1
|
The role of relA and spoT in Yersinia pestis KIM5 pathogenicity. PLoS One 2009; 4:e6720. [PMID: 19701461 PMCID: PMC2726946 DOI: 10.1371/journal.pone.0006720] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/20/2009] [Indexed: 01/17/2023] Open
Abstract
The ppGpp molecule is part of a highly conserved regulatory system for mediating the growth response to various environmental conditions. This mechanism may represent a common strategy whereby pathogens such as Yersinia pestis, the causative agent of plague, regulate the virulence gene programs required for invasion, survival and persistence within host cells to match the capacity for growth. The products of the relA and spoT genes carry out ppGpp synthesis. To investigate the role of ppGpp on growth, protein synthesis, gene expression and virulence, we constructed a ΔrelA ΔspoT Y. pestis mutant. The mutant was no longer able to synthesize ppGpp in response to amino acid or carbon starvation, as expected. We also found that it exhibited several novel phenotypes, including a reduced growth rate and autoaggregation at 26°C. In addition, there was a reduction in the level of secretion of key virulence proteins and the mutant was>1,000-fold less virulent than its wild-type parent strain. Mice vaccinated subcutaneously (s.c.) with 2.5×104 CFU of the ΔrelA ΔspoT mutant developed high anti-Y. pestis serum IgG titers, were completely protected against s.c. challenge with 1.5×105 CFU of virulent Y. pestis and partially protected (60% survival) against pulmonary challenge with 2.0×104 CFU of virulent Y. pestis. Our results indicate that ppGpp represents an important virulence determinant in Y. pestis and the ΔrelA ΔspoT mutant strain is a promising vaccine candidate to provide protection against plague.
Collapse
|
2
|
Kutyrev V, Mehigh RJ, Motin VL, Pokrovskaya MS, Smirnov GB, Brubaker RR. Expression of the plague plasminogen activator in Yersinia pseudotuberculosis and Escherichia coli. Infect Immun 1999; 67:1359-67. [PMID: 10024583 PMCID: PMC96469 DOI: 10.1128/iai.67.3.1359-1367.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic yersiniae (Yersinia pseudotuberculosis and Yersinia enterocolitica) typically cause chronic disease as opposed to the closely related Yersinia pestis, the causative agent of bubonic plague. It is established that this difference reflects, in part, carriage by Y. pestis of a unique 9.6-kb pesticin or Pst plasmid (pPCP) encoding plasminogen activator (Pla) rather than distinctions between shared approximately 70-kb low-calcium-response, or Lcr, plasmids (pCD in Y. pestis and pYV in enteropathogenic yersiniae) encoding cytotoxic Yops and anti-inflammatory V antigen. Pla is known to exist as a combination of 32.6-kDa (alpha-Pla) and slightly smaller (beta-Pla) outer membrane proteins, of which at least one promotes bacterial dissemination in vivo and degradation of Yops in vitro. We show here that only alpha-Pla accumulates in Escherichia coli LE392/pPCP1 cultivated in enriched medium and that either autolysis or extraction of this isolate with 1.0 M NaCl results in release of soluble alpha and beta forms possessing biological activity. This process also converted cell-bound alpha-Pla to beta-Pla and smaller forms in Y. pestis KIM/pPCP1 and Y. pseudotuberculosis PB1/+/pPCP1 but did not promote solubilization. Pla-mediated posttranslational hydrolysis of pulse-labeled Yops in Y. pseudotuberculosis PB1/+/pPCP1 occurred more slowly than that in Y. pestis but was otherwise similar except for accumulation of stable degradation products of YadA, a pYV-mediated fibrillar adhesin not encoded in frame by pCD. Carriage of pPCP by Y. pseudotuberculosis did not significantly influence virulence in mice.
Collapse
Affiliation(s)
- V Kutyrev
- Laboratory of Molecular Microbiology, Russian Research Anti-Plague Institute "Microbe," Saratov 410071, Russia
| | | | | | | | | | | |
Collapse
|
3
|
Abstract
Plague is a widespread zoonotic disease that is caused by Yersinia pestis and has had devastating effects on the human population throughout history. Disappearance of the disease is unlikely due to the wide range of mammalian hosts and their attendant fleas. The flea/rodent life cycle of Y. pestis, a gram-negative obligate pathogen, exposes it to very different environmental conditions and has resulted in some novel traits facilitating transmission and infection. Studies characterizing virulence determinants of Y. pestis have identified novel mechanisms for overcoming host defenses. Regulatory systems controlling the expression of some of these virulence factors have proven quite complex. These areas of research have provide new insights into the host-parasite relationship. This review will update our present understanding of the history, etiology, epidemiology, clinical aspects, and public health issues of plague.
