1
|
Kim H, Marraffini LA. Cas9 interaction with the tracrRNA nexus modulates the repression of type II-A CRISPR-cas genes. Nucleic Acids Res 2024; 52:10595-10606. [PMID: 38994567 PMCID: PMC11417352 DOI: 10.1093/nar/gkae597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024] Open
Abstract
Immune responses need to be regulated to prevent autoimmunity. CRISPR-Cas systems provide adaptive immunity in prokaryotes through the acquisition of short DNA sequences from invading viruses (bacteriophages), known as spacers. Spacers are inserted into the CRISPR locus and serve as templates for the transcription of guides used by RNA-guided nucleases to recognize complementary nucleic acids of the invaders and start the CRISPR immune response. In type II-A CRISPR systems, Cas9 uses the guide RNA to cleave target DNA sequences in the genome of infecting phages, and the tracrRNA to bind the promoter of cas genes and repress their transcription. We previously isolated a Cas9 mutant carrying the I473F substitution that increased the frequency of spacer acquisition by 2-3 orders of magnitude, leading to a fitness cost due to higher levels of autoimmunity. Here, we investigated the molecular basis underlying these findings. We found that the I473F mutation decreases the association of Cas9 to tracrRNA, limiting its repressor function, leading to high levels of expression of cas genes, which in turn increase the strength of the type II-A CRISPR-Cas immune response. We obtained similar results for a related type II-A system, and therefore our findings highlight the importance of the interaction between Cas9 and its tracrRNA cofactor in tuning the immune response to balanced levels that enable phage defense but avoid autoimmunity.
Collapse
Affiliation(s)
- Hyejin Kim
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
2
|
Roberts CG, Fishman CB, Banh DV, Marraffini LA. A bacterial TIR-based immune system senses viral capsids to initiate defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605636. [PMID: 39131286 PMCID: PMC11312562 DOI: 10.1101/2024.07.29.605636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Toll/interleukin-1 receptor (TIR) domains are present in immune systems that protect prokaryotes from viral (phage) attack. In response to infection, TIRs can produce a cyclic adenosine diphosphate-ribose (ADPR) signaling molecule, which activates an effector that depletes the host of the essential metabolite NAD+ to limit phage propagation. How bacterial TIRs recognize phage infection is not known. Here we describe the sensing mechanism for the staphylococcal Thoeris defense system, which consists of two TIR domain sensors, ThsB1 and ThsB2, and the effector ThsA. We show that the major capsid protein of phage Φ80α forms a complex with ThsB1 and ThsB2, which is sufficient for the synthesis of 1"-3' glycocyclic ADPR (gcADPR) and subsequent activation of NAD+ cleavage by ThsA. Consistent with this, phages that escape Thoeris immunity harbor mutations in the capsid that prevent complex formation. We show that capsid proteins from staphylococcal Siphoviridae belonging to the capsid serogroup B, but not A, are recognized by ThsB1/B2, a result that suggests that capsid recognition by Sau-Thoeris and other anti-phage defense systems may be an important evolutionary force behind the structural diversity of prokaryotic viruses. More broadly, since mammalian toll-like receptors harboring TIR domains can also recognize viral structural components to produce an inflammatory response against infection, our findings reveal a conserved mechanism for the activation of innate antiviral defense pathways.
Collapse
Affiliation(s)
- Cameron G. Roberts
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Chloe B. Fishman
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | | | - Luciano A. Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
3
|
Banh DV, Roberts CG, Morales-Amador A, Berryhill BA, Chaudhry W, Levin BR, Brady SF, Marraffini LA. Bacterial cGAS senses a viral RNA to initiate immunity. Nature 2023; 623:1001-1008. [PMID: 37968393 PMCID: PMC10686824 DOI: 10.1038/s41586-023-06743-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
Cyclic oligonucleotide-based antiphage signalling systems (CBASS) protect prokaryotes from viral (phage) attack through the production of cyclic oligonucleotides, which activate effector proteins that trigger the death of the infected host1,2. How bacterial cyclases recognize phage infection is not known. Here we show that staphylococcal phages produce a structured RNA transcribed from the terminase subunit genes, termed CBASS-activating bacteriophage RNA (cabRNA), which binds to a positively charged surface of the CdnE03 cyclase and promotes the synthesis of the cyclic dinucleotide cGAMP to activate the CBASS immune response. Phages that escape the CBASS defence harbour mutations that lead to the generation of a longer form of the cabRNA that cannot activate CdnE03. As the mammalian cyclase OAS1 also binds viral double-stranded RNA during the interferon response, our results reveal a conserved mechanism for the activation of innate antiviral defence pathways.
Collapse
Affiliation(s)
- Dalton V Banh
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Cameron G Roberts
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA
| | - Adrian Morales-Amador
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | | | - Waqas Chaudhry
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
4
|
Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23158088. [PMID: 35897667 PMCID: PMC9332259 DOI: 10.3390/ijms23158088] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
This paper discusses the mechanisms of S. aureus drug resistance including: (1) introduction. (2) resistance to beta-lactam antibiotics, with particular emphasis on the mec genes found in the Staphylococcaceae family, the structure and occurrence of SCCmec cassettes, as well as differences in the presence of some virulence genes and its expression in major epidemiological types and clones of HA-MRSA, CA-MRSA, and LA-MRSA strains. Other mechanisms of resistance to beta-lactam antibiotics will also be discussed, such as mutations in the gdpP gene, BORSA or MODSA phenotypes, as well as resistance to ceftobiprole and ceftaroline. (3) Resistance to glycopeptides (VRSA, VISA, hVISA strains, vancomycin tolerance). (4) Resistance to oxazolidinones (mutational and enzymatic resistance to linezolid). (5) Resistance to MLS-B (macrolides, lincosamides, ketolides, and streptogramin B). (6) Aminoglycosides and spectinomicin, including resistance genes, their regulation and localization (plasmids, transposons, class I integrons, SCCmec), and types and spectrum of enzymes that inactivate aminoglycosides. (7). Fluoroquinolones (8) Tetracyclines, including the mechanisms of active protection of the drug target site and active efflux of the drug from the bacterial cell. (9) Mupirocin. (10) Fusidic acid. (11) Daptomycin. (12) Resistance to other antibiotics and chemioterapeutics (e.g., streptogramins A, quinupristin/dalfopristin, chloramphenicol, rifampicin, fosfomycin, trimethoprim) (13) Molecular epidemiology of MRSA.
Collapse
|
5
|
Gangaiah D, Ryan V, Van Hoesel D, Mane SP, Mckinley ET, Lakshmanan N, Reddy ND, Dolk E, Kumar A. Recombinant
Limosilactobacillus
(
Lactobacillus
) delivering nanobodies against
Clostridium perfringens
NetB and alpha toxin confers potential protection from necrotic enteritis. Microbiologyopen 2022; 11:e1270. [PMID: 35478283 PMCID: PMC8924699 DOI: 10.1002/mbo3.1270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Dharanesh Gangaiah
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | - Valerie Ryan
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | - Daphne Van Hoesel
- Division of Nanobody Discovery and Development QVQ Holding BV Utrecht The Netherlands
| | - Shrinivasrao P. Mane
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | - Enid T. Mckinley
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | | | - Nandakumar D. Reddy
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | - Edward Dolk
- Division of Nanobody Discovery and Development QVQ Holding BV Utrecht The Netherlands
| | - Arvind Kumar
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| |
Collapse
|
6
|
Maguin P, Varble A, Modell JW, Marraffini LA. Cleavage of viral DNA by restriction endonucleases stimulates the type II CRISPR-Cas immune response. Mol Cell 2022; 82:907-919.e7. [PMID: 35134339 PMCID: PMC8900293 DOI: 10.1016/j.molcel.2022.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022]
Abstract
Prokaryotic organisms have developed multiple defense systems against phages; however, little is known about whether and how these interact with each other. Here, we studied the connection between two of the most prominent prokaryotic immune systems: restriction-modification and CRISPR. While both systems employ enzymes that cleave a specific DNA sequence of the invader, CRISPR nucleases are programmed with phage-derived spacer sequences, which are integrated into the CRISPR locus upon infection. We found that restriction endonucleases provide a short-term defense, which is rapidly overcome through methylation of the phage genome. In a small fraction of the cells, however, restriction results in the acquisition of spacer sequences from the cleavage site, which mediates a robust type II-A CRISPR-Cas immune response against the methylated phage. This mechanism is reminiscent of eukaryotic immunity in which the innate response offers a first temporary line of defense and also activates a second and more robust adaptive response.
