1
|
Kidane D, Ayora S, Sweasy JB, Graumann PL, Alonso JC. The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery. Crit Rev Biochem Mol Biol 2012; 47:531-55. [PMID: 23046409 DOI: 10.3109/10409238.2012.729562] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Natural transformation is a programmed mechanism characterized by binding of free double-stranded (ds) DNA from the environment to the cell pole in rod-shaped bacteria. In Bacillus subtilis some competence proteins, which process the dsDNA and translocate single-stranded (ss) DNA into the cytosol, recruit a set of recombination proteins mainly to one of the cell poles. A subset of single-stranded binding proteins, working as "guardians", protects ssDNA from degradation and limit the RecA recombinase loading. Then, the "mediators" overcome the inhibitory role of guardians, and recruit RecA onto ssDNA. A RecA·ssDNA filament searches for homology on the chromosome and, in a process that is controlled by "modulators", catalyzes strand invasion with the generation of a displacement loop (D-loop). A D-loop resolvase or "resolver" cleaves this intermediate, limited DNA replication restores missing information and a DNA ligase seals the DNA ends. However, if any step fails, the "rescuers" will repair the broken end to rescue chromosomal transformation. If the ssDNA does not share homology with resident DNA, but it contains information for autonomous replication, guardian and mediator proteins catalyze plasmid establishment after inhibition of RecA. DNA replication and ligation reconstitute the molecule (plasmid transformation). In this review, the interacting network that leads to a cross talk between proteins of the uptake and genetic recombination machinery will be placed into prospective.
Collapse
Affiliation(s)
- Dawit Kidane
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
2
|
Bhattacharjee MK, Fine DH, Figurski DH. tfoX (sxy)-dependent transformation of Aggregatibacter (Actinobacillus) actinomycetemcomitans. Gene 2007; 399:53-64. [PMID: 17561357 PMCID: PMC2080652 DOI: 10.1016/j.gene.2007.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/16/2007] [Accepted: 04/25/2007] [Indexed: 12/16/2022]
Abstract
tfoX (sxy) is a regulatory gene needed to turn on competence genes. Aggregatibacter (Actinobacillus) actinomycetemcomitans has a tfoX gene that is important for transformation. We cloned this gene on an IncQ plasmid downstream of the inducible tac promoter. When this plasmid was resident in cells of A. actinomycetemcomitans and tfoX was induced, the cells became competent for transformation. Several strains of A. actinomycetemcomitans, including different serotypes, as well as rough (adherent) and isogenic smooth (nonadherent) forms were tested. Only our two serotype f strains failed to be transformed. With the other strains, we could easily get transformants with extrachromosomal plasmid DNA when closed circular, replicative plasmid carrying an uptake signal sequence (USS) was used. When a replicative plasmid carrying a USS and cloned DNA from the chromosome of A. actinomycetemcomitans was linearized by digestion with a restriction endonuclease or when genomic DNA was used directly, the outcome was allelic exchange. To facilitate allelic exchange, we constructed a suicide plasmid (pMB78) that does not replicate in A. actinomycetemcomitans and carries a region with two inverted copies of a USS. This vector gave allelic exchange in the presence of cloned and induced tfoX easily and without digestion. Using transposon insertions in cloned katA DNA, we found that as little as 78 bp of homology at one of the ends was sufficient for that end to participate in allelic exchange. The cloning and induction of tfoX makes it possible to transform nearly any strain of A. actinomycetemcomitans, and allelic exchange has proven to be important for site-directed mutagenesis.
Collapse
Affiliation(s)
- Mrinal K Bhattacharjee
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
3
|
|
4
|
Lorenz MG, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 1994; 58:563-602. [PMID: 7968924 PMCID: PMC372978 DOI: 10.1128/mr.58.3.563-602.1994] [Citation(s) in RCA: 462] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Natural genetic transformation is the active uptake of free DNA by bacterial cells and the heritable incorporation of its genetic information. Since the famous discovery of transformation in Streptococcus pneumoniae by Griffith in 1928 and the demonstration of DNA as the transforming principle by Avery and coworkers in 1944, cellular processes involved in transformation have been studied extensively by in vitro experimentation with a few transformable species. Only more recently has it been considered that transformation may be a powerful mechanism of horizontal gene transfer in natural bacterial populations. In this review the current understanding of the biology of transformation is summarized to provide the platform on which aspects of bacterial transformation in water, soil, and sediments and the habitat of pathogens are discussed. Direct and indirect evidence for gene transfer routes by transformation within species and between different species will be presented, along with data suggesting that plasmids as well as chromosomal DNA are subject to genetic exchange via transformation. Experiments exploring the prerequisites for transformation in the environment, including the production and persistence of free DNA and factors important for the uptake of DNA by cells, will be compiled, as well as possible natural barriers to transformation. The efficiency of gene transfer by transformation in bacterial habitats is possibly genetically adjusted to submaximal levels. The fact that natural transformation has been detected among bacteria from all trophic and taxonomic groups including archaebacteria suggests that transformability evolved early in phylogeny. Probable functions of DNA uptake other than gene acquisition will be discussed. The body of information presently available suggests that transformation has a great impact on bacterial population dynamics as well as on bacterial evolution and speciation.
Collapse
Affiliation(s)
- M G Lorenz
- Genetik, Fachbereich Biologie, Carl-von-Ossietzky Universität Oldenburg, Germany
| | | |
Collapse
|
5
|
Chandler MS. New shuttle vectors for Haemophilus influenzae and Escherichia coli: P15A-derived plasmids replicate in H. influenzae Rd. Plasmid 1991; 25:221-4. [PMID: 1924559 DOI: 10.1016/0147-619x(91)90016-p] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
With the aim of identifying new plasmids useful for molecular cloning in Haemophilus influenzae, several P15A-derived plasmids were tested for their ability to transform H. influenzae Rd. The four plasmids tested, pACYC177, pACYC184, pSU2718, and pSU2719 were all able to establish in H. influenzae Rd. The plasmids were stable, could be purified by standard protocols, and were compatible with a plasmid carrying the RSF0885 origin of replication.
Collapse
Affiliation(s)
- M S Chandler
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
6
|
Goodgal SH, Mitchell MA. Sequence and uptake specificity of cloned sonicated fragments of Haemophilus influenzae DNA. J Bacteriol 1990; 172:5924-8. [PMID: 2170331 PMCID: PMC526913 DOI: 10.1128/jb.172.10.5924-5928.1990] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Our data support the conclusion that all tight binding of DNA by competent cells of Haemophilus influenzae is due to 9 base pairs (bp) of the 11-bp motif 5'-AAGTGCGGTCA or its inverse complement, TGACCGCACTT. Sonicated chromosomal DNA of H. influenzae was absorbed and extracted from competent cells to prepare a subpopulation of uptake fragments enriched for single uptake (binding) sequences. This DNA was inserted into the plasmid pUC18 and cloned into Escherichia coli. Whole sonicated chromosomal DNA was also cloned in pUC18 as a population of control fragments. Seventy-one plasmids were labeled with 3H and tested for DNA binding, and the inserts of 28 of them were sequenced. The control plasmid pUC18 was absorbed to competent H. influenzae cells at low levels of 5 to 10% of DNA added. The plasmids containing uptake inserts were mostly absorbed at levels of 70 to 80%, but a significant number contained inserts with an intermediate level of binding, 20 to 30%. The inserts of 15 plasmids were excised and tested for DNA uptake to demonstrate good agreement between uptake of these plasmids and their insert fragments. Sequencing of inserts revealed that the presence of 9 bp of the 11-bp motif was associated with tight binding. Some inserts with intermediate levels of binding had no significant similarities to the 9-bp sequence. The 9-bp sequence appeared to account for most of the binding to competent cells, but appreciable binding occurred with fragments without 9-bp homology. About one-third of the 9-bp uptake sequences were found as inverted repeats that could form strong stem-loop structures. It has been suggested by Goodman and Scocca (Proc. Nal. Acad. Sci. USA 85:6982-6986, 1988) that in Neisseria gonorrhoeae, uptake sequences occur as palindromes and act as transcription terminators. Although consistent, the data are insufficient to make this conclusion for uptake sequence palindromes in H. influenzae.
Collapse
Affiliation(s)
- S H Goodgal
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
7
|
Pifer ML. Plasmid establishment in competent Haemophilus influenzae occurs by illegitimate transformation. J Bacteriol 1986; 168:683-7. [PMID: 3491064 PMCID: PMC213535 DOI: 10.1128/jb.168.2.683-687.1986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Establishment of plasmids in naturally competent Haemophilus influenzae is incompatible with transformation via the normal DNA translocation pathways. Instead, establishing plasmids appear to evade the degradation which ordinarily accompanies translocation, arriving as intact double-stranded molecules in the cytoplasm. Evidence is presented that plasmid establishment is a rare illegitimate transformation event which resembles artificial transformation. This process is compared with plasmid marker rescue transformation, and a method for greatly increasing establishment frequency is described.
Collapse
|
8
|
Biswas GD, Burnstein KL, Sparling PF. Linearization of donor DNA during plasmid transformation in Neisseria gonorrhoeae. J Bacteriol 1986; 168:756-61. [PMID: 3096959 PMCID: PMC213547 DOI: 10.1128/jb.168.2.756-761.1986] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We examined the fate of plasmid DNA after uptake during transformation in Neisseria gonorrhoeae. An 11.5-kilobase plasmid, pFA10, was processed to linear double-stranded DNA during uptake by competent cells, but cleavage of pFA10 was not site specific. A minority of pFA10 entered as open circles. A 42-kilobase plasmid, pFA14, was degraded into small fragments during uptake; no intracellular circular forms of pFA14 were evident. Since pFA10 DNA linearized by a restriction enzyme was not further cut during uptake, the endonucleolytic activity associated with entry of plasmid DNA appeared to act preferentially on circular DNA. Although linear plasmid DNA was taken up into a DNase-resistant state as efficiently as circular DNA, linear plasmid DNA transformed much less efficiently than circular plasmid DNA. These data suggest that during entry transforming plasmid DNA often is processed to double-stranded linear molecules; transformants may arise when some molecules are repaired to form circles. Occasional molecules which enter as intact circles may also lead to transformants.
Collapse
|
9
|
Stuy JH, Walter RB. Effect of glycerol on plasmid transfer in genetically competent Haemophilus influenzae. MOLECULAR & GENERAL GENETICS : MGG 1986; 203:296-9. [PMID: 3488489 DOI: 10.1007/bf00333969] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The small plasmid pAT4 transformed at characteristically low frequencies those competent Haemophilus influenzae Rd strains that had no DNA homology with this plasmid. Transformation was increased up to 100 times, however, when the recipient cells were exposed to 30% glycerol before plating for transformants. Expression of plasmid resistance markers was then immediate. Ultraviolet irradiation experiments indicated that this large increase was due to release by the glycerol of double-stranded plasmid molecules, presumably from transformasomes. Several other plasmids exhibited the same phenomenon. Dimethylsulfoxide also stimulated plasmid transformation but lysolecithin and high concentrations of NaCl or glucose were ineffective. Glycerol did not increase the efficiency of transformation by either chromosomal DNA or linearized plasmid DNA.
Collapse
|
10
|
Stuy JH, Walter RB. Homology-facilitated plasmid transfer in Haemophilus influenzae. MOLECULAR & GENERAL GENETICS : MGG 1986; 203:288-95. [PMID: 3016481 DOI: 10.1007/bf00333968] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The 8 kbp plasmid pAT4 transformed Haemophilus influenzae Rd cells at low frequencies. Transformation was increased up to 100 times, however, when the recipient cells carried a DNA segment in either their chromosome or in a resident plasmid that was homologous to at least part of plasmid pAT4. Linearized plasmid DNA molecules did not transform cells without DNA homology; they efficiently transformed homology recipients, but only when the cuts had been made in the region of shared homology. In most cases examined the circular donor plasmid had been reconstituted from the transforming DNA; in some cases the reconstituted plasmid carried a mutation initially present in the recipient chromosome, provided the transforming plasmid had been linearized in the region of shared homology. Plasmid reconstitution was not observed in recA1 cells. We conclude that homology-facilitated plasmid transformation (transfer) is similar to that reported for Bacillus subtilis and Streptococcus pneumoniae.
Collapse
|
11
|
Abstract
With the use of highly competent Haemophilus influenzae cells, it was possible to demonstrate the uptake of heterologous DNAs. However, these DNAs, as expected, were only 1% or less as effective when competing for uptake with Haemophilus DNA. Escherichia coli DNA was removed from solution by competent cells to the extent expected if all the E. coli DNA particles contained at least one uptake recognition signal. The data were consistent with a model in which there was one uptake signal per 20 X 10(6) to 30 X 10(6) daltons of E. coli DNA. Since H. influenzae DNA has many more recognition signals, approximately one per 2 X 10(6) daltons (Danner et al., Gene 77:311-318, 1980; K. Vogt and S. H. Goodgal, submitted for publication), it has been suggested that the slower rate of E. coli DNA binding and the so-called specificity of Haemophilus DNA binding are due to the number of recognition signals per molecule of DNA as well as the nature of the DNA receptor (Vogt and Goodgal, submitted for publication). The specificity of native H. influenzae DNA binding does not apply to the uptake of denatured DNA in the transforming system (low pH) for denatured DNA.
Collapse
|
12
|
Kahn ME, Barany F, Smith HO. Transformasomes: specialized membranous structures that protect DNA during Haemophilus transformation. Proc Natl Acad Sci U S A 1983; 80:6927-31. [PMID: 6316334 PMCID: PMC390099 DOI: 10.1073/pnas.80.22.6927] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mechanism by which Haemophilus protects donor DNA from cellular restriction and degradative enzymes during transformation is unclear. In this report, we demonstrate that donor DNA enters Haemophilus influenzae through specialized membranous extensions, which we have termed "transformasomes." DNA within transformasomes is in a protected state--resistant to external DNase and cellular restriction enzymes, although remaining unmodified and double-stranded. The ability of donor DNA to exit from transformasomes is dependent on its topological conformation. Circular DNA remains intact within transformasomes, while linear DNA rapidly exits and undergoes homologous recombination. Protected donor DNA can be preferentially removed from the surface of competent cells by extraction with organic solvents. Structurally intact transformasomes containing donor DNA could be partitioned into the organic layer and can be further purified by density centrifugation.
Collapse
|
13
|
Notani NK, Setlow JK, McCarthy D, Clayton NL. Transformation of Haemophilus influenzae by plasmid RSF0885. J Bacteriol 1981; 148:812-6. [PMID: 6975775 PMCID: PMC216279 DOI: 10.1128/jb.148.3.812-816.1981] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Plasmid RSF0885, which conferred ampicillin resistance, transformed competent Haemophilus influenzae cells with low efficiency (maximum, less than 0.01%). As judged by competition experiments and uptake of radioactivity, plasmid RSF0885 deoxyribonucleic acid was taken up into competent H. influenzae cells several orders of magnitude less efficiently than H. influenzae chromosomal deoxyribonucleic acid. Plasmid RSF0885 transformed cells with even lower efficiency than could be accounted for by the low uptake. Transformation was not affected by rec-1 and rec-2 mutations in the recipient, and strains cured of the plasmid did not show increased transformation. Plasmid molecules cut once with a restriction enzyme that made blunt ends did not transform. Transformation was favored by the closed circular form of the plasmid.
Collapse
|