Collapse
Affiliation(s)
- R D Perry
- Department of Microbiology and Immunology, University of Kentucky, Lexington 40536, USA.
| | | |
Collapse
|
4
|
Abstract
It is established that duplication in vitro of that amount of Ca2+ (2.5 mM) and Mg2+ (1.5 mM) present in blood permits vegetative growth of Yersinia pestis with repression of virulence factors encoded by the Lcr plasmid (Lcr+); similar simulation of intracellular fluid (no Ca2+ and 20 mM Mg2+) promotes bacteriostasis with induction of these virulence determinants. However, proliferation of yersiniae in mice occurs primarily within necrotic focal lesions (supplied by Ca(2+)-deficient host cell cytoplasm) within visceral organs rather than in Ca(2+)-sufficient blood. The present study addressed this enigma by defining conditions necessary for achieving vegetative growth of Lcr+ yersiniae at 37 degrees C in simulated intracellular fluid. Maximum optical densities were increased by substitution of K+ for Na+ and elimination of Cl-; the combination of Na+ plus L-glutamate was selectively toxic to Lcr+ cells. This phenomenon was attributed in part to the absence of aspartase in Y. pestis (a lesion known to facilitate massive accumulation of L-aspartate via transamination of the oxalacetate pool by L-glutamate). Replacement of L-glutamate by exogenous L-aspartate or alpha-ketoglutarate reversed this toxicity by favoring retention of oxalacetate. Proliferation of Lcr+ cells in a medium containing K+ and L-aspartate but lacking added Ca2+ and Na+ was markedly enhanced by increasing the concentration of fermentable carbohydrate. Accordingly, in the worst-case scenario (i.e., added Na+, Cl-, and L-glutamate), Lcr+ yersiniae underwent restriction of growth after one doubling, and in the best-case scenario (i.e., added K+ and L-aspartate), the organisms completed more than five doublings, thereby achieving full-scale growth. Both of these Ca(2+)-deficient media promoted maximum induction of Mg(2+)-induced V antigen, a virulence factor encoded by the Lcr plasmid.
Collapse
Affiliation(s)
- J M Fowler
- Department of Microbiology, Michigan State University, East Lansing 48824
| | | |
Collapse
|
5
|
Motin VL, Nakajima R, Smirnov GB, Brubaker RR. Passive immunity to yersiniae mediated by anti-recombinant V antigen and protein A-V antigen fusion peptide. Infect Immun 1994; 62:4192-201. [PMID: 7927675 PMCID: PMC303095 DOI: 10.1128/iai.62.10.4192-4201.1994] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
LcrV (V antigen), a known unstable 37.3-kDa monomeric peptide encoded on the ca. 70-kb Lcr plasmid of Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica, has been implicated as a regulator of the low-calcium response, virulence factor, and protective antigen. In this study, lcrV of Y. pestis was cloned into protease-deficient Escherichia coli BL21. The resulting recombinant V antigen underwent marked degradation from the C-terminal end during purification, yielding major peptides of 36, 35, 34, and 32 to 29 kDa. Rabbit gamma globulin raised against this mixture of cleavage products provided significant protection against 10 minimum lethal doses of Y. pestis (P < 0.01) and Y. pseudotuberculosis (P < 0.02). To both stabilize V antigen and facilitate its purification, plasmid pPAV13 was constructed so as to encode a fusion of lcrV and the structural gene for protein A (i.e., all but the first 67 N-terminal amino acids of V antigen plus the signal sequence and immunoglobulin G-binding domains but not the cell wall-associated region of protein A). The resulting fusion peptide, termed PAV, could be purified to homogeneity in one step by immunoglobulin G affinity chromatography and was stable thereafter. Rabbit polyclonal gamma globulin directed against PAV provided excellent passive immunity against 10 minimum lethal doses of Y. pestis (P < 0.005) and Y. pseudotuberculosis (P < 0.005) but was ineffective against Y. enterocolitica. Protection failed after absorption with excess PAV, cloned whole V antigen, or a large (31.5-kDa) truncated derivative of the latter but was retained (P < 0.005) upon similar absorption with a smaller (19.3-kDa) truncated variant, indicating that at least one protective epitope resides internally between amino acids 168 and 275.
Collapse
Affiliation(s)
- V L Motin
- Department of Microbiology, Michigan State University, East Lansing 48824-1101
| | | | | | | |
Collapse
|
6
|
Abstract
This review followed from experiments suggesting that some fungi do not require calcium. It was found that many studies of a calcium requirement in microorganisms had assumed specificity for chelation agents such as EGTA and A23187, which the reagents did not possess. Early studies still cited today often preceded the recognition that microorganisms required manganese and zinc. As a result of both of these misunderstandings, there was rarely any attempt to replace calcium by other important trace elements. In some studies that seem to have been overlooked, the apparent requirement for calcium depended on the growth conditions used. Escherichia coli, Neurospora crassa, and Saccharomyces cerevisiae were then selected for detailed consideration and it is concluded that further experiments are needed before the involvement of calcium is proved.
Collapse
Affiliation(s)
- J Youatt
- Department of Ecology and Evolutionary Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Mehigh RJ, Braubaker RR. Major stable peptides of Yersinia pestis synthesized during the low-calcium response. Infect Immun 1993; 61:13-22. [PMID: 8418035 PMCID: PMC302682 DOI: 10.1128/iai.61.1.13-22.1993] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
It is established that the medically significant yersiniae require the presence of physiological levels of Ca2+ (ca. 2.5 mM) for sustained growth at 37 degrees C and that this nutritional requirement is mediated by a shared ca. 70-kb Lcr plasmid. The latter also encodes virulence factors (Yersinia outer membrane proteins [Yops] and V antigen) known to be selectively synthesized in vitro at 37 degrees C in Ca(2+)-deficient medium. In this study, cells of Yersinia pestis KIM were first starved for Ca2+ at 37 degrees C to prevent synthesis of bulk vegetative protein and then, after cell division had ceased, pulsed with [35S]methionine. After sufficient chase to ensure plasminogen activator-mediated degradation of Yops, the remaining major radioactive peptides were separated by conventional chromatographic methods and identified as Lcr plasmid-encoded V antigen and LcrH (and possibly LcrG), ca. 10-kb Pst plasmid-encoded pesticin and plasminogen activator, ca. 100-kb Tox plasmid-encoded fraction 1 (capsular) antigen and murine exotoxin, and chromosomally encoded antigen 4 (pH 6 antigen) and antigen 5 (a novel hemin-rich peptide possessing modest catalase activity but not superoxide dismutase activity). Also produced at high concentration was a chromosome-encoded GroEL-like chaperone protein. Accordingly, the transcriptional block preventing synthesis of bulk vegetative protein at 37 degrees C in Ca(2+)-deficient medium may not apply to genes encoding virulence factors or to highly conserved GroEL (known in other species to utilize a secondary stress-induced sigma factor).
Collapse
Affiliation(s)
- R J Mehigh
- Department of Microbiology, Michigan State University, East Lansing 48824-1101
| | | |
Collapse
|
8
|
Abstract
The experimental system constructed with the medically significant yersiniae provides a powerful basic model for comparative study of factors required for expression of acute versus chronic disease. The system exploits the close genetic similarity between Yersinia pestis, the etiological agent of bubonic plague, and enteropathogenic Yersinia pseudotuberculosis and Yersinia enterocolitica. Y. pestis possesses three plasmids, of which one, shared by the enteropathogenic species, mediates a number of virulence factors that directly or indirectly promote survival within macrophages and immunosuppression. The two remaining plasmids are unique and encode functions that promote acute disease by enhancing bacterial dissemination in tissues and resistance to phagocytosis by neutrophils and monocytes. These properties are replaced in the enteropathogenic yersiniae by host cell invasins and an adhesin which promote chronic disease; the latter are cryptic in Y. pestis. Additional distinctions include specific mutational losses in Y. pestis which result in loss of fitness in natural environments plus gain of properties that facilitate transmission and infection via fleabite.