Collapse
Affiliation(s)
- Pascal Maguin
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Andrew Varble
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Joshua W. Modell
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.,Present address: Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, 725 N. Wolfe St., PCTB 803, Baltimore, MD 21205, USA
| | - Luciano A. Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.,Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.,Correspondence to:
| |
Collapse
|
7
|
The Facts and Family Secrets of Plasmids That Replicate via the Rolling-Circle Mechanism. Microbiol Mol Biol Rev 2021; 86:e0022220. [PMID: 34878299 DOI: 10.1128/mmbr.00222-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plasmids are self-replicative DNA elements that are transferred between bacteria. Plasmids encode not only antibiotic resistance genes but also adaptive genes that allow their hosts to colonize new niches. Plasmid transfer is achieved by conjugation (or mobilization), phage-mediated transduction, and natural transformation. Thousands of plasmids use the rolling-circle mechanism for their propagation (RCR plasmids). They are ubiquitous, have a high copy number, exhibit a broad host range, and often can be mobilized among bacterial species. Based upon the replicon, RCR plasmids have been grouped into several families, the best known of them being pC194 and pUB110 (Rep_1 family), pMV158 and pE194 (Rep_2 family), and pT181 and pC221 (Rep_trans family). Genetic traits of RCR plasmids are analyzed concerning (i) replication mediated by a DNA-relaxing initiator protein and its interactions with the cognate DNA origin, (ii) lagging-strand origins of replication, (iii) antibiotic resistance genes, (iv) mobilization functions, (v) replication control, performed by proteins and/or antisense RNAs, and (vi) the participating host-encoded functions. The mobilization functions include a relaxase initiator of transfer (Mob), an origin of transfer, and one or two small auxiliary proteins. There is a family of relaxases, the MOBV family represented by plasmid pMV158, which has been revisited and updated. Family secrets, like a putative open reading frame of unknown function, are reported. We conclude that basic research on RCR plasmids is of importance, and our perspectives contemplate the concept of One Earth because we should incorporate bacteria into our daily life by diminishing their virulence and, at the same time, respecting their genetic diversity.
Collapse
|
8
|
Wang H, Zhuang H, Ji S, Sun L, Zhao F, Wu D, Shen P, Jiang Y, Yu Y, Chen Y. Distribution of erm genes among MRSA isolates with resistance to clindamycin in a Chinese teaching hospital. INFECTION GENETICS AND EVOLUTION 2021; 96:105127. [PMID: 34718190 DOI: 10.1016/j.meegid.2021.105127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/20/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
The objective of this study was to analyze erythromycin and clindamycin resistance patterns among different MRSA lineages in China. Antimicrobial susceptibility testing, resistance determinant screening, plasmid electroporation and sequence comparisons were performed. High rates of clindamycin (92.5%, 270/292) and erythromycin (92.8%, 271/292) resistance were observed. Additionally, 88.2% (60/68) of the ST59 MRSA isolates and 78.9% (15/19) of the ST239 MRSA isolates had constitutive resistance to clindamycin, while 82.0% (123/150) of the ST5 MRSA isolates showed inducible clindamycin resistance. The ermB gene was identified in 80.9% (55/68) of the ST59 isolates but was not detected in ST5 and ST239 MRSA isolates. Detection rates of ermA were high in the ST5 (99.3%, 149/150) and ST239 (89.5%, 17/19) MRSA isolates, but no ermA-positive ST59 MRSA isolates were identified. The ermC gene, observed to be harbored on similar, transmissible plasmids ranging in size from 2402 to 2473 bp, were found in different MRSA lineages. Summarily, high erythromycin and clindamycin resistance rates were observed in MRSA isolates. ST59 and ST239 MRSA isolates primarily exhibited constitutive resistance, while ST5 MRSA isolates showed inducible resistance phenotypes. ermA and ermB genes were frequently carried by specific MRSA clones, while ermC gene was present within small transmissible plasmids in all lineages. Erythromycin and clindamycin resistance genes transfer between MRSA isolates in healthcare settings remains a problem, and infection control procedures should be applied.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Hemu Zhuang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Shujuan Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Feng Zhao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dandan Wu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
9
|
Galano M, van den Dungen MW, van Rij T, Abbas HE. Safety evaluation of food enzymes produced by a safe strain lineage of Bacillussubtilis. Regul Toxicol Pharmacol 2021; 126:105030. [PMID: 34455008 DOI: 10.1016/j.yrtph.2021.105030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022]
Abstract
The safety of microbially-derived food enzymes must be carefully assessed before market introduction. The production strain's safety is central to the assessment. In this paper, we have determined that DSM's Bacillus subtilis strain lineage can be considered safe for food enzyme production. The mutations introduced into this non-pathogenic and non-toxigenic microorganism do not lead to any safety concerns, as ensured by a thorough characterization of the strain lineage. The safety of both targeted and randomly introduced changes into the production strain's genome is confirmed by validating the absence of vector sequences and antibiotic resistance genes in all relevant production strains, and by demonstrating absence of cytotoxic peptide production. Furthermore, three food enzyme preparations produced by strains within this lineage did not show genotoxic potential. 90-day oral toxicity studies performed with the same enzyme preparations did not reveal toxicologically significant adverse effects. These results demonstrate absence of safety concerns from the introduced genetic modifications. Based on the establishment of this safe strain lineage, we postulate that future enzymes produced by current and new strains derived from the lineage can be safely developed without additional genotoxicity and systemic toxicity studies, allowing for a reduction of animal testing without compromising on product safety.
Collapse
Affiliation(s)
- Melina Galano
- DSM Food Specialties B.V., Alexander Fleminglaan 1, 2613 AX, Delft, the Netherlands.
| | | | - Tjeerd van Rij
- DSM Food Specialties B.V., Alexander Fleminglaan 1, 2613 AX, Delft, the Netherlands
| | - Hanna E Abbas
- DSM Food Specialties B.V., Alexander Fleminglaan 1, 2613 AX, Delft, the Netherlands
| |
Collapse
|
10
|
Chen V, Griffin ME, Maguin P, Varble A, Hang HC. RecT Recombinase Expression Enables Efficient Gene Editing in Enterococcus spp. Appl Environ Microbiol 2021; 87:e0084421. [PMID: 34232061 PMCID: PMC8388837 DOI: 10.1128/aem.00844-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecium is a ubiquitous Gram-positive bacterium that has been recovered from the environment, food, and microbiota of mammals. Commensal strains of E. faecium can confer beneficial effects on host physiology and immunity, but antibiotic usage has afforded antibiotic-resistant and pathogenic isolates from livestock and humans. However, the dissection of E. faecium functions and mechanisms has been restricted by inefficient gene-editing methods. To address these limitations, here, we report that the expression of E. faecium RecT recombinase significantly improves the efficiency of recombineering technologies in both commensal and antibiotic-resistant strains of E. faecium and other Enterococcus species such as E. durans and E. hirae. Notably, the expression of RecT in combination with clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 and guide RNAs (gRNAs) enabled highly efficient scarless single-stranded DNA recombineering to generate specific gene-editing mutants in E. faecium. Moreover, we demonstrate that E. faecium RecT expression facilitated chromosomal insertions of double-stranded DNA templates encoding antibiotic-selectable markers to generate gene deletion mutants. As a further proof of principle, we use CRISPR-Cas9-mediated recombineering to knock out both sortase A genes in E. faecium for downstream functional characterization. The general RecT-mediated recombineering methods described here should significantly enhance genetic studies of E. faecium and other closely related species for functional and mechanistic studies. IMPORTANCE Enterococcus faecium is widely recognized as an emerging public health threat with the rise of drug resistance and nosocomial infections. Nevertheless, commensal Enterococcus strains possess beneficial health functions in mammals to upregulate host immunity and prevent microbial infections. This functional dichotomy of Enterococcus species and strains highlights the need for in-depth studies to discover and characterize the genetic components underlying its diverse activities. However, current genetic engineering methods in E. faecium still require passive homologous recombination from plasmid DNA. This involves the successful cloning of multiple homologous fragments into a plasmid, introducing the plasmid into E. faecium, and screening for double-crossover events that can collectively take up to multiple weeks to perform. To alleviate these challenges, we show that RecT recombinase enables the rapid and efficient integration of mutagenic DNA templates to generate substitutions, deletions, and insertions in the genomic DNA of E. faecium. These improved recombineering methods should facilitate functional and mechanistic studies of Enterococcus.
Collapse
Affiliation(s)
- Victor Chen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, USA
| | - Matthew E. Griffin
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, USA
| | - Pascal Maguin
- Laboratory of Bacteriology, The Rockefeller University, New York, New York, USA
| | - Andrew Varble
- Laboratory of Bacteriology, The Rockefeller University, New York, New York, USA
| | - Howard C. Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, USA
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
- Department of Chemistry, Scripps Research, La Jolla, California, USA
| |
Collapse
|
11
|
Type III-A CRISPR immunity promotes mutagenesis of staphylococci. Nature 2021; 592:611-615. [PMID: 33828299 DOI: 10.1038/s41586-021-03440-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 03/10/2021] [Indexed: 12/26/2022]
Abstract
Horizontal gene transfer and mutation are the two major drivers of microbial evolution that enable bacteria to adapt to fluctuating environmental stressors1. Clustered, regularly interspaced, short palindromic repeats (CRISPR) systems use RNA-guided nucleases to direct sequence-specific destruction of the genomes of mobile genetic elements that mediate horizontal gene transfer, such as conjugative plasmids2 and bacteriophages3, thus limiting the extent to which bacteria can evolve by this mechanism. A subset of CRISPR systems also exhibit non-specific degradation of DNA4,5; however, whether and how this feature affects the host has not yet been examined. Here we show that the non-specific DNase activity of the staphylococcal type III-A CRISPR-Cas system increases mutations in the host and accelerates the generation of antibiotic resistance in Staphylococcus aureus and Staphylococcus epidermidis. These mutations require the induction of the SOS response to DNA damage and display a distinct pattern. Our results demonstrate that by differentially affecting both mechanisms that generate genetic diversity, type III-A CRISPR systems can modulate the evolution of the bacterial host.
Collapse
|
12
|
Workman RE, Pammi T, Nguyen BTK, Graeff LW, Smith E, Sebald SM, Stoltzfus MJ, Euler CW, Modell JW. A natural single-guide RNA repurposes Cas9 to autoregulate CRISPR-Cas expression. Cell 2021; 184:675-688.e19. [PMID: 33421369 DOI: 10.1016/j.cell.2020.12.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/24/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
CRISPR-Cas systems provide prokaryotes with acquired immunity against viruses and plasmids, but how these systems are regulated to prevent autoimmunity is poorly understood. Here, we show that in the S. pyogenes CRISPR-Cas system, a long-form transactivating CRISPR RNA (tracr-L) folds into a natural single guide that directs Cas9 to transcriptionally repress its own promoter (Pcas). Further, we demonstrate that Pcas serves as a critical regulatory node. De-repression causes a dramatic 3,000-fold increase in immunization rates against viruses; however, heightened immunity comes at the cost of increased autoimmune toxicity. Using bioinformatic analyses, we provide evidence that tracrRNA-mediated autoregulation is widespread in type II-A CRISPR-Cas systems. Collectively, we unveil a new paradigm for the intrinsic regulation of CRISPR-Cas systems by natural single guides, which may facilitate the frequent horizontal transfer of these systems into new hosts that have not yet evolved their own regulatory strategies.
Collapse
Affiliation(s)
- Rachael E Workman
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Teja Pammi
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Binh T K Nguyen
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leonardo W Graeff
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erika Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Suzanne M Sebald
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marie J Stoltzfus
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chad W Euler
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua W Modell
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
Min YH. Solithromycin Can Specifically Induce Macrolide–Lincosamide–Streptogramin B Resistance. Microb Drug Resist 2020; 26:1046-1049. [DOI: 10.1089/mdr.2019.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yu-Hong Min
- College of Medical Science, Daegu Haany University, Gyeongsan, Republic of Korea
| |
Collapse
|
14
|
Yao D, Zhang K, Wu J. Available strategies for improved expression of recombinant proteins in Brevibacillus expression system: a review. Crit Rev Biotechnol 2020; 40:1044-1058. [PMID: 32781847 DOI: 10.1080/07388551.2020.1805404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brevibacillus offers great potential as a recombinant protein expression host because of its exceptional abilities to synthesize and excrete proteins and its low extracellular protease activity. Despite these strengths, effective recombinant expression strategies are still the key to achieving high-level expression of recombinant proteins in Brevibacillus due to individual differences among strains and target proteins. Many strategies have been developed to improve recombinant protein expression in Brevibacillus. This review begins by introducing the processes used to establish and apply the Brevibacillus expression system, and then critically discusses the strategies available for improving recombinant protein expression in Brevibacillus, including optimization of the host and the expression vector, co-expression of a fusion partner or foldase, and optimization of the fermentation process. Finally, the prospects for further improvement of recombinant protein expression based on Brevibacillus are also discussed. This review is intended to provide a strategic reference for scientists wanting to improve the expression of a specific recombinant protein in Brevibacillus or other expression systems.
Collapse
Affiliation(s)
- Dongbang Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Kang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 23:788-99. [PMID: 32404435 DOI: 10.1111/imb.12124] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
16
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 33:e00181-19. [PMID: 32404435 PMCID: PMC7227449 DOI: 10.1128/cmr.00181-19] [Citation(s) in RCA: 907] [Impact Index Per Article: 226.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
17
|
Dempwolff F, Sanchez S, Kearns DB. Tn FLX: a Third-Generation mariner-Based Transposon System for Bacillus subtilis. Appl Environ Microbiol 2020; 86:e02893-19. [PMID: 32169936 PMCID: PMC7205501 DOI: 10.1128/aem.02893-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/26/2020] [Indexed: 01/05/2023] Open
Abstract
Random transposon mutagenesis is a powerful and unbiased genetic approach to answer fundamental biological questions. Here, we introduce an improved mariner-based transposon system with enhanced stability during propagation and versatile applications in mutagenesis. We used a low-copy-number plasmid as a transposon delivery vehicle, which affords a lower frequency of unintended recombination during vector construction and propagation in Escherichia coli We generated a variety of transposons allowing for gene disruption or artificial overexpression, each in combination with one of four different antibiotic resistance markers. In addition, we provide transposons that will report gene/protein expression due to transcriptional or translational coupling. We believe that the TnFLX system will help enhance the flexibility of future transposon modification and application in Bacillus and other organisms.IMPORTANCE The stability of transposase-encoding vectors during cloning and propagation is crucial for the reliable application of transposons. Here, we increased the stability of the mariner delivery vehicle in E. coli Moreover, the TnFLX transposon system will improve the application of forward genetic methods with an increased number of antibiotic resistance markers and the ability to generate unbiased green fluorescent protein (GFP) fusions to report on protein translation and subcellular localization.
Collapse
Affiliation(s)
- Felix Dempwolff
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Sandra Sanchez
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
18
|
Jeong DW, Lee B, Heo S, Oh Y, Heo G, Lee JH. Two genes involved in clindamycin resistance of Bacillus licheniformis and Bacillus paralicheniformis identified by comparative genomic analysis. PLoS One 2020; 15:e0231274. [PMID: 32271828 PMCID: PMC7144989 DOI: 10.1371/journal.pone.0231274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/19/2020] [Indexed: 11/19/2022] Open
Abstract
We evaluated the minimum inhibitory concentrations of clindamycin and erythromycin toward 98 Bacillus licheniformis strains isolated from several types of fermented soybean foods manufactured in several districts of Korea. First, based on recent taxonomic standards for bacteria, the 98 strains were separated into 74 B. licheniformis strains and 24 B. paralicheniformis strains. Both species exhibited profiles of erythromycin resistance as an acquired characteristic. B. licheniformis strains exhibited acquired clindamycin resistance, while B. paralicheniformis strains showed unimodal clindamycin resistance, indicating an intrinsic characteristic. Comparative genomic analysis of five strains showing three different patterns of clindamycin and erythromycin resistance identified 23S rRNA (adenine 2058-N6)-dimethyltransferase gene ermC and spermidine acetyltransferase gene speG as candidates potentially involved in clindamycin resistance. Functional analysis of these genes using B. subtilis as a host showed that ermC contributes to cross-resistance to clindamycin and erythromycin, and speG confers resistance to clindamycin. ermC is located in the chromosomes of strains showing clindamycin and erythromycin resistance and no transposable element was identified in its flanking regions. The acquisition of ermC might be attributable to a homologous recombination. speG was identified in not only the five genome-analyzed strains but also eight strains randomly selected from the 98 test strains, and deletions in the structural gene or putative promoter region caused clindamycin sensitivity, which supports the finding that the clindamycin resistance of Bacillus species is an intrinsic property.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
| | - Byunghoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Republic of Korea
| | - Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
| | - Yeongmin Oh
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Republic of Korea
| | - Ganghun Heo
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Republic of Korea
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Republic of Korea
| |
Collapse
|
19
|
Hao M, Wang Z, Qiao H, Yin P, Qiao J, Qi H. Dynamic Genome Editing Using In Vivo Synthesized Donor ssDNA in Escherichia coli. Cells 2020; 9:E467. [PMID: 32085579 PMCID: PMC7072734 DOI: 10.3390/cells9020467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
As a key element of genome editing, donor DNA introduces the desired exogenous sequence while working with other crucial machinery such as CRISPR-Cas or recombinases. However, current methods for the delivery of donor DNA into cells are both inefficient and complicated. Here, we developed a new methodology that utilizes rolling circle replication and Cas9 mediated (RC-Cas-mediated) in vivo single strand DNA (ssDNA) synthesis. A single-gene rolling circle DNA replication system from Gram-negative bacteria was engineered to produce circular ssDNA from a Gram-positive parent plasmid at a designed sequence in Escherichia coli. Furthermore, it was demonstrated that the desired linear ssDNA fragment could be cut out using CRISPR-associated protein 9 (CRISPR-Cas9) nuclease and combined with lambda Red recombinase as donor for precise genome engineering. Various donor ssDNA fragments from hundreds to thousands of nucleotides in length were synthesized in E. coli cells, allowing successive genome editing in growing cells. We hope that this RC-Cas-mediated in vivo ssDNA on-site synthesis system will be widely adopted as a useful new tool for dynamic genome editing.
Collapse
Affiliation(s)
- Min Hao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhaoguan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hongyan Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peng Yin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Varble A, Meaden S, Barrangou R, Westra ER, Marraffini LA. Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci. Nat Microbiol 2019; 4:956-963. [PMID: 30886355 PMCID: PMC6533911 DOI: 10.1038/s41564-019-0400-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/31/2019] [Indexed: 11/09/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) loci and their associated (cas) genes encode an adaptive immune system that protects prokaryotes from viral1 and plasmid2 invaders. Following viral (phage) infection, a small fraction of the prokaryotic cells are able to integrate a small sequence of the invader's genome into the CRISPR array1. These sequences, known as spacers, are transcribed and processed into small CRISPR RNA guides3-5 that associate with Cas nucleases to specify a viral target for destruction6-9. Although CRISPR-cas loci are widely distributed throughout microbial genomes and often display hallmarks of horizontal gene transfer10-12, the drivers of CRISPR dissemination remain unclear. Here, we show that spacers can recombine with phage target sequences to mediate a form of specialized transduction of CRISPR elements. Phage targets in phage 85, ΦNM1, ΦNM4 and Φ12 can recombine with spacers in either chromosomal or plasmid-borne CRISPR loci in Staphylococcus, leading to either the transfer of CRISPR-adjacent genes or the propagation of acquired immunity to other bacteria in the population, respectively. Our data demonstrate that spacer sequences not only specify the targets of Cas nucleases but also can promote horizontal gene transfer.
Collapse
Affiliation(s)
- Andrew Varble
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA
| | - Sean Meaden
- Environment and Sustainability Institute, Centre for Ecology and Conservation, University of Exeter, Biosciences, Penryn, Cornwall, UK
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Edze R Westra
- Environment and Sustainability Institute, Centre for Ecology and Conservation, University of Exeter, Biosciences, Penryn, Cornwall, UK
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA. .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
21
|
Rostøl JT, Marraffini LA. Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR-Cas immunity. Nat Microbiol 2019; 4:656-662. [PMID: 30692669 PMCID: PMC6430669 DOI: 10.1038/s41564-018-0353-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022]
Abstract
Type III-A CRISPR-Cas systems employ the Cas10-Csm complex to destroy bacteriophages and plasmids, using a guide RNA to locate complementary RNA molecules from the invader and trigger an immune response that eliminates the infecting DNA. In addition, these systems possess the non-specific RNase Csm6 which provides further protection for the host. While the role of Csm6 in immunity during phage infection was previously determined, how this RNase is used against plasmids is unclear. Here we show that S. epidermidis Csm6 is required for immunity when transcription across the plasmid target is infrequent, leading to impaired target recognition and inefficient DNA degradation by the Cas10-Csm complex. In these conditions Csm6 causes a growth arrest in the host and prevents further plasmid replication through the indiscriminate degradation of host and plasmid transcripts. In contrast, when plasmid target sequences are efficiently transcribed, Csm6 is dispensable and DNA degradation by Cas10 is sufficient for anti-plasmid immunity. Csm6 therefore provides robustness to the type III-A CRISPR-Cas immune response against difficult targets for the Cas10-Csm complex.
Collapse
Affiliation(s)
- Jakob T Rostøl
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA. .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
22
|
Wang L, Mo CY, Wasserman MR, Rostøl JT, Marraffini LA, Liu S. Dynamics of Cas10 Govern Discrimination between Self and Non-self in Type III CRISPR-Cas Immunity. Mol Cell 2018; 73:278-290.e4. [PMID: 30503774 DOI: 10.1016/j.molcel.2018.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/11/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
Abstract
Adaptive immune systems must accurately distinguish between self and non-self in order to defend against invading pathogens while avoiding autoimmunity. Type III CRISPR-Cas systems employ guide RNA to recognize complementary RNA targets, which triggers the degradation of both the invader's transcripts and their template DNA. These systems can broadly eliminate foreign targets with multiple mutations but circumvent damage to the host genome. To explore the molecular basis for these features, we use single-molecule fluorescence microscopy to study the interaction between a type III-A ribonucleoprotein complex and various RNA substrates. We find that Cas10-the DNase effector of the complex-displays rapid conformational fluctuations on foreign RNA targets, but is locked in a static configuration on self RNA. Target mutations differentially modulate Cas10 dynamics and tune the CRISPR interference activity in vivo. These findings highlight the central role of the internal dynamics of CRISPR-Cas complexes in self versus non-self discrimination and target specificity.
Collapse
Affiliation(s)
- Ling Wang
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Charlie Y Mo
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Michael R Wasserman
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jakob T Rostøl
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
23
|
Gillis A, Fayad N, Makart L, Bolotin A, Sorokin A, Kallassy M, Mahillon J. Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiol Rev 2018; 42:829-856. [PMID: 30203090 PMCID: PMC6199540 DOI: 10.1093/femsre/fuy034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, 'israelensis' is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Alexander Bolotin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Mireille Kallassy
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
24
|
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 2018; 31:e00088-17. [PMID: 30068738 PMCID: PMC6148190 DOI: 10.1128/cmr.00088-17] [Citation(s) in RCA: 1214] [Impact Index Per Article: 202.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Feßler A, Kadlec K, Wang Y, Zhang WJ, Wu C, Shen J, Schwarz S. Small Antimicrobial Resistance Plasmids in Livestock-Associated Methicillin-Resistant Staphylococcus aureus CC398. Front Microbiol 2018; 9:2063. [PMID: 30283407 PMCID: PMC6157413 DOI: 10.3389/fmicb.2018.02063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/13/2018] [Indexed: 12/03/2022] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) isolates of the clonal complex 398 are often resistant to a number of antimicrobial agents. Studies on the genetic basis of antimicrobial resistance in these bacteria identified SCCmec cassettes, various transposons and plasmids of different sizes that harbor antimicrobial resistance genes. While large plasmids that carry multiple antimicrobial resistance genes – occasionally together with heavy metal resistance genes and/or virulence genes – are frequently seen in LA-MRSA ST398, certain resistance genes are also associated with small plasmids of up to 15 kb in size. These small resistance plasmids usually carry only one, but in rare cases also two or three antimicrobial resistance genes. In the current review, we focus on small plasmids that carry the macrolide-lincosamide-streptogramin B resistance genes erm(C) or erm(T), the lincosamide resistance gene lnu(A), the pleuromutilin-lincosamide-streptogramin A resistance genes vga(A) or vga(C), the spectinomycin resistance gene spd, the apramycin resistance gene apmA, or the trimethoprim resistance gene dfrK. The detailed analysis of the structure of these plasmids allows comparisons with similar plasmids found in other staphylococci and underlines in many cases an exchange of such plasmids between LA-MRSA ST398 and other staphylococci including also coagulase-negative staphylococci.
Collapse
Affiliation(s)
- Andrea Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wan-Jiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Feßler AT, Wang Y, Wu C, Schwarz S. Mobile macrolide resistance genes in staphylococci. Plasmid 2018; 99:2-10. [PMID: 29807043 DOI: 10.1016/j.plasmid.2018.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/24/2018] [Indexed: 01/12/2023]
Abstract
Macrolide resistance in staphylococci is based on the expression of a number of genes which specify four major resistance mechanisms: (i) target site modification by methylation of the ribosomal target site in the 23S rRNA, (ii) ribosome protection via ABC-F proteins, (iii) active efflux via Major Facilitator Superfamily (MFS) transporters, and (iv) enzymatic inactivation by phosphotransferases or esterases. So far, 14 different classes of erm genes, which code for 23S rRNA methylases, have been reported to occur in staphylococci from humans, animals and environmental sources. Inducible or constitutive expression of the erm genes depends on the presence and intactness of a regulatory region known as translational attenuator. The erm genes commonly confer resistance not only to macrolides, but also to lincosamides and streptogramin B compounds. In contrast, the msr(A) gene codes for an ABC-F protein which confers macrolide and streptogramin B resistance whereas the mef(A) gene codes for a Major Facilitator Superfamily protein that can export only macrolides. Enzymatic inactivation of macrolides may be due to the macrolide phosphotransferase gene mph(C) or the macrolide esterase genes ere(A) or ere(B). Many of these macrolide resistance genes are part of either plasmids, transposons, genomic islands or prophages and as such, can easily be transferred across strain, species and genus boundaries. The co-location of other antimicrobial or metal resistance genes on the same mobile genetic element facilitates co-selection and persistence of macrolide resistance genes under the selective pressure of metals or other antimicrobial agents.
Collapse
Affiliation(s)
- Andrea T Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
27
|
Magic Pools: Parallel Assessment of Transposon Delivery Vectors in Bacteria. mSystems 2018; 3:mSystems00143-17. [PMID: 29359196 PMCID: PMC5768790 DOI: 10.1128/msystems.00143-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Molecular genetics is indispensable for interrogating the physiology of bacteria. However, the development of a functional genetic system for any given bacterium can be time-consuming. Here, we present a streamlined approach for identifying an effective transposon mutagenesis system for a new bacterium. Our strategy first involves the construction of hundreds of different transposon vector variants, which we term a “magic pool.” The efficacy of each vector in a magic pool is monitored in parallel using a unique DNA barcode that is introduced into each vector design. Using archived DNA “parts,” we next reassemble an effective vector for making a whole-genome transposon mutant library that is suitable for large-scale interrogation of gene function using competitive growth assays. Here, we demonstrate the utility of the magic pool system to make mutant libraries in five genera of bacteria. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach for discovering the functions of bacterial genes. However, the development of a suitable TnSeq strategy for a given bacterium can be costly and time-consuming. To meet this challenge, we describe a part-based strategy for constructing libraries of hundreds of transposon delivery vectors, which we term “magic pools.” Within a magic pool, each transposon vector has a different combination of upstream sequences (promoters and ribosome binding sites) and antibiotic resistance markers as well as a random DNA barcode sequence, which allows the tracking of each vector during mutagenesis experiments. To identify an efficient vector for a given bacterium, we mutagenize it with a magic pool and sequence the resulting insertions; we then use this efficient vector to generate a large mutant library. We used the magic pool strategy to construct transposon mutant libraries in five genera of bacteria, including three genera of the phylum Bacteroidetes. IMPORTANCE Molecular genetics is indispensable for interrogating the physiology of bacteria. However, the development of a functional genetic system for any given bacterium can be time-consuming. Here, we present a streamlined approach for identifying an effective transposon mutagenesis system for a new bacterium. Our strategy first involves the construction of hundreds of different transposon vector variants, which we term a “magic pool.” The efficacy of each vector in a magic pool is monitored in parallel using a unique DNA barcode that is introduced into each vector design. Using archived DNA “parts,” we next reassemble an effective vector for making a whole-genome transposon mutant library that is suitable for large-scale interrogation of gene function using competitive growth assays. Here, we demonstrate the utility of the magic pool system to make mutant libraries in five genera of bacteria.
Collapse
|
28
|
Incomplete prophage tolerance by type III-A CRISPR-Cas systems reduces the fitness of lysogenic hosts. Nat Commun 2018; 9:61. [PMID: 29302058 PMCID: PMC5754349 DOI: 10.1038/s41467-017-02557-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022] Open
Abstract
CRISPR–Cas systems offer an immune mechanism through which prokaryotic hosts can acquire heritable resistance to genetic parasites, including temperate phages. Co-transcriptional DNA and RNA targeting by type III-A CRISPR–Cas systems restricts temperate phage lytic infections while allowing lysogenic infections to be tolerated under conditions where the prophage targets are transcriptionally repressed. However, long-term consequences of this phenomenon have not been explored. Here we show that maintenance of conditionally tolerant type III-A systems can produce fitness costs within populations of Staphylococcus aureus lysogens. The fitness costs depend on the activity of prophage-internal promoters and type III-A Cas nucleases implicated in targeting, can be more severe in double lysogens, and are alleviated by spacer-target mismatches which do not abrogate immunity during the lytic cycle. These findings suggest that persistence of type III-A systems that target endogenous prophages could be enhanced by spacer-target mismatches, particularly among populations that are prone to polylysogenization. CRISPR-Cas systems, such as type III-A CRISPR-Cas, provide an immune mechanism for prokaryotic hosts to resist parasites, including phages. Here, the authors show that maintenance of conditionally tolerant type III-A systems can affect the fitness of Staphylococcus aureus lysogens.
Collapse
|
29
|
Guadamuro L, Flórez AB, Alegría Á, Vázquez L, Mayo B. Characterization of four β-glucosidases acting on isoflavone-glycosides from Bifidobacterium pseudocatenulatum IPLA 36007. Food Res Int 2017; 100:522-528. [DOI: 10.1016/j.foodres.2017.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022]
|
30
|
Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape. Cell Host Microbe 2017; 22:343-353.e3. [PMID: 28826839 DOI: 10.1016/j.chom.2017.07.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/28/2017] [Accepted: 07/27/2017] [Indexed: 12/26/2022]
Abstract
CRISPR loci are a cluster of repeats separated by short "spacer" sequences derived from prokaryotic viruses and plasmids that determine the targets of the host's CRISPR-Cas immune response against its invaders. For type I and II CRISPR-Cas systems, single-nucleotide mutations in the seed or protospacer adjacent motif (PAM) of the target sequence cause immune failure and allow viral escape. This is overcome by the acquisition of multiple spacers that target the same invader. Here we show that targeting by the Staphylococcus epidermidis type III-A CRISPR-Cas system does not require PAM or seed sequences, and thus prevents viral escape via single-nucleotide substitutions. Instead, viral escapers can only arise through complete target deletion. Our work shows that, as opposed to type I and II systems, the relaxed specificity of type III CRISPR-Cas targeting provides robust immune responses that can lead to viral extinction with a single spacer targeting an essential phage sequence.
Collapse
|
31
|
Wassenaar TM, Cabal A. The mobile dso-gene-sso element in rolling-circle plasmids of staphylococci reflects the evolutionary history of its resistance gene. Lett Appl Microbiol 2017. [PMID: 28631335 DOI: 10.1111/lam.12767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The qacC and lnuA genes of Staphylococcus species were recently proposed to comprise a mobile element when residing on rolling-circle plasmids. Here we present other examples of resistance genes on staphylococcal rolling-circle plasmids, including fosB producing resistance to fosfomycin, cat resulting in resistance to chloramphenicol and cadB for resistance to the toxic heavy metal cadmium. For three of these genes (qacC, lnuA and fosB), evidence was obtained that the genes have spread between different plasmid backgrounds. The lack of mutations in qacC suggests that the spread occurred relatively recently, while the build up of mutations in lnuA and fosB suggests their mobilization occurred in the more distant past. These observations can be explained by the use of the respective antibiotics over time. However, the cat and cadB genes sequences analysed had not collected any mutations, an observation that is not completely understood but possible explanations are discussed. SIGNIFICANCE AND IMPACT OF THE STUDY We have analysed five resistance genes in Staphylococcus aureus that are positioned between the replication elements of rolling-circle plasmids. For three of these genes, evidence was obtained indicative of recent mobilization. The historical use of the antibiotics to which the genes produce resistance could be related to the number of mutations collected in these genes. However, two other resistance genes have not collected any mutations over time, and the reasons for this are discussed. The analyses presented provide insights into the spread and evolution of antibiotic resistance genes.
Collapse
Affiliation(s)
- T M Wassenaar
- Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany.,Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - A Cabal
- Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany.,VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain
| |
Collapse
|
32
|
Gao T, Li Y, Ding M, Chai Y, Wang Q. The phosphotransferase system gene ptsI in Bacillus cereus regulates expression of sodA2 and contributes to colonization of wheat roots. Res Microbiol 2017; 168:524-535. [PMID: 28478075 DOI: 10.1016/j.resmic.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/01/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022]
Abstract
Plant growth-promoting rhizobacteria effectively enhance plant growth and root colonization by the bacteria is a prerequisite during the process. Bacillus cereus 905, a rhizosphere bacterium originally isolated from wheat roots, colonizes the wheat rhizosphere with a large population size. We previously showed that a manganese-containing superoxide dismutase (MnSOD2), encoded by the sodA2 gene, plays an important role in colonization of the wheat rhizosphere by B. cereus 905. In this study, we identified a gene, ptsI, which positively regulates transcription of sodA2. ptsI encodes Enzyme I of the phosphotransferase system (PTS), a major regulator of carbohydrate uptake in bacteria. Assays of β-galactosidase activity and real-time quantitative PCR showed that loss of ptsI caused a 70% reduction in sodA2 expression. The ΔptsI mutant also showed a 1000-fold reduction in colonization of wheat roots, as well as a reduced growth rate in minimal media with either glucose or succinate as the sole carbon source. Artificial induction of sodA2 in the ΔptsI mutant partially restored root colonizing ability and utilization of succinate, but not glucose. These results suggest that the PTS plays an important role in rhizosphere colonization by both promoting nutrient utilization and regulating sodA2 expression in B. cereus 905.
Collapse
Affiliation(s)
- Tantan Gao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02215, USA
| | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mingzheng Ding
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02215, USA.
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature 2017; 544:101-104. [PMID: 28355179 PMCID: PMC5540373 DOI: 10.1038/nature21719] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/22/2017] [Indexed: 12/19/2022]
Abstract
CRISPR-Cas systems provide protection against viral1 and plasmid2 infection by capturing short DNA sequences from these invaders and integrating them into the CRISPR locus of the prokaryotic host1. These sequences, known as spacers, are transcribed into short RNA guides3–5 that specify the cleavage site of Cas nucleases in the genome of the invader6–8. When spacer sequences are acquired during viral infection is not known. To investigate this, we followed spacer acquisition in Staphylococcus aureus cells harboring a type II CRISPR-Cas9 system after infection with the staphylococcal bacteriophage ϕ12. We found that new spacers are acquired immediately following infection preferentially from the cos site, the viral free DNA end that is first injected into the cell. Analysis of spacer acquisition after infection with mutant phages demonstrated that most spacers are acquired during DNA injection, but not during other stages of the viral cycle that produce free DNA ends, such as DNA replication or packaging. Finally, we showed that spacers acquired from early-injected genomic regions, which direct Cas9 cleavage of the viral DNA immediately after infection, provide better immunity than spacers acquired from late-injected regions. Our results reveal that CRISPR-Cas systems exploit the phage life cycle to generate a pattern of spacer acquisition that ensures the success of the CRISPR immune response.
Collapse
|
34
|
A Eukaryotic-like Serine/Threonine Kinase Protects Staphylococci against Phages. Cell Host Microbe 2016; 20:471-481. [DOI: 10.1016/j.chom.2016.08.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 07/06/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022]
|
35
|
Abstract
In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.
Collapse
|
36
|
Discovery of Novel MLSB Resistance Methylase Genes and Their Associated Genetic Elements in Staphylococci. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016. [DOI: 10.1007/s40588-016-0030-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Samai P, Pyenson N, Jiang W, Goldberg GW, Hatoum-Aslan A, Marraffini LA. Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity. Cell 2015; 161:1164-1174. [PMID: 25959775 DOI: 10.1016/j.cell.2015.04.027] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 12/26/2022]
Abstract
Immune systems must recognize and destroy different pathogens that threaten the host. CRISPR-Cas immune systems protect prokaryotes from viral and plasmid infection utilizing small CRISPR RNAs that are complementary to the invader's genome and specify the targets of RNA-guided Cas nucleases. Type III CRISPR-Cas immunity requires target transcription, and whereas genetic studies demonstrated DNA targeting, in vitro data have shown crRNA-guided RNA cleavage. The molecular mechanism behind these disparate activities is not known. Here, we show that transcription across the targets of the Staphylococcus epidermidis type III-A CRISPR-Cas system results in the cleavage of the target DNA and its transcripts, mediated by independent active sites within the Cas10-Csm ribonucleoprotein effector complex. Immunity against plasmids and DNA viruses requires DNA, but not RNA, cleavage activity. Our studies reveal a highly versatile mechanism of CRISPR immunity that can defend microorganisms against diverse DNA and RNA invaders.
Collapse
Affiliation(s)
- Poulami Samai
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Nora Pyenson
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Wenyan Jiang
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Gregory W Goldberg
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Asma Hatoum-Aslan
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
38
|
Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 2015; 519:199-202. [PMID: 25707807 PMCID: PMC4385744 DOI: 10.1038/nature14245] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/20/2015] [Indexed: 12/22/2022]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) loci and their associated (Cas) proteins provide adaptive immunity against viral infection in prokaryotes. Upon infection, short phage sequences known as spacers integrate between CRISPR repeats and are transcribed into small RNA molecules that guide the Cas9 nuclease to the viral targets (protospacers). Streptococcus pyogenes Cas9 cleavage of the viral genome requires the presence of a 5'-NGG-3' protospacer adjacent motif (PAM) sequence immediately downstream of the viral target. It is not known whether and how viral sequences flanked by the correct PAM are chosen as new spacers. Here we show that Cas9 selects functional spacers by recognizing their PAM during spacer acquisition. The replacement of cas9 with alleles that lack the PAM recognition motif or recognize an NGGNG PAM eliminated or changed PAM specificity during spacer acquisition, respectively. Cas9 associates with other proteins of the acquisition machinery (Cas1, Cas2 and Csn2), presumably to provide PAM-specificity to this process. These results establish a new function for Cas9 in the genesis of prokaryotic immunological memory.
Collapse
Affiliation(s)
- Robert Heler
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Poulami Samai
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Joshua W Modell
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Catherine Weiner
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Gregory W Goldberg
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - David Bikard
- 1] Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA [2] Synthetic Biology Group, Institut Pasteur, 28 Rue du Dr. Roux, 75015 Paris, France
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
39
|
de Vries LE, Christensen H, Agersø Y. The diversity of inducible and constitutively expressed erm(C) genes and association to different replicon types in staphylococci plasmids. Mob Genet Elements 2014; 2:72-80. [PMID: 22934240 PMCID: PMC3429524 DOI: 10.4161/mge.20109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to analyze the diversity of the macrolide resistance gene, erm(C) in relation to structural alterations affecting the gene expression. In addition, the association of erm(C) to mobile genetic elements (MGEs) in staphylococci mainly from Danish pigs was investigated. In total, 78 erythromycin-resistant isolates were screened for erm(C) by PCR. The erm(C) genes incl. the upstream regulatory region were sequenced and the expression types were characterized phenotypically (agar diffusion test) and genotypically (sequence analysis). Phylogenetic analysis of erm(C) was compared with structural alterations affecting the gene expression. Plasmids carrying erm(C) from seven selected isolates were fully or partially sequenced. Thirty-seven isolates were shown to be erm(C) positive and erm(C) from pigs were all constitutively expressed, mainly caused by different sized deletions (118, 111, 107, 70, 66, 16 and 3 bp) in the regulatory region. Duplication (63 bp) and substitutions were also found to cause a constitutive phenotype. Only one horse isolate had an inducible expression type. Phylogenetic analysis showed that structural alterations have happened in different erm(C) allele groups and not only in one group. Furthermore erm(C) was found mainly on plasmids (~2.4–8 kb) and gene sequence types correlated with plasmid replication (rep) gene types. One erm(C) type was linked to an IS257 element able to circularize. In conclusion, structural alterations giving rise to constitutive expression of erm(C) have happened several times in the evolution of erm(C). Interestingly, the diversity of erm(C) appears to be linked to the plasmid type or MGE carrying the gene.
Collapse
|
40
|
Mobilizable Rolling-Circle Replicating Plasmids from Gram-Positive Bacteria: A Low-Cost Conjugative Transfer. Microbiol Spectr 2014; 2:8. [PMID: 25606350 DOI: 10.1128/microbiolspec.plas-0008-2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Conjugation is a key mechanism for horizontal gene transfer in bacteria. Some plasmids are not self-transmissible but can be mobilized by functions encoded in trans provided by other auxiliary conjugative elements. Although the transfer efficiency of mobilizable plasmids is usually lower than that of conjugative elements, mobilizable plasmidsare more frequently found in nature. In this sense, replication and mobilization can be considered as important mechanisms influencing plasmid promiscuity. Here we review the present available information on two families of small mobilizable plasmids from Gram-positive bacteria that replicate via the rolling-circle mechanism. One of these families, represented by the streptococcal plasmid pMV158, is an interesting model since it contains a specific mobilization module (MOBV) that is widely distributed among mobilizable plasmids. We discuss a mechanism in which the promiscuity of the pMV158 replicon is based on the presence of two origins of lagging strand synthesis. The current strategies to assess plasmid transfer efficiency as well as to inhibit conjugative plasmid transfer are presented. Some applications of these plasmids as biotechnological tools are also reviewed.
Collapse
|
41
|
Goldberg GW, Jiang W, Bikard D, Marraffini LA. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature 2014; 514:633-7. [PMID: 25174707 PMCID: PMC4214910 DOI: 10.1038/nature13637] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022]
Abstract
A fundamental feature of immune systems is the ability to distinguish pathogenic from self and commensal elements, and to attack the former but tolerate the latter1. Prokaryotic CRISPR-Cas immune systems defend against phage infection using Cas nucleases and small RNA guides that specify one or more target sites for cleavage of the viral genome2,3. Temperate phages are viruses that can integrate into the bacterial chromosome, and they can carry genes that provide a fitness advantage to the lysogenic host4,5. However, CRISPR-Cas targeting that relies strictly on DNA sequence recognition provides indiscriminate immunity to both lytic and lysogenic infection by temperate phages6—compromising the genetic stability of these potentially beneficial elements altogether. Here we show that the Staphylococcus epidermidis CRISPR-Cas system can prevent lytic infection but tolerate lysogenization by temperate phages. Conditional tolerance is achieved through transcription-dependent DNA targeting, and ensures that targeting is resumed upon induction of the prophage lytic cycle. Our results provide evidence for the functional divergence of CRISPR-Cas systems and highlight the importance of targeting mechanism diversity. In addition, they extend the concept of ‘tolerance to non-self’ to the prokaryotic branch of adaptive immunity.
Collapse
Affiliation(s)
- Gregory W Goldberg
- Laboratory of Bacteriology, The Rockefeller University, New York, New York 10065, USA
| | - Wenyan Jiang
- Laboratory of Bacteriology, The Rockefeller University, New York, New York 10065, USA
| | - David Bikard
- 1] Laboratory of Bacteriology, The Rockefeller University, New York, New York 10065, USA [2] Synthetic Biology Group, Institut Pasteur, 28 Rue du Dr. Roux, 75015 Paris, France
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
42
|
Wendlandt S, Kadlec K, Feßler AT, van Duijkeren E, Schwarz S. Two different erm(C)-carrying plasmids in the same methicillin-resistant Staphylococcus aureus CC398 isolate from a broiler farm. Vet Microbiol 2014; 171:382-7. [PMID: 24553412 DOI: 10.1016/j.vetmic.2014.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 01/29/2023]
Abstract
During a study on plasmid-borne antimicrobial resistance among methicillin-resistant Staphylococcus aureus (MRSA) isolates from broiler farms, an MRSA isolate was identified which carried multiple plasmids. This MRSA isolate belonged to CC398 and exhibited spa type t3015 and dru type dt11a. Plasmid profiling revealed the presence of one large and two small plasmids. The resistance genes tet(L) (tetracycline resistance), dfrK (trimethoprim resistance) and aadD (kanamycin/neomycin resistance) were located on the large plasmid. Both small plasmids, designated pSWS371 and pSWS372, carried only an erm(C) gene for macrolide/lincosamide resistance. Sequence analysis revealed that the 2458-bp plasmid pSWS371 carried only a repL gene for plasmid replication in addition to the erm(C) gene. In contrast, the 3882-bp plasmid pSWS372 harbored - in addition to the erm(C) gene - three more genes: a repF gene for plasmid replication, a cop-6 gene for a small protein potentially involved in copy number control of the plasmid and a novel pre/mob gene for a protein involved in plasmid recombination and mobilization. The erm(C) genes of both small plasmids exhibited constitutive erm(C) gene expression and analysis of the respective translational attenuators identified deletions of 16 bp and 74 bp which explain the constitutive expression. The simultaneous presence of two small plasmids that carry the same resistance gene in the same MRSA isolate is a rare observation. The fact that both plasmids belong to different incompatibility groups as specified by the different rep genes, repL and repF, explains why they can stably coexist in the same bacterial cell.
Collapse
Affiliation(s)
- Sarah Wendlandt
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Andrea T Feßler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Engeline van Duijkeren
- Centre for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany.
| |
Collapse
|
43
|
Enhanced Interaction of Shuffled Mutacin IV, an Antimicrobial Peptide of Bacterial Origin, with Surface Protein IsdB of Staphylococcus aureus. Int J Pept Res Ther 2013. [DOI: 10.1007/s10989-013-9368-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Fernández-López C, Lorenzo-Díaz F, Pérez-Luque R, Rodríguez-González L, Boer R, Lurz R, Bravo A, Coll M, Espinosa M. Nicking activity of the pMV158 MobM relaxase on cognate and heterologous origins of transfer. Plasmid 2013; 70:120-30. [DOI: 10.1016/j.plasmid.2013.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
|
45
|
Wang Y, Weng J, Waseem R, Yin X, Zhang R, Shen Q. Bacillus subtilis genome editing using ssDNA with short homology regions. Nucleic Acids Res 2012; 40:e91. [PMID: 22422839 PMCID: PMC3384351 DOI: 10.1093/nar/gks248] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, we developed a simple and efficient Bacillus subtilis genome editing method in which targeted gene(s) could be inactivated by single-stranded PCR product(s) flanked by short homology regions and in-frame deletion could be achieved by incubating the transformants at 42°C. In this process, homologous recombination (HR) was promoted by the lambda beta protein synthesized under the control of promoter PRM in the lambda cI857 PRM–PR promoter system on a temperature sensitive plasmid pWY121. Promoter PR drove the expression of the recombinase gene cre at 42°C for excising the floxed (lox sites flanked) disruption cassette that contained a bleomycin resistance marker and a heat inducible counter-selectable marker (hewl, encoding hen egg white lysozyme). Then, we amplified the single-stranded disruption cassette using the primers that carried 70 nt homology extensions corresponding to the regions flanking the target gene. By transforming the respective PCR products into the B. subtilis that harbored pWY121 and incubating the resultant mutants at 42°C, we knocked out multiple genes in the same genetic background with no marker left. This process is simple and efficient and can be widely applied to large-scale genome analysis of recalcitrant Bacillus species.
Collapse
Affiliation(s)
- Yang Wang
- Department of Plant Nutrition, College of Resource and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Schwarz S, Feßler AT, Hauschild T, Kehrenberg C, Kadlec K. Plasmid-mediated resistance to protein biosynthesis inhibitors in staphylococci. Ann N Y Acad Sci 2011; 1241:82-103. [DOI: 10.1111/j.1749-6632.2011.06275.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Modified mariner transposons for random inducible-expression insertions and transcriptional reporter fusion insertions in Bacillus subtilis. Appl Environ Microbiol 2011; 78:778-85. [PMID: 22113911 DOI: 10.1128/aem.07098-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transposons are mobile genetic elements bounded by insertion sequences that are recognized by a specific mobilizing transposase enzyme. The transposase may mobilize not only the insertion sequences but also intervening DNA. mariner is a particularly efficient transposon for the random chromosomal integration of genes and insertional mutagenesis. Here, we modify an existing mariner transposon, TnYLB, such that it can easily be genetically manipulated and introduced into Bacillus subtilis. We generate a series of three new mariner derivatives that mobilize spectinomycin, chloramphenicol, and kanamycin antibiotic resistance cassettes. Furthermore, we generate a series of transposons with a strong, outward-oriented, optionally isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible promoter for the random overexpression of neighboring genes and a series of transposons with a promoterless lacZ gene for the random generation of transcriptional reporter fusions. We note that the modification of the base transposon is not restricted to B. subtilis and should be applicable to any mariner-compatible host organism, provided that in vitro mutagenesis or an in vivo species-specific delivery vector is employed.
Collapse
|
48
|
Heinl S, Spath K, Egger E, Grabherr R. Sequence analysis and characterization of two cryptic plasmids derived from Lactobacillus buchneri CD034. Plasmid 2011; 66:159-68. [DOI: 10.1016/j.plasmid.2011.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/19/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
|
49
|
Differential responses of Bacillus subtilis rRNA promoters to nutritional stress. J Bacteriol 2010; 193:723-33. [PMID: 21097612 DOI: 10.1128/jb.00708-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vivo expression levels of four rRNA promoter pairs (rrnp(1)p(2)) of Bacillus subtilis were determined by employing single-copy lacZ fusions integrated at the amyE locus. The rrnO, rrnJ, rrnD, and rrnB promoters displayed unique growth rate regulation and stringent responses. Both lacZ activity and mRNA levels were highest for rrnO under all growth conditions tested, while rrnJ, rrnB, and rrnD showed decreasing levels of activity. During amino acid starvation induced by serine hydroxamate (SHX), only the strong rrnO and rrnJ promoters demonstrated stringent responses. Under the growth conditions used, the rrn promoters showed responses similar to the responses to carbon source limitation induced by α-methyl glucoside (α-MG). The ratio of P2 to P1 transcripts, determined by primer extension analysis, was high for the strong rrnO and rrnJ promoters, while only P2 transcripts were detected for the weak rrnD and rrnB promoters. Cloned P1 or P2 promoter fragments of rrnO or rrnJ were differentially regulated. In wild-type (relA(+)) and suppressor [relA(S)] strains under the conditions tested, only P2 responded to carbon source limitation by a decrease in RNA synthesis, correlating with an increase in (p)ppGpp levels and a decrease in the GTP concentration. The weak P1 promoter elements remain relaxed in the three genetic backgrounds [relA(+), relA, relA(S)] in the presence of α-MG. During amino acid starvation, P2 was stringently regulated in relA(+) and relA(S) cells, while only rrnJp(1) was also regulated, but to a lesser extent. Both the relA(+) and relA(S) strains showed (p)ppGpp accumulation after α-MG treatment but not after SHX treatment. These data reveal the complex nature of B. subtilis rrn promoter regulation in response to stress, and they suggest that the P2 promoters may play a more prominent role in the stringent response.
Collapse
|
50
|
Enhancing electro-transformation competency of recalcitrant Bacillus amyloliquefaciens by combining cell-wall weakening and cell-membrane fluidity disturbing. Anal Biochem 2010; 409:130-7. [PMID: 20951110 DOI: 10.1016/j.ab.2010.10.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/08/2010] [Accepted: 10/09/2010] [Indexed: 11/24/2022]
Abstract
Bacillus amyloliquefaciens has been a major workhorse for the production of a variety of commercially important enzymes and metabolites for the past decades. Some subspecies of this bacterium are recalcitrant to exogenous DNA, and transformation with plasmid DNA is usually less efficient, thereby limiting the genetic manipulation of the recalcitrant species. In this work, a methodology based on electro-transformation has been developed, in which the cells were grown in a semicomplex hypertonic medium, cell walls were weakened by adding glycine (Gly) and DL-threonine (DL-Thr), and the cell-membrane fluidity was elevated by supplementing Tween 80. After optimization of the cell-loosening recipe by response surface methodology (RSM), the transformation efficiency reached 1.13 ± 0.34 × 10(7) cfu/μg syngeneic pUB110 DNA in a low conductivity electