specific bacterial virulence programs. By combining a population-based RNA-seq approach with single-cell microscopic analysis, we identified bacterial genes with cytosol-induced or vacuole-induced expression signatures. Using these genes as environmental biosensors, we defined that Salmonella is exposed to oxidative stress and iron and manganese deprivation in the cytosol and zinc and magnesium deprivation in the SCV. Furthermore, iron availability was critical for optimal S. Typhimurium replication in the cytosol, as well as entC, fepB, soxS, mntH and sitA. Virulence genes that are typically associated with extracellular bacteria, namely Salmonella pathogenicity island 1 (SPI1) and SPI4, showed increased expression in the cytosol compared to vacuole. Our study reveals that the cytosolic and vacuolar S. Typhimurium virulence gene programs are unique to, and tailored for, residence within distinct intracellular compartments. This archetypical vacuole-adapted pathogen therefore requires extensive transcriptional reprogramming to successfully colonize the mammalian cytosol.
Collapse
Affiliation(s)
- TuShun R. Powers
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Alexander V. Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Disa L. Hammarlöf
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jennifer A. Cundiff
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Leigh A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
4
|
Qu C, Hao B, Xu X, Wang Y, Yang C, Xu Z, Liu G. Functional Research on Three Presumed Asparagine Synthetase Family Members in Poplar. Genes (Basel) 2019; 10:E326. [PMID: 31035411 PMCID: PMC6562506 DOI: 10.3390/genes10050326] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
Asparagine synthetase (AS), a key enzyme in plant nitrogen metabolism, plays an important role in plant nitrogen assimilation and distribution. Asparagine (Asn), the product of asparagine synthetase, is one of the main compounds responsible for organic nitrogen transport and storage in plants. In this study, we performed complementation experiments using an Asn-deficient Escherichia coli strain to demonstrate that three putative asparagine synthetase family members in poplar (Populussimonii× P.nigra) function in Asn synthesis. Quantitative real-time PCR revealed that the three members had high expression levels in different tissues of poplar and were regulated by exogenous nitrogen. PnAS1 and PnAS2 were also affected by diurnal rhythm. Long-term dark treatment resulted in a significant increase in PnAS1 and PnAS3 expression levels. Under long-term light conditions, however, PnAS2 expression decreased significantly in the intermediate region of leaves. Exogenous application of ammonium nitrogen, glutamine, and a glutamine synthetase inhibitor revealed that PnAS3 was more sensitive to exogenous glutamine, while PnAS1 and PnAS2 were more susceptible to exogenous ammonium nitrogen. Our results suggest that the various members of the PnAS gene family have distinct roles in different tissues and are regulated in different ways.
Collapse
Affiliation(s)
- Chunpu Qu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Bingqing Hao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
- Guangxi Forestry Research Institute, Nanning 530000, China.
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Yuchen Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Chengjun Yang
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Zhiru Xu
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
5
|
Lloyd CJ, King ZA, Sandberg TE, Hefner Y, Olson CA, Phaneuf PV, O’Brien EJ, Sanders JG, Salido RA, Sanders K, Brennan C, Humphrey G, Knight R, Feist AM. The genetic basis for adaptation of model-designed syntrophic co-cultures. PLoS Comput Biol 2019; 15:e1006213. [PMID: 30822347 PMCID: PMC6415869 DOI: 10.1371/journal.pcbi.1006213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 03/13/2019] [Accepted: 02/07/2019] [Indexed: 11/18/2022] Open
Abstract
Understanding the fundamental characteristics of microbial communities could have far reaching implications for human health and applied biotechnology. Despite this, much is still unknown regarding the genetic basis and evolutionary strategies underlying the formation of viable synthetic communities. By pairing auxotrophic mutants in co-culture, it has been demonstrated that viable nascent E. coli communities can be established where the mutant strains are metabolically coupled. A novel algorithm, OptAux, was constructed to design 61 unique multi-knockout E. coli auxotrophic strains that require significant metabolite uptake to grow. These predicted knockouts included a diverse set of novel non-specific auxotrophs that result from inhibition of major biosynthetic subsystems. Three OptAux predicted non-specific auxotrophic strains—with diverse metabolic deficiencies—were co-cultured with an L-histidine auxotroph and optimized via adaptive laboratory evolution (ALE). Time-course sequencing revealed the genetic changes employed by each strain to achieve higher community growth rates and provided insight into mechanisms for adapting to the syntrophic niche. A community model of metabolism and gene expression was utilized to predict the relative community composition and fundamental characteristics of the evolved communities. This work presents new insight into the genetic strategies underlying viable nascent community formation and a cutting-edge computational method to elucidate metabolic changes that empower the creation of cooperative communities. Many basic characteristics underlying the establishment of cooperative growth in bacterial communities have not been studied in detail. The presented work sought to understand the adaptation of syntrophic communities by first employing a new computational method to generate a comprehensive catalog of E. coli auxotrophic mutants. Many of the knockouts in the catalog had the predicted effect of disabling a major biosynthetic process. As a result, these strains were predicted to be capable of growing when supplemented with many different individual metabolites (i.e., a non-specific auxotroph), but the strains would require a high amount of metabolic cooperation to grow in community. Three such non-specific auxotroph mutants from this catalog were co-cultured with a proven auxotrophic partner in vivo and evolved via adaptive laboratory evolution. In order to successfully grow, each strain in co-culture had to evolve under a pressure to grow cooperatively in its new niche. The non-specific auxotrophs further had to adapt to significant homeostatic changes in cell’s metabolic state caused by knockouts in metabolic genes. The genomes of the successfully growing communities were sequenced, thus providing unique insights into the genetic changes accompanying the formation and optimization of the viable communities. A computational model was further developed to predict how finite protein availability, a fundamental constraint on cell metabolism, could impact the composition of the community (i.e., the relative abundances of each community member).
Collapse
Affiliation(s)
- Colton J. Lloyd
- Department of Bioengineering, University of California, San Diego, La Jolla, United States of America
| | - Zachary A. King
- Department of Bioengineering, University of California, San Diego, La Jolla, United States of America
| | - Troy E. Sandberg
- Department of Bioengineering, University of California, San Diego, La Jolla, United States of America
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, United States of America
| | - Connor A. Olson
- Department of Bioengineering, University of California, San Diego, La Jolla, United States of America
| | - Patrick V. Phaneuf
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, United States of America
| | - Edward J. O’Brien
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, United States of America
| | - Jon G. Sanders
- Department of Pediatrics, University of California, San Diego, La Jolla, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, United States of America
| | - Rodolfo A. Salido
- Department of Pediatrics, University of California, San Diego, La Jolla, United States of America
| | - Karenina Sanders
- Department of Pediatrics, University of California, San Diego, La Jolla, United States of America
| | - Caitriona Brennan
- Department of Pediatrics, University of California, San Diego, La Jolla, United States of America
| | - Gregory Humphrey
- Department of Pediatrics, University of California, San Diego, La Jolla, United States of America
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, United States of America
- Department of Pediatrics, University of California, San Diego, La Jolla, United States of America
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, United States of America
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, United States of America
| | - Adam M. Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, United States of America
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
- * E-mail:
| |
Collapse
|
6
|
Lalaouna D, Eyraud A, Devinck A, Prévost K, Massé E. GcvB small RNA uses two distinct seed regions to regulate an extensive targetome. Mol Microbiol 2018; 111:473-486. [PMID: 30447071 DOI: 10.1111/mmi.14168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2018] [Indexed: 01/01/2023]
Abstract
GcvB small RNA is described as post-transcriptional regulator of 1-2% of all mRNAs in Escherichia coli and Salmonella Typhimurium. At least 24 GcvB:mRNA interactions have been validated in vivo, establishing the largest characterized sRNA targetome. By performing MS2-affinity purification coupled with RNA sequencing (MAPS) technology, we identified seven additional mRNAs negatively regulated by GcvB in E. coli. Contrary to the vast majority of previously known targets, which pair to the well-conserved GcvB R1 region, we validated four mRNAs targeted by GcvB R3 region. This indicates that base-pairing through R3 seed sequence seems relatively common. We also noticed unusual GcvB pairing sites in the coding sequence of two target mRNAs. One of these target mRNAs has a pairing site displaying a unique ACA motif, suggesting that GcvB could hijack a translational enhancer element. The second target mRNA is likely regulated via an active RNase E-mediated mRNA degradation mechanism. Remarkably, we confirmed the importance of the sRNA sponge SroC in the fine-tuning control of GcvB activity in function of growth conditions such as growth phase and nutrient availability.