Collapse
Affiliation(s)
- R R Brubaker
- Department of Microbiology, Michigan State University, East Lansing 48824-1101
| |
Collapse
|
9
|
Forsberg A, Viitanen AM, Skurnik M, Wolf-Watz H. The surface-located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis. Mol Microbiol 1991; 5:977-86. [PMID: 1857212 DOI: 10.1111/j.1365-2958.1991.tb00773.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The low-calcium response (lcr) is strongly conserved among the pathogenic Yersinia species and is observed when the pathogen is grown at 37 degrees C in Ca(2+)-depleted medium. This response is characterized by a general metabolic downshift and by a specific induction of virulence-plasmid-encoded yop genes. Regulation of yop expression is exerted at transcriptional level by a temperature-regulated activator and by Ca(2+)-regulated negative elements. The yopN gene was shown to encode a protein (formerly also designated Yop4b) which is surface-located when Yersinia is grown at 37 degrees C. yopN was found to be part of an operon that is induced during the low-calcium response. Insertional inactivation of the yopN gene resulted in derepressed transcription of yop genes. A hybrid plasmid containing the yopN gene under the control of the tac promoter fully restored the wild-type phenotype of the yopN mutant. Thus the surface-located YopN somehow senses the calcium concentration and transmits a signal to shut off yop transcription when the calcium concentration is high.
Collapse
Affiliation(s)
- A Forsberg
- Department of Cell and Microbiology, National Defence Research Establishment, Umeå, Sweden
| | | | | | | |
Collapse
|
10
|
Abstract
Low-calcium-response, or Lcr, plasmids of yersiniae are known to promote an in vitro nutritional requirement for 2.5 mM Ca2+ at 37 degrees C which, if not fulfilled, results in cessation of growth with induction of virulence functions (Lcr+). The mechanism whereby Ca2+ regulates this metabolic shift is unknown. Radioactive Ca2+ was not actively accumulated by yersiniae but was excluded by an exit reaction analogous to those described for other bacteria. Nevertheless, cultivation at 37 degrees C with 0.1 mM Ca2+, a level insufficient to prevent restriction of cell division, promoted significantly more binding of the cation by Lcr+ organisms than by plasmid-deficient Lcr- mutants. According, Lcr+ yersiniae may possess unique ligands capable of recognizing Ca2+.
Collapse
Affiliation(s)
- R D Perry
- Department of Microbiology and Public Health, Michigan State University, East Lansing 48824-1101
| | | |
Collapse
|
11
|
Sample AK, Brubaker RR. Post-translational regulation of Lcr plasmid-mediated peptides in pesticinogenic Yersinia pestis. Microb Pathog 1987; 3:239-48. [PMID: 3504547 DOI: 10.1016/0882-4010(87)90057-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The low calcium response of wild type Yersinia pestis, the causative agent of bubonic plague, and of enteropathogenic Yersinia pseudotuberculosis and Yersinia enterocolitica is known to be mediated by a shared Lcr plasmid of about 70 kb. At 37 degrees C in Ca2+-deficient medium, this element promotes restriction of growth with concomitant production of virulence functions including the common V antigen and a set of yersiniae outer membrane peptides termed YOPs (Lcr+). The latter are expressed by the enteropathogenic species but not by wild type Y. pestis which possesses a unique 10 kb Pst plasmid associated with pesticinogeny (Pst+). We show in this report that, after pulse with 35S-methionine, peptides with molecular weights corresponding to YOPs of 78, 47, 45, 44, 36, and 26 kDa are synthesized during the low calcium response by both Lcr+, Pst+ and Lcr+, Pst- cells of Y. pestis. Although stable in the latter, radioactivity in YOPs of wild type was rapidly chased into lower molecular weight degradation products. At least four soluble peptides, including V, were also labeled during starvation for Ca2+; these structures were stable in both Lcr+, Pst+ and Lcr+, Pst- yersiniae. These findings suggest that a product encoded by the Pst plasmid of Y. pestis is required for post-translational regulation of outer membrane but not soluble peptides mediated by a second unrelated Lcr plasmid.
Collapse
Affiliation(s)
- A K Sample
- Department of Microbiology and Public Health, Michigan State University, East Lansing 48824-1101
| | | |
Collapse
|
12
|
Brubaker RR, Sample AK, Yu DZ, Zahorchak RJ, Hu PC, Fowler JM. Proteolysis of V antigen from Yersinia pestis. Microb Pathog 1987; 2:49-62. [PMID: 2853272 DOI: 10.1016/0882-4010(87)90114-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lcr-plasmids of yersiniae are known to mediate a unique low calcium response characterised by restriction of growth in vitro with induction of putative virulence factors including yersiniae outer membrane-peptides (YOPs) and V antigen (Lcr+). A medium was developed that permitted expression of high yields of V by Yersinia pestis KIM in large fermenter vessels. Immunoblots of specific precipitates prepared by prior molecular sieving showed that native unaggregated V exists as a monomeric 37,000 dalton peptide. Fractionation by precipitation with (NH4)2SO4 and chromatography on phenyl-Sepharose, DEAE cellulose, Sephacryl S200, calcium hydroxyapatite, and Sephadex G200 yielded highly purified antigen as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of parallel preparations from Lcr+ and Lcr- yersiniae. However, yields of V obtained by this process were unexpectedly low. As determined from immunoblots with monospecific polyclonal and monoclonal anti-V, this loss of activity occurred as a function of evident degradation at every step of purification yielding antigenic fragments of about 36,000, 34,000, 31,000, 30,000, and 28,000 daltons. Neutral or acidic pH favored hydrolysis; insignificant cleavage occurred in viable Lcr+ cells of Y. pestis or in culture supernatant fluids. V in neutral cytoplasm from Yersinia pseudotuberculosis or Yersinia enterocolitica did not undergo comparable degradation.