Collapse
Affiliation(s)
- David Lalaouna
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alex Eyraud
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Aurélie Devinck
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Karine Prévost
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
7
|
Jakočiūnė D, Herrero-Fresno A, Jelsbak L, Olsen JE. Highly expressed amino acid biosynthesis genes revealed by global gene expression analysis of Salmonella enterica serovar Enteritidis during growth in whole egg are not essential for this growth. Int J Food Microbiol 2016; 224:40-6. [DOI: 10.1016/j.ijfoodmicro.2016.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/12/2016] [Accepted: 02/21/2016] [Indexed: 01/17/2023]
|
8
|
A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci U S A 2016; 113:2502-7. [PMID: 26884157 DOI: 10.1073/pnas.1520040113] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Currently available tools for multiplex bacterial genome engineering are optimized for a few laboratory model strains, demand extensive prior modification of the host strain, and lead to the accumulation of numerous off-target modifications. Building on prior development of multiplex automated genome engineering (MAGE), our work addresses these problems in a single framework. Using a dominant-negative mutant protein of the methyl-directed mismatch repair (MMR) system, we achieved a transient suppression of DNA repair in Escherichia coli, which is necessary for efficient oligonucleotide integration. By integrating all necessary components into a broad-host vector, we developed a new workflow we term pORTMAGE. It allows efficient modification of multiple loci, without any observable off-target mutagenesis and prior modification of the host genome. Because of the conserved nature of the bacterial MMR system, pORTMAGE simultaneously allows genome editing and mutant library generation in other biotechnologically and clinically relevant bacterial species. Finally, we applied pORTMAGE to study a set of antibiotic resistance-conferring mutations in Salmonella enterica and E. coli. Despite over 100 million y of divergence between the two species, mutational effects remained generally conserved. In sum, a single transformation of a pORTMAGE plasmid allows bacterial species of interest to become an efficient host for genome engineering. These advances pave the way toward biotechnological and therapeutic applications. Finally, pORTMAGE allows systematic comparison of mutational effects and epistasis across a wide range of bacterial species.
Collapse
|
9
|
Nair N, Raff H, Islam MT, Feen M, Garofalo DM, Sheppard K. The Bacillus subtilis and Bacillus halodurans Aspartyl-tRNA Synthetases Retain Recognition of tRNA(Asn). J Mol Biol 2016; 428:618-630. [PMID: 26804570 DOI: 10.1016/j.jmb.2016.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 12/19/2022]
Abstract
Synthesis of asparaginyl-tRNA (Asn-tRNA(Asn)) in bacteria can be formed either by directly ligating Asn to tRNA(Asn) using an asparaginyl-tRNA synthetase (AsnRS) or by synthesizing Asn on the tRNA. In the latter two-step indirect pathway, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) attaches Asp to tRNA(Asn) and the amidotransferase GatCAB transamidates the Asp to Asn on the tRNA. GatCAB can be similarly used for Gln-tRNA(Gln) formation. Most bacteria are predicted to use only one route for Asn-tRNA(Asn) formation. Given that Bacillus halodurans and Bacillus subtilis encode AsnRS for Asn-tRNA(Asn) formation and Asn synthetases to synthesize Asn and GatCAB for Gln-tRNA(Gln) synthesis, their AspRS enzymes were thought to be specific for tRNA(Asp). However, we demonstrate that the AspRSs are non-discriminating and can be used with GatCAB to synthesize Asn. The results explain why B. subtilis with its Asn synthetase genes knocked out is still an Asn prototroph. Our phylogenetic analysis suggests that this may be common among Firmicutes and 30% of all bacteria. In addition, the phylogeny revealed that discrimination toward tRNA(Asp) by AspRS has evolved independently multiple times. The retention of the indirect pathway in B. subtilis and B. halodurans likely reflects the ancient link between Asn biosynthesis and its use in translation that enabled Asn to be added to the genetic code.
Collapse
Affiliation(s)
- Nilendra Nair
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Hannah Raff
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | | | - Melanie Feen
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Denise M Garofalo
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA.
| |
Collapse
|
10
|
Role of host cell-derived amino acids in nutrition of intracellular Salmonella enterica. Infect Immun 2015; 83:4466-75. [PMID: 26351287 DOI: 10.1128/iai.00624-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/28/2015] [Indexed: 12/14/2022] Open
Abstract
The facultative intracellular pathogen Salmonella enterica resides in a specific membrane-bound compartment termed the Salmonella-containing vacuole (SCV). Despite being segregated from access to metabolites in the host cell cytosol, Salmonella is able to efficiently proliferate within the SCV. We set out to unravel the nutritional supply of Salmonella in the SCV with focus on amino acids. We studied the availability of amino acids by the generation of auxotrophic strains for alanine, asparagine, aspartate, glutamine, and proline in a macrophage cell line (RAW264.7) and an epithelial cell line (HeLa) and examined access to extracellular nutrients for nutrition. Auxotrophies for alanine, asparagine, or proline attenuated intracellular replication in HeLa cells, while aspartate, asparagine, or proline auxotrophies attenuated intracellular replication in RAW264.7 macrophages. The different patterns of intracellular attenuation of alanine- or aspartate-auxotrophic strains support distinct nutritional conditions in HeLa cells and RAW264.7 macrophages. Supplementation of medium with individual amino acids restored the intracellular replication of mutant strains auxotrophic for asparagine, proline, or glutamine. Similarly, a mutant strain deficient in succinate dehydrogenase was complemented by the extracellular addition of succinate. Complementation of the intracellular replication of auxotrophic Salmonella by external amino acids was possible if bacteria were proficient in the induction of Salmonella-induced filaments (SIFs) but failed in a SIF-deficient background. We propose that the ability of intracellular Salmonella to redirect host cell vesicular transport provides access of amino acids to auxotrophic strains and, more generally, is essential to continuously supply bacteria within the SCV with nutrients.
Collapse
|
11
|
Alperstein A, Ulrich B, Garofalo DM, Dreisbach R, Raff H, Sheppard K. The predatory bacterium Bdellovibrio bacteriovorus aspartyl-tRNA synthetase recognizes tRNAAsn as a substrate. PLoS One 2014; 9:e110842. [PMID: 25338061 PMCID: PMC4206432 DOI: 10.1371/journal.pone.0110842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/20/2014] [Indexed: 11/29/2022] Open
Abstract
The predatory bacterium Bdellovibrio bacteriovorus preys on other Gram-negative bacteria and was predicted to be an asparagine auxotroph. However, despite encoding asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, B. bacteriovorus also contains the amidotransferase GatCAB. Deinococcus radiodurans, and Thermus thermophilus also encode both of these aminoacyl-tRNA synthetases with GatCAB. Both also code for a second aspartyl-tRNA synthetase and use the additional aspartyl-tRNA synthetase with GatCAB to synthesize asparagine on tRNAAsn. Unlike those two bacteria, B. bacteriovorus encodes only one aspartyl-tRNA synthetase. Here we demonstrate the lone B. bacteriovorus aspartyl-tRNA synthetase catalyzes aspartyl-tRNAAsn formation that GatCAB can then amidate to asparaginyl-tRNAAsn. This non-discriminating aspartyl-tRNA synthetase with GatCAB thus provides B. bacteriovorus a second route for Asn-tRNAAsn formation with the asparagine synthesized in a tRNA-dependent manner. Thus, in contrast to a previous prediction, B. bacteriovorus codes for a biosynthetic route for asparagine. Analysis of bacterial genomes suggests a significant number of other bacteria may also code for both routes for Asn-tRNAAsn synthesis with only a limited number encoding a second aspartyl-tRNA synthetase.
Collapse
Affiliation(s)
- Ariel Alperstein
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Brittany Ulrich
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Denise M. Garofalo
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Ruth Dreisbach
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Hannah Raff
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Mladenova SR, Stein KR, Bartlett L, Sheppard K. Relaxed tRNA specificity of theStaphylococcus aureusaspartyl-tRNA synthetase enables RNA-dependent asparagine biosynthesis. FEBS Lett 2014; 588:1808-12. [DOI: 10.1016/j.febslet.2014.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 10/25/2022]
|
13
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
14
|
Saad NY, Schiel B, Brayé M, Heap JT, Minton NP, Dürre P, Becker HD. Riboswitch (T-box)-mediated control of tRNA-dependent amidation in Clostridium acetobutylicum rationalizes gene and pathway redundancy for asparagine and asparaginyl-trnaasn synthesis. J Biol Chem 2012; 287:20382-94. [PMID: 22505715 DOI: 10.1074/jbc.m111.332304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Analysis of the Gram-positive Clostridium acetobutylicum genome reveals an inexplicable level of redundancy for the genes putatively involved in asparagine (Asn) and Asn-tRNA(Asn) synthesis. Besides a duplicated set of gatCAB tRNA-dependent amidotransferase genes, there is a triplication of aspartyl-tRNA synthetase genes and a duplication of asparagine synthetase B genes. This genomic landscape leads to the suspicion of the incoherent simultaneous use of the direct and indirect pathways of Asn and Asn-tRNA(Asn) formation. Through a combination of biochemical and genetic approaches, we show that C. acetobutylicum forms Asn and Asn-tRNA(Asn) by tRNA-dependent amidation. We demonstrate that an entire transamidation pathway composed of aspartyl-tRNA synthetase and one set of GatCAB genes is organized as an operon under the control of a tRNA(Asn)-dependent T-box riboswitch. Finally, our results suggest that this exceptional gene redundancy might be interconnected to control tRNA-dependent Asn synthesis, which in turn might be involved in controlling the metabolic switch from acidogenesis to solventogenesis in C. acetobutylicum.
Collapse
Affiliation(s)
- Nizar Y Saad
- Unité Mixte de Recherche "Génétique Moléculaire, Génomique, Microbiologie," CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Wu J, Bu W, Sheppard K, Kitabatake M, Kwon ST, Söll D, Smith JL. Insights into tRNA-dependent amidotransferase evolution and catalysis from the structure of the Aquifex aeolicus enzyme. J Mol Biol 2009; 391:703-16. [PMID: 19520089 DOI: 10.1016/j.jmb.2009.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/16/2009] [Accepted: 06/04/2009] [Indexed: 11/18/2022]
Abstract
Many bacteria form Gln-tRNA(Gln) and Asn-tRNA(Asn) by conversion of the misacylated Glu-tRNA(Gln) and Asp-tRNA(Asn) species catalyzed by the GatCAB amidotransferase in the presence of ATP and an amide donor (glutamine or asparagine). Here, we report the crystal structures of GatCAB from the hyperthermophilic bacterium Aquifex aeolicus, complexed with glutamine, asparagine, aspartate, ADP, or ATP. In contrast to the Staphylococcus aureus GatCAB, the A. aeolicus enzyme formed acyl-enzyme intermediates with either glutamine or asparagine, in line with the equally facile use by the amidotransferase of these amino acids as amide donors in the transamidation reaction. A water-filled ammonia channel is open throughout the length of the A. aeolicus GatCAB from the GatA active site to the synthetase catalytic pocket in the B-subunit. A non-catalytic Zn(2+) site in the A. aeolicus GatB stabilizes subunit contacts and the ammonia channel. Judged from sequence conservation in the known GatCAB sequences, the Zn(2+) binding motif was likely present in the primordial GatB/E, but became lost in certain lineages (e.g., S. aureus GatB). Two divalent metal binding sites, one permanent and the other transient, are present in the catalytic pocket of the A. aeolicus GatB. The two sites enable GatCAB to first phosphorylate the misacylated tRNA substrate and then amidate the activated intermediate to form the cognate products, Gln-tRNA(Gln) or Asn-tRNA(Asn).
Collapse
Affiliation(s)
- Jing Wu
- Life Sciences Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Zalkin H. The amidotransferases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 66:203-309. [PMID: 8430515 DOI: 10.1002/9780470123126.ch5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- H Zalkin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| |
Collapse
|
17
|
Cañas RA, de la Torre F, Cánovas FM, Cantón FR. High levels of asparagine synthetase in hypocotyls of pine seedlings suggest a role of the enzyme in re-allocation of seed-stored nitrogen. PLANTA 2006; 224:83-95. [PMID: 16425030 DOI: 10.1007/s00425-005-0196-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 11/10/2005] [Indexed: 05/06/2023]
Abstract
A pine asparagine synthetase gene expressed in developing seedlings has been identified by cloning its cDNA (PsAS1) from Scots pine (Pinus sylvestris L.). Genomic DNA analysis with PsAS1 probes and a sequence-based phylogenetic tree are consistent with the possibility of more than one gene encoding asparagine synthetase in pine. However, the parallel patterns of free asparagine content and PsAS1 products indicate that the protein encoded by this gene is mainly responsible for the accumulation of this amino acid during germination and early seedling development. The temporal and spatial patterns of PsAS1 expression together with the spatial distribution of asparagine content suggest that, early after germination, part of the nitrogen mobilized from the megagametophyte is diverted toward the hypocotyl to produce high levels of asparagine as a reservoir of nitrogen to meet later specific demands of development. Furthermore, the transcript and protein analyses in seedlings germinated and growth for extended periods under continuous light or dark suggest that the spatial expression pattern of PsAS1 is largely determined by a developmental program. Therefore, our results suggest that the spatial and temporal control of PsAS1 expression determines the re-allocation of an important amount of seed-stored nitrogen during pine germination.
Collapse
Affiliation(s)
- Rafael A Cañas
- Depto. Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Malaga, Spain
| | | | | | | |
Collapse
|
18
|
Wang H, Liu D, Sun J, Zhang A. Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:81-9. [PMID: 15700423 DOI: 10.1016/j.jplph.2004.07.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Differences in gene expression between salinity stressed and normally grown wheat seedlings were compared by the differential display (DD) technique. One DD-derived cDNA clone was characterized as a partial sequence of the wheat asparagine ynthetase (AS) gene by sequence analysis and homology search of GenBank databases. Two AS genes of wheat, TaASN1 and TaASN2, were further isolated by the RT-PCR approach. Comparison of the deduced polypeptide of TaASN1 and TaASN2 with AS proteins from other organisms revealed several homologous regions, in particular, the conserved glutamine binding sites and Class-II Glutamine amidotransferases domain. The functionality of TaASN1 was demonstrated by complementing an Escherichia coli asparagine auxotroph. TaASN1 transcripts were detected in roots, shoots, anthers and young spikes by RT-PCR analysis. Abundance of TaASN1 mRNA in young spikes and anthers was higher than that in shoots and roots under normal growth conditions. TaASN1 was dramatically induced by salinity, osmotic stress and exogenous abscisic acid (ABA) in wheat seedlings. TaASN2 transcripts were very low in all detected tissues and conditions and were only slightly induced by ABA in roots.
Collapse
Affiliation(s)
- Huabo Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, People's Republic of China
| | | | | | | |
Collapse
|
19
|
Reitzer L. Biosynthesis of Glutamate, Aspartate, Asparagine, L-Alanine, and D-Alanine. EcoSal Plus 2004; 1. [PMID: 26443364 DOI: 10.1128/ecosalplus.3.6.1.3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Indexed: 06/05/2023]
Abstract
Glutamate, aspartate, asparagine, L-alanine, and D-alanine are derived from intermediates of central metabolism, mostly the citric acid cycle, in one or two steps. While the pathways are short, the importance and complexity of the functions of these amino acids befit their proximity to central metabolism. Inorganic nitrogen (ammonia) is assimilated into glutamate, which is the major intracellular nitrogen donor. Glutamate is a precursor for arginine, glutamine, proline, and the polyamines. Glutamate degradation is also important for survival in acidic environments, and changes in glutamate concentration accompany changes in osmolarity. Aspartate is a precursor for asparagine, isoleucine, methionine, lysine, threonine, pyrimidines, NAD, and pantothenate; a nitrogen donor for arginine and purine synthesis; and an important metabolic effector controlling the interconversion of C3 and C4 intermediates and the activity of the DcuS-DcuR two-component system. Finally, L- and D-alanine are components of the peptide of peptidoglycan, and L-alanine is an effector of the leucine responsive regulatory protein and an inhibitor of glutamine synthetase (GS). This review summarizes the genes and enzymes of glutamate, aspartate, asparagine, L-alanine, and D-alanine synthesis and the regulators and environmental factors that control the expression of these genes. Glutamate dehydrogenase (GDH) deficient strains of E. coli, K. aerogenes, and S. enterica serovar Typhimurium grow normally in glucose containing (energy-rich) minimal medium but are at a competitive disadvantage in energy limited medium. Glutamate, aspartate, asparagine, L-alanine, and D-alanine have multiple transport systems.
Collapse
|
20
|
Roy H, Becker HD, Reinbolt J, Kern D. When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism. Proc Natl Acad Sci U S A 2003; 100:9837-42. [PMID: 12874385 PMCID: PMC187858 DOI: 10.1073/pnas.1632156100] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Faithful protein synthesis relies on a family of essential enzymes called aminoacyl-tRNA synthetases, assembled in a piecewise fashion. Analysis of the completed archaeal genomes reveals that all archaea that possess asparaginyl-tRNA synthetase (AsnRS) also display a second ORF encoding an AsnRS truncated from its anticodon binding-domain (AsnRS2). We show herein that Pyrococcus abyssi AsnRS2, in contrast to AsnRS, does not sustain asparaginyl-tRNAAsn synthesis but is instead capable of converting aspartic acid into asparagine. Functional analysis and complementation of an Escherichia coli asparagine auxotrophic strain show that AsnRS2 constitutes the archaeal homologue of the bacterial ammonia-dependent asparagine synthetase A (AS-A), therefore named archaeal asparagine synthetase A (AS-AR). Primary sequence- and 3D-based phylogeny shows that an archaeal AspRS ancestor originated AS-AR, which was subsequently transferred into bacteria by lateral gene transfer in which it underwent structural changes producing AS-A. This study provides evidence that a contemporary aminoacyl-tRNA synthetase can be recruited to sustain amino acid metabolism.
Collapse
Affiliation(s)
- Hervé Roy
- Département Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, 15 Rue René Descartes, F-67084 Strasbourg Cédex, France
| | | | | | | |
Collapse
|
21
|
Adachi A, Shinjyo N, Fujita D, Miyoshi H, Amino H, Watanabe YI, Kita K. Complementation of Escherichia coli ubiF mutation by Caenorhabditis elegans CLK-1, a product of the longevity gene of the nematode worm. FEBS Lett 2003; 543:174-8. [PMID: 12753928 DOI: 10.1016/s0014-5793(03)00419-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Caenorhabditis elegans CLK-1 was identified from long-lived mutant worms, and is believed to be involved in ubiquinone biosynthesis. The protein belongs to the eukaryotic CLK-1/Coq7p family, which is also similar to the bacterial Coq7 family, that hydroxylates demethoxyubiquinone, resulting in the formation of hydroxyubiquinone, a precursor of ubiquinone. In Escherichia coli, the corresponding reaction is catalyzed by UbiF, a member of a distinct class of hydroxylase. Although previous studies suggested that the eukaryotic CLK-1/Coq7 family is a hydroxylase of demethoxyubiquinone, there was no direct evidence to show the enzymatic activity of the eukaryotic CLK-1/Coq7 family. Here we show that the plasmid encoding C. elegans CLK-1 supported aerobic respiration on a non-fermentable carbon source of E. coli ubiF mutant strain and rescued the ability to synthesize ubiquinone, suggesting that the eukaryotic CLK-1/Coq7p family could function as bacterial UbiF.
Collapse
Affiliation(s)
- Akihiko Adachi
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Herrera-Rodríguez MB, Carrasco-Ballesteros S, Maldonado JM, Pineda M, Aguilar M, Pérez-Vicente R. Three genes showing distinct regulatory patterns encode the asparagine synthetase of sunflower (Helianthus annuus). THE NEW PHYTOLOGIST 2002; 155:33-45. [PMID: 33873300 DOI: 10.1046/j.1469-8137.2002.00437.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
• Asparagine metabolism in sunflower (Helianthus annuus) was investigated by cDNA cloning, sequence characterization and expression analysis of three genes encoding different isoforms of asparagine synthetase (AS, EC 6.3.5.4). • The AS-coding sequences were searched for in leaves, roots and cotyledons by using a methodology based on the simultaneous amplification of different cDNAs. Three distinct AS-coding genes, HAS1, HAS1.1 and HAS2, were identified. • HAS1 and HAS1.1 are twin genes with closely related sequences that share some regulatory features. By contrast, HAS2 is a singular sequence that encodes an incomplete AS polypeptide and shows an unusual regulation. The functionality of both the complete HAS1 and the truncated HAS2 proteins was demonstrated by complementation assays. Northern analysis revealed that HAS1, HAS1.1 and HAS2 were differentially regulated dependent on the organ, the physiological status, the developmental stage and the light conditions. • Asparagine synthetase from sunflower is encoded by a small gene family whose members have achieved a significant degree of specialization to cope with the major situations requiring asparagine synthesis.
Collapse
Affiliation(s)
- María Begoña Herrera-Rodríguez
- Departamento de Biología Vegetal, División de Fisiología Vegetal, Universidad de Córdoba, Avda. San Alberto Magno s/n, E-14071 Córdoba, Spain
| | - Susana Carrasco-Ballesteros
- Departamento de Biología Vegetal, División de Fisiología Vegetal, Universidad de Córdoba, Avda. San Alberto Magno s/n, E-14071 Córdoba, Spain
| | - José María Maldonado
- Departamento de Fisiología Vegetal y Ecología, Unidad de Fisiología Vegetal, Facultad de Biología, Universidad de Sevilla, Avda, Reina Mercedes 6, E-41012 Seville, Spain
| | - Manuel Pineda
- Departamento de Bioquímica y Biología Molecular. Universidad de Córdoba, Campus Rabanales, Edif. C-6, 1a Planta, E-14071 Córdoba, Spain
| | - Miguel Aguilar
- Departamento de Bioquímica y Biología Molecular. Universidad de Córdoba, Campus Rabanales, Edif. C-6, 1a Planta, E-14071 Córdoba, Spain
| | - Rafael Pérez-Vicente
- Departamento de Biología Vegetal, División de Fisiología Vegetal, Universidad de Córdoba, Avda. San Alberto Magno s/n, E-14071 Córdoba, Spain
| |
Collapse
|
23
|
Zhu C, Ngeleka M, Potter AA, Allan BJ. Effect of fur mutation on acid-tolerance response and in vivo virulence of avian septicemic Escherichia coli. Can J Microbiol 2002; 48:458-62. [PMID: 12109886 DOI: 10.1139/w02-042] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Fur (ferric uptake regulator) protein is a master regulator of iron metabolism in gram-negative bacteria. In the present study, the effect of a partial deletion of the fur gene on the acid-tolerance response and in vivo virulence of avian Escherichia coli was examined. The fur mutant was unable to trigger the acid-tolerance response as observed in the wild-type parent strain. However, the mutant was as virulent as the wild-type parent strain when tested in 1-day-old chickens by subcutaneous inoculation. These data indicate that the fur gene is involved in the acid-tolerance response but not involved in the virulence of E. coli, as detected by the ability to cause septicemia in our experimental infection.
Collapse
Affiliation(s)
- Chengru Zhu
- Veterinary Infectious Disease Organization, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
24
|
Min B, Pelaschier JT, Graham DE, Tumbula-Hansen D, Söll D. Transfer RNA-dependent amino acid biosynthesis: an essential route to asparagine formation. Proc Natl Acad Sci U S A 2002; 99:2678-83. [PMID: 11880622 PMCID: PMC122407 DOI: 10.1073/pnas.012027399] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biochemical experiments and genomic sequence analysis showed that Deinococcus radiodurans and Thermus thermophilus do not possess asparagine synthetase (encoded by asnA or asnB), the enzyme forming asparagine from aspartate. Instead these organisms derive asparagine from asparaginyl-tRNA, which is made from aspartate in the tRNA-dependent transamidation pathway [Becker, H. D. & Kern, D. (1998) Proc. Natl. Acad. Sci. USA 95, 12832-12837; and Curnow, A. W., Tumbula, D. L., Pelaschier, J. T., Min, B. & Söll, D. (1998) Proc. Natl. Acad. Sci. USA 95, 12838-12843]. A genetic knockout disrupting this pathway deprives D. radiodurans of the ability to synthesize asparagine and confers asparagine auxotrophy. The organism's capacity to make asparagine could be restored by transformation with Escherichia coli asnB. This result demonstrates that in Deinococcus, the only route to asparagine is via asparaginyl-tRNA. Analysis of the completed genomes of many bacteria reveal that, barring the existence of an unknown pathway of asparagine biosynthesis, a wide spectrum of bacteria rely on the tRNA-dependent transamidation pathway as the sole route to asparagine.
Collapse
Affiliation(s)
- Bokkee Min
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
25
|
Poggio S, Domeinzain C, Osorio A, Camarena L. The nitrogen assimilation control (Nac) protein represses asnC and asnA transcription in Escherichia coli. FEMS Microbiol Lett 2002; 206:151-6. [PMID: 11814655 DOI: 10.1111/j.1574-6968.2002.tb11001.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In this work, we show that the expression of the asnA and asnC genes is regulated by the availability of ammonium in the growth medium. Our results suggest that, under nitrogen-limiting growth conditions, the nitrogen assimilation control (Nac) protein is involved in the repression of the asnC gene, whose product is required to activate the transcription of asnA. We also show that asparagine negatively affects the expression of asnA, independently of the presence of Nac. These results allow us to conclude that asnA transcription is regulated by two different mechanisms that respond to different effectors: nitrogen and asparagine availability.
Collapse
Affiliation(s)
- Sebastian Poggio
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ap. Postal 70-228, 04510, México, D.F., Mexico
| | | | | | | |
Collapse
|
26
|
Stenmark P, Grünler J, Mattsson J, Sindelar PJ, Nordlund P, Berthold DA. A new member of the family of di-iron carboxylate proteins. Coq7 (clk-1), a membrane-bound hydroxylase involved in ubiquinone biosynthesis. J Biol Chem 2001; 276:33297-300. [PMID: 11435415 DOI: 10.1074/jbc.c100346200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquinone (UQ) is an essential cofactor for respiratory metabolism. In yeast, mutation of the COQ7 gene results in the absence of UQ biosynthesis and demonstrates a role for this gene in the step leading to the hydroxylation of 5-demethoxyubiquinone. Intriguingly, the disruption of the corresponding gene in Caenorhabditis elegans, clk-1, results in a prolonged life span and a slowing of development. Because of the pleiotropic effect of this disruption, the small size of the protein, and the lack of obvious homology to other known hydroxylases, it has been suggested that Coq7 may be a regulatory or structural component in UQ biosynthesis, rather than acting as the hydroxylase per se. Here we identify Coq7 as belonging to a family of a di-iron containing oxidases/hydroxylases based on a conserved sequence motif for the iron ligands, supporting a direct function of Coq7 as a hydroxylase. We have cloned COQ7 from Pseudomonas aeruginosa and Thiobacillus ferrooxidans and show that indeed this gene complements an Escherichia coli mutant that lacks an unrelated 5-demethoxyubiquinone hydroxylase. Based on the similarities to other well studied di-iron carboxylate proteins, we propose a structural model for Coq7 as an interfacial integral membrane protein.
Collapse
Affiliation(s)
- P Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 12, S-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Bogdanova E, Minakhin L, Bass I, Volodin A, Hobman JL, Nikiforov V. Class II broad-spectrum mercury resistance transposons in Gram-positive bacteria from natural environments. Res Microbiol 2001; 152:503-14. [PMID: 11446519 DOI: 10.1016/s0923-2508(01)01224-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have studied the mechanisms of the horizontal dissemination of a broad-spectrum mercury resistance determinant among Bacillus and related species. This mer determinant was first described in Bacillus cereus RC607 from Boston Harbor, USA, and was then found in various Bacillus and related species in Japan, Russia and England. We have shown that the mer determinant can either be located at the chromosome, or on a plasmid in the Bacillus species, and is carried by class II mercury resistance transposons: Tn5084 from B. cereus RC607 and B. cereus VKM684 (ATCC10702) and Tn5085 from Exiguobacterium sp. TC38-2b. Tn5085 is identical in nucleotide sequence to TnMERI1, the only other known mer transposon from Bacillus species, but it does not contain an intron like TnMERI1. Tn5085 is functionally active in Escherichia coli. Tn5083, which we have isolated from B. megaterium MK64-1, contains an RC607-like mer determinant, that has lost some mercury resistance genes and possesses a merA gene which is a novel sequence variant that has not been previously described. Tn5083 and Tn5084 are recombinants, and are comprised of fragments from several transposons including Tn5085, and a relative of a putative transposon from B. firmus (which contains similar genes to the cadmium resistance operon of Staphylococcus aureus), as well as others. The sequence data showed evidence for recombination both between transposition genes and between mer determinants.
Collapse
Affiliation(s)
- E Bogdanova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow.
| | | | | | | | | | | |
Collapse
|
28
|
Kwon O, Kotsakis A, Meganathan R. Ubiquinone (coenzyme Q) biosynthesis in Escherichia coli: identification of the ubiF gene. FEMS Microbiol Lett 2000; 186:157-61. [PMID: 10802164 DOI: 10.1111/j.1574-6968.2000.tb09097.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ubiquinone (coenzyme Q; abbreviation, Q) plays an essential role in electron transport in Escherichia coli when oxygen or nitrate is the electron acceptor. The biosynthesis of Q involves at least nine reactions. Three of these reactions involve hydroxylations resulting in the introduction of hydroxyl groups at positions C-6, C-4, and C-5 of the benzene nucleus of Q. The genes encoding the enzymes responsible for these hydroxylations, ubiB, ubiH, and ubiF are located at 87, 66, and 15 min of the E. coli linkage map. The ubiF encoded oxygenase introduces the hydroxyl group at carbon five of 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol resulting in the formation of 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1, 4-benzoquinol. An ubiF mutant failed to carry out this conversion. Based on the homology to UbiH, an open reading frame (orf391) was identified at the 15 min region of the chromosome, amplified using PCR, and cloned into pUC18 plasmid. The ubiF mutants, when complemented with this plasmid, regained the ability to grow on succinate and synthesize Q.
Collapse
Affiliation(s)
- O Kwon
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | | | |
Collapse
|
29
|
Felkai S, Ewbank JJ, Lemieux J, Labbé JC, Brown GG, Hekimi S. CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J 1999; 18:1783-92. [PMID: 10202142 PMCID: PMC1171264 DOI: 10.1093/emboj/18.7.1783] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the clk-1 gene of the nematode Caenorhabditis elegans result in an average slowing of a variety of developmental and physiological processes, including the cell cycle, embryogenesis, post-embryonic growth, rhythmic behaviors and aging. In yeast, a CLK-1 homologue is absolutely required for ubiquinone biosynthesis and thus respiration. Here we show that CLK-1 is fully active when fused to green fluorescent protein and is found in the mitochondria of all somatic cells. The activity of mutant mitochondria, however, is only very slightly impaired, as measured in vivo by a dye-uptake assay, and in vitro by the activity of succinate cytochrome c reductase. Overexpression of CLK-1 activity in wild-type worms can increase mitochondrial activity, accelerate behavioral rates during aging and shorten life span, indicating that clk-1 regulates and controls these processes. These observations also provide strong genetic evidence that mitochondria are causally involved in aging. Furthermore, the reduced respiration of the long-lived clk-1 mutants suggests that longevity is promoted by the age-dependent decrease in mitochondrial function that is observed in most species.
Collapse
Affiliation(s)
- S Felkai
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montréal, Québec, Canada H3A 1B1
| | | | | | | | | | | |
Collapse
|
30
|
Girvin ME, Rastogi VK, Abildgaard F, Markley JL, Fillingame RH. Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase. Biochemistry 1998; 37:8817-24. [PMID: 9636021 DOI: 10.1021/bi980511m] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Subunit c is the H+-translocating component of the F1F0 ATP synthase complex. H+ transport is coupled to conformational changes that ultimately lead to ATP synthesis by the enzyme. The properties of the monomeric subunit in a single-phase solution of chloroform-methanol-water (4:4:1) have been shown to mimic those of the protein in the native complex. Triple resonance NMR experiments were used to determine the complete structure of monomeric subunit c in this solvent mixture. The structure of the protein was defined by >2000 interproton distances, 64 (3)JN alpha, and 43 hydrogen-bonding NMR-derived restraints. The root mean squared deviation for the backbone atoms of the two transmembrane helices was 0.63 A. The protein folds as a hairpin of two antiparallel helical segments, connected by a short structured loop. The conserved Arg41-Gln42-Pro43 form the top of this loop. The essential H+-transporting Asp61 residue is located at a slight break in the middle of the C-terminal helix, just prior to Pro64. The C-terminal helix changes direction by 30 +/- 5 degrees at the conserved Pro64. In its protonated form, the Asp61 lies in a cavity created by the absence of side chains at Gly23 and Gly27 in the N-terminal helix. The shape and charge distribution of the molecular surface of the monomeric protein suggest a packing arrangement for the oligomeric protein in the F0 complex, with the front face of one monomer packing favorably against the back face of a second monomer. The packing suggests that the proton (cation) binding site lies between packed pairs of adjacent subunit c.
Collapse
Affiliation(s)
- M E Girvin
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53706, USA.
| | | | | | | | | |
Collapse
|
31
|
Hughes CA, Beard HS, Matthews BF. Molecular cloning and expression of two cDNAs encoding asparagine synthetase in soybean. PLANT MOLECULAR BIOLOGY 1997; 33:301-11. [PMID: 9037148 DOI: 10.1023/a:1005784202450] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two cDNA clones (SAS1 and SAS2) encoding different isoforms of asparagine synthetase (AS; EC 6.3.5.4) were isolated. Their DNA sequences were determined and compared. The amino-terminal residues of the predicted SAS1 and SAS2 proteins were identical to those of the glutamine binding domain of AS from pea, asparagus, Arabidopsis and human, suggesting that SAS1 and SAS2 cDNAs encode the glutamine-dependent form of AS. The open reading frames of SAS1 and SAS2 encode a protein of 579 and 581 amino acids with predicted molecular weights of 65182 and 65608 Da respectively. Similarity of the deduced amino acid sequences of SAS1 and SAS2 with other known AS sequences were 92% and 93% for pea AS1; 91% and 96% for pea AS2; 88% and 91% for asparagus; 88% and 90.5% for Arabidopsis; 70.5% and 72.5% for E. coli asnB and 61% and 63% for man. A plasmid, pSAS2E, was constructed to express the soybean AS protein in Escherichia coli. Complementation experiments revealed that the soybean AS protein was functional in E. coli. Southern blot analysis indicated that the soybean AS is part of a small gene family. AS transcript was expressed in all tissues examined, but higher levels were seen in stem and root of light-grown tissue and leaves of dark-treated tissue.
Collapse
Affiliation(s)
- C A Hughes
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | | | | |
Collapse
|
32
|
Waugh DS. Genetic tools for selective labeling of proteins with alpha-15N-amino acids. JOURNAL OF BIOMOLECULAR NMR 1996; 8:184-192. [PMID: 8914274 DOI: 10.1007/bf00211164] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A collection of genetic tools that can be used to manipulate amino acid metabolism in Escherichia coli is described. The set comprises 21 strains of bacteria, each containing a different genetic defect that is closely linked to a selectable transposon marker. These tools can be used to construct strains of E. coli with ideal genotypes for residue-specific, selective labeling of proteins with nearly any 15N-amino acid. By using strains which have been modified to contain the appropriate genetic lesions to control amino acid biosynthesis, dilution of the isotope by endogenous amino acid biosynthesis and scrambling of the label to other types of residues can be avoided.
Collapse
Affiliation(s)
- D S Waugh
- Department of Physical Chemistry, Roche Research Center, Hoffmann-La Roche Inc., Nutley, NJ 07110, USA
| |
Collapse
|
33
|
Kim SI, Germond JE, Pridmore D, Söll D. Lactobacillus bulgaricus asparagine synthetase and asparaginyl-tRNA synthetase: coregulation by transcription antitermination? J Bacteriol 1996; 178:2459-61. [PMID: 8636057 PMCID: PMC177964 DOI: 10.1128/jb.178.8.2459-2461.1996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Genes encoding the ammonia-dependent asparagine synthetase (asnA) and asparaginyl-tRNA synthetase (asnS) have been cloned from Lactobacillus bulgaricus ATCC 11842. The nucleotide sequence suggests that asnA and asnS are organized as one operon and regulated by the tRNA-directed transcription antitermination mechanism (T. M. Henkin, Mol. Microbiol. 13:381-387, 1994).
Collapse
Affiliation(s)
- S I Kim
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
34
|
Hermolin J, Fillingame RH. Assembly of F0 sector of Escherichia coli H+ ATP synthase. Interdependence of subunit insertion into the membrane. J Biol Chem 1995; 270:2815-7. [PMID: 7852354 DOI: 10.1074/jbc.270.6.2815] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The F0 sector of the Escherichia coli H+ transporting ATP synthase is composed of a complex of three subunits, each of which traverses the inner membrane. We have studied the interdependence of subunit insertion into the membrane in a series of chromosomal mutants in which the primary mutation prevented insertion of one of the F0 subunits. Subunit insertion was assessed using Western blots of mutant membrane preparations. Subunit b and subunit c were found to insert into the membrane independently of the other two F0 subunits. On the other hand, subunit a was not inserted into membranes that lacked either subunit b or subunit c. The conclusion that subunit a insertion is dependent upon the co-insertion of subunits b and c differs from the conclusion of several studies, where subunits were expressed from multicopy plasmids.
Collapse
Affiliation(s)
- J Hermolin
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53706
| | | |
Collapse
|
35
|
Suppressor mutations in F1 subunit epsilon recouple ATP-driven H+ translocation in uncoupled Q42E subunit c mutant of Escherichia coli F1F0 ATP synthase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34049-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
36
|
Boehlein S, Richards N, Schuster S. Glutamine-dependent nitrogen transfer in Escherichia coli asparagine synthetase B. Searching for the catalytic triad. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37307-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
37
|
Arginine 41 of subunit c of Escherichia coli H(+)-ATP synthase is essential in binding and coupling of F1 to F0. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37319-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
38
|
Brears T, Liu C, Knight TJ, Coruzzi GM. Ectopic Overexpression of Asparagine Synthetase in Transgenic Tobacco. PLANT PHYSIOLOGY 1993; 103:1285-1290. [PMID: 12232020 PMCID: PMC159117 DOI: 10.1104/pp.103.4.1285] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here, we monitor the effects of ectopic overexpression of genes for pea asparagine synthetase (AS1) in transgenic tobacco (Nicotiana tabacum). The AS genes of pea and tobacco are normally expressed only during the dark phase of the diurnal growth cycle and specifically in phloem cells. A hybrid gene was constructed in which a pea AS1 cDNA was fused to the cauliflower mosaic virus 35S promoter. The 35S-AS1 gene was therefore ectopically expressed in all cell types in transgenic tobacco and constitutively expressed at high levels in both the light and the dark. Northern analysis demonstrated that the 35S-AS1 transgene was constitutively expressed at high levels in leaves of several independent transformants. Furthermore, amino acid analysis revealed a 10- to 100-fold increase in free asparagine in leaves of transgenic 35S-AS1 plants (construct z127) compared with controls. Plant growth analyses showed increases (although statistically insignificant) in growth phenotype during the vegetative stage of growth in 35S-AS1 transgenic lines. The 35S-AS1 construct was further modified by deletion of the glutamine-binding domain of the enzyme (gln[delta]AS1; construct z167). By analogy to animal AS, we reasoned that inhibition of glutamine-dependent AS activity might enhance the ammonia-dependent AS activity. The 3- to 19-fold increase in asparagine levels in the transgenic plants expressing gln[delta]AS1 compared with wild type suggests that the novel AS holoenzyme present in the transgenic plants (gln[delta]AS1 homodimer) has enhanced ammonia-dependent activity. These data indicate that manipulation of AS expression in transgenic plants causes an increase in nitrogen assimilation into asparagine, which in turn produces effects on plant growth and asparagine biosynthesis.
Collapse
Affiliation(s)
- T. Brears
- Department of Biology, New York University, 1009 Main Building, Washington Square East, New York, New York 10003 (T.B., C.L., G.M.C.)
| | | | | | | |
Collapse
|
39
|
Scofield MA, Lewis WS, Schuster SM. Nucleotide sequence of Escherichia coli asnB and deduced amino acid sequence of asparagine synthetase B. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38244-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Vogler AP, Lengeler JW. Analysis of the nag regulon from Escherichia coli K12 and Klebsiella pneumoniae and of its regulation. MOLECULAR & GENERAL GENETICS : MGG 1989; 219:97-105. [PMID: 2693951 DOI: 10.1007/bf00261163] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Four genes, nagR, A, B and E, clustered in the nag locus of Escherichia coli K12 and Klebsiella pneumoniae, were cloned and physically mapped, and the corresponding gene products involved in amino sugar metabolism identified. Expression of the nag genes was also analysed using a series of lacZ fusions. In both bacteria, the genes are arranged in two divergent operons and controlled by a common NagR repressor. The corresponding gene nagR was found to map in the first operon together with the promoter proximal gene nagB, encoding the enzyme D-glucosamine isomerase (deaminase) (NagB) and the middle gene nagA, coding for N-acetyl-glucosamine deacetylase (NagA). Polar mutations in nagB and nagA prevent the efficient expression of nagR and cause constitutive expression of all nag genes. This includes the gene nagE encoding Enzyme IINag of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system (PTS), encoded in the second divergently transcribed operon. No further gene is found in this operon which in both organisms is directly adjacent to the gene glnS. It is interesting that the NagR repressor also affects the mannose PTS (genes manX, Y, Z), the second transport system involved in amino sugar uptake and phosphorylation.
Collapse
Affiliation(s)
- A P Vogler
- Universität Osnabrück, Fachbereich Biologie/Chemie, Federal Republic of Germany
| | | |
Collapse
|
41
|
Paule CR, Fillingame RH. Mutations in three of the putative transmembrane helices of subunit a of the Escherichia coli F1F0-ATPase disrupt ATP-driven proton translocation. Arch Biochem Biophys 1989; 274:270-84. [PMID: 2528329 DOI: 10.1016/0003-9861(89)90439-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three missense mutants in subunit a of the Escherichia coli F1F0-ATPase were isolated and characterized after hydroxylamine mutagenesis of a plasmid carrying the uncB (subunit a) gene. The mutations resulted in Asp119----His, Ser152----Phe, or Gly197----Arg substitutions in subunit a. Function was not completely abolished by any of the mutations. The F0 membrane sector was assembled in all three cases as judged by restoration of dicyclohexylcarbodiimide sensitivity to the F1F0-ATPase. The H+ translocation capacity of F0 was reduced in all three mutants. ATP-driven H+-translocation was also reduced, with the response in the Gly197----Arg mutant being almost nil and that in the Asp119----His and Ser152----Phe mutants less severely affected. The substituted residues are predicted to lie in the second, third, and fourth transmembrane helices suggested in most models for subunit a. The Gly197----Arg mutation lies in a very conserved region of the protein and the substitution may disrupt a structure that is critical to function. The Asp119----His and Ser152----Phe mutations also lie in areas with sequence conservation. A further analysis of randomly generated mutants may provide more information on regions of the protein that are crucial to function. Heterodiploid transformants, carrying plasmids with either the wild-type uncB gene or mutant uncB genes in an uncB (Trp231----stop) background, were characterized biochemically. The truncated subunit a was not detected in membranes of the background strain by Western blotting, and the uncB+ plasmid complemented strain showed normal biochemistry. The uncB mutant genes were shown to cause equivalent defects in either the heterodiploid background configuration, or after incorporation into an otherwise wild-type unc operon. The subunit a (Trp231----stop) background strain was shown to bind F1-ATPase nearly normally despite lacking subunit a in its membrane.
Collapse
Affiliation(s)
- C R Paule
- Department of Physiological Chemistry, University of Wisconsin Medical School, Madison 53706
| | | |
Collapse
|
42
|
Fraga D, Fillingame RH. Conserved Polar Loop Region of Escherichia coli Subunit c of the F1F0 H+-ATPase. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83500-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Miller MJ, Fraga D, Paule CR, Fillingame RH. Mutations in the conserved proline 43 residue of the uncE protein (subunit c) of Escherichia coli F1F0-ATPase alter the coupling of F1 to F0. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(17)31258-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
44
|
Kölling R, Gielow A, Seufert W, Kücherer C, Messer W. AsnC, a multifunctional regulator of genes located around the replication origin of Escherichia coli, oriC. MOLECULAR & GENERAL GENETICS : MGG 1988; 212:99-104. [PMID: 2836709 DOI: 10.1007/bf00322450] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The expression of the gidA gene which is located immediately counterclockwise of the replication origin of Escherichia coli, oriC, was found to be negatively regulated by the AsnC protein in an in vitro transcription-translation system. This effect is not due to simple repression of transcription originating at the gidA promoter, because the AsnC protein did not change the level of gidA promoter dependent transcription as analysed by promoter-galK fusions and by S1 mapping. From these data we conclude that the AsnC protein controls gidA gene expression at a post-transcriptional level. gidA is the third gene in the oriC region, besides asnA and asnC, whose expression is under AsnC control. However, the mechanisms involved are different: regulation of transcription in the case of asnA and asnC and post-transcriptional control of gidA. The gidA promoter was mapped by deletion analysis and by S1 mapping. We defined two regions that affect promoter activity negatively. Additional transcripts, regulated by AsnC, started more than 300 bp upstream of the gidA promoter and were found to enter the gidA region. These transcripts, originating either at the mioC and/or the ansC promoter traverse the replication origin.
Collapse
Affiliation(s)
- R Kölling
- Max-Planck-Institut für molekulare Genetik, Berlin
| | | | | | | | | |
Collapse
|
45
|
Donald RG, Lapointe J, Ludwig RA. Characterization of the Azorhizobium sesbaniae ORS571 genomic locus encoding NADPH-glutamate synthase. J Bacteriol 1988; 170:1197-204. [PMID: 2830230 PMCID: PMC210892 DOI: 10.1128/jb.170.3.1197-1204.1988] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sixteen independent Azorhizobium sesbaniae ORS571 vector insertion (Vi) mutants defective in ammonium assimilation (Asm-) were selected; genomic DNA sequences flanking the insertion endpoints were cloned directly. Resulting recombinant plasmids were used to identify, by hybridization, corresponding wild-type DNA sequences from an A. sesbaniae lambda EMBL3 genomic library (lambda Asm phages). All 16 Asm- Vi mutants physically mapped to a single genomic locus. Plasmid subclones of recombinant phage lambda Asm152 were able to complement both Escherichia coli gltB and A. sesbaniae Asm- Vi mutants; NADPH-glutamate synthase activity was detected in all such strains complemented to Asm+. Heterologous and homologous complementations required both A. sesbaniae gltA+ and (inferred) gltB+ genes. Eleven A. sesbaniae Asm- Vi mutants mapped to a 4-kilobase-pair (kbp) DNA region that exhibited homology with Bacillus subtilis gltA+. In E. coli maxicell labeling experiments, this 4-kbp DNA region encoded a 165-kilodalton polypeptide that was inferred to be the product of the A. sesbaniae gltA+ gene (glutaminase NADPH-dependent L-glutamate synthase subunit). Site-directed Tn5-lacZ mutagenesis of a glt plasmid subclone identified a region that bisected this locus into (at least) two cistrons. Because the remaining five A. sesbaniae Asm- mutants mapped to a 1.5-kbp region adjacent to gltA+, these mutants probably define a single gltB+ gene (glutamate dehydrogenase NADPH-dependent L-glutamate synthase subunit); this region did not exhibit homology with the B. subtilis gltB+ gene.
Collapse
Affiliation(s)
- R G Donald
- Department of Biology, Thimann Laboratories, University of California, Santa Cruz 95064
| | | | | |
Collapse
|
46
|
Grundy FJ, Plaut A, Wright A. Haemophilus influenzae immunoglobulin A1 protease genes: cloning by plasmid integration-excision, comparative analyses, and localization of secretion determinants. J Bacteriol 1987; 169:4442-50. [PMID: 2820926 PMCID: PMC213806 DOI: 10.1128/jb.169.10.4442-4450.1987] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Many bacteria which establish infections after invasion at human mucosal surfaces produce enzymes which cleave immunoglobulin A (IgA), the primary immunoglobulin involved with protection at these sites. Bacterial species such as Haemophilus influenzae which produce IgA1 proteases secrete this enzyme into their environment. However, when the gene encoding this protein was isolated from H. influenzae serotype d and introduced into Escherichia coli, the activity was not secreted into the medium but was localized in the periplasmic space. In this study, the IgA1 protease gene (iga) from an H. influenzae serotype c strain was isolated and the gene from the serotype d strain was reisolated. The IgA1 proteases produced in E. coli from these genes were secreted into the growth medium. A sequence linked to the carboxyl terminus of the iga gene but not present in the original clone was shown to be necessary to achieve normal secretion. Tn5 mutagenesis of the additional carboxyl-terminal region was used to define a 75- to 100-kilodalton coding region required for complete secretion of IgA1 protease but nonessential for protease activity. The iga genes were isolated by a plasmid integration-excision procedure. In this method a derivative of plasmid pBR322 containing a portion of the protease gene and the kanamycin resistance determinant of Tn5 was introduced into H. influenzae by transformation. The kanamycin resistance gene was expressed in H. influenzae, but since pBR322 derivatives are unable to replicate in this organism, kanamycin-resistant transformants arose by integration of the plasmid into the Haemophilus chromosome by homologous recombination. The plasmid, together with the adjoining DNA encoding IgA1 protease, was then excised from the chromosome with DNA restriction enzymes, religated, and reintroduced into E. coli. Comparisons between the H. influenzae protease genes were initiated which are useful in locating functional domains of these enzymes.
Collapse
Affiliation(s)
- F J Grundy
- Department of Molecular Biology and Microbiology, Tufts University Health Sciences Campus, Boston, Massachusetts
| | | | | |
Collapse
|
47
|
Plumbridge J. Organisation of the Escherichia coli chromosome between genes glnS and glnU, V. MOLECULAR & GENERAL GENETICS : MGG 1987; 209:618-20. [PMID: 2828887 DOI: 10.1007/bf00331173] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Analysis of bacteriophage lambda DNA and of subcloned plasmid DNA has allowed the localisation of the following genes, located at 16 min on the Escherichia coli chromosome, within a restriction map of the region: glnS, nagE, nagb, nagA, asnB, metT, leuW, glnU, glnU, metT; glnV, glnV.
Collapse
Affiliation(s)
- J Plumbridge
- Department of Molecular Biophysics and Biochemistry, Yale Unviersity, New Haven, CT 06511
| |
Collapse
|
48
|
Abstract
The attachment sites of 13 temperate coliphages were determined. Specialized transduction of proAB mutants was shown by eight isolates and of a his mutant by another two. Two isolates were concluded to integrate at atthtt and the integration site of one isolate remained undetermined.
Collapse
|
49
|
Fillingame RH, Mosher ME. Use of lambda-unc transducing phages in genetic analysis of H(+)-ATPase mutants of Escherichia coli. Methods Enzymol 1986; 126:558-68. [PMID: 2908465 DOI: 10.1016/s0076-6879(86)26058-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
50
|
de Wind N, de Jong M, Meijer M, Stuitje AR. Site-directed mutagenesis of the Escherichia coli chromosome near oriC: identification and characterization of asnC, a regulatory element in E. coli asparagine metabolism. Nucleic Acids Res 1985; 13:8797-811. [PMID: 3909107 PMCID: PMC318952 DOI: 10.1093/nar/13.24.8797] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We developed a new method for the specific mutagenization of the E. coli chromosome. This method takes advantage of the fact that a pBR322 plasmid containing chromosomal sequences is mobilizable during an Hfr-mediated conjugational transfer, due to an homologous recombination between the E. coli Hfr chromosome and the pBR322 derivative. Transconjugants are screened with a simple selection procedure for integration of mutant sequences in the chromosome and loss of pBR322 sequences. Using this method we specifically inactivated several genes near the E. coli replication origin oriC. We found that a gene coding for asparagine synthetase A. This regulatory mechanism was investigated in detail by determining in vivo regulation of asnA promoter activity by the 17kD protein under different growth conditions. Results obtained also suggest a general regulatory role of the 17kD protein in E. coli asparagine metabolism. Therefore the 17kD gene is proposed to be renamed asnC.
Collapse
|