Collapse
Affiliation(s)
- R R Brubaker
- Department of Microbiology and Public Health, Michigan State University, East Lansing 48824-1101
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Transmission electron microscopy was used to determine the intracellular localization of Yersinia pestis growing within cultured resident peritoneal macrophages of mice. Monolayers fixed immediately, or as long as 4.5 h, after infection contained yersiniae closely surrounded by a membrane. The vesicles containing the yersiniae were determined to be phagolysosomes by labeling secondary lysosomes of macrophages with electron-dense particles of thorium dioxide. The presence of the label within vesicles containing yersiniae indicates that this pathogen grows within the lysosomal compartment of its target host cell.
Collapse
|
14
|
Abstract
Expression of the Vwa+ phenotype of Yersinia pestis in vitro is known to reflect maximum induction of virulence (or V and W antigens) at 37 degrees C with concomitant restriction of cell division. Both phenomena are potentiated by 20 mM Mg2+ and prevented by cultivation at 26 or 37 degrees C with 2.5 mM Ca2+. We have now compared this classic plasmid-mediated phenotype with those of Vwa+ Yersinia pseudotuberculosis and Yersinia enterocolitica which, unlike Y. pestis, produce ancillary outer membrane peptides unrelated to the V and W antigens. All of 10 wild-type strains of Y. enterocolitica (serotypes O:3, O:4,32, O:8, O:9, O:15, and O:21) exhibited a nutritional requirement for Ca2+ at 37 degrees C and produced significant V antigen. Like Y. pseudotuberculosis, autoagglutination of Vwa+ Y. enterocolitica was dependent upon prior growth at 37 degrees C but was not influenced by Ca2+. Autoagglutination of Y. pestis was never observed. Resistance of Y. enterocolitica to 10% human serum was typically dependent upon prior growth at 37 degrees C, either with or without added Ca2+, and carriage of a Vwa plasmid. In contrast, serum resistance of Y. pseudotuberculosis was temperature but not plasmid dependent and that of Y. pestis was constitutive.
Collapse
|
15
|
Zahorchak RJ, Brubaker RR. Effect of exogenous nucleotides on Ca2+ dependence and V antigen synthesis in Yersinia pestis. Infect Immun 1982; 38:953-9. [PMID: 7152680 PMCID: PMC347842 DOI: 10.1128/iai.38.3.953-959.1982] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cells of Yersinia pestis strain EV76 are known to cease growth after a shift from 26 to 37 degrees C in neutral Ca2+-deficient medium; this effect is potentiated by Mg2+. With 2.5 mM Mg2+ and no added Ca2+, restriction was relaxed at elevated pH at which maximum cell yields occurred in the presence of 20 mM exogenous ATP. This ATP-dependent growth was inhibited by Ca2+ or 20 mM Mg2+; the nucleotide was neither transported into the organism nor hydrolyzed extracellularly. With strain EV76, ATP could be replaced by GTP but not other nucleotides, nucleosides, free bases, or pyrophosphate. CTP and UTP also promoted growth of strain KIM, in which limited division also occurred with nucleoside di- and monophosphates. Intracellular V antigen was detected 1 h after temperature shift in Ca2+-deficient medium containing 20 mM Mg2+, a time corresponding to the earliest known events associated with restriction (shutoff of stable RNA synthesis and reduction of adenylate energy charge). Maximum yield of V was obtained 2 h later when cell division ceased; the titer of the antigen remained constant thereafter. The specific activity of V in cells grown with ATP was significantly reduced, especially at elevated pH. These results would be expected if exogenous nucleotides promote growth by sequestering sufficient Mg2+ to prevent restriction of cell division mediated by V antigen.
Collapse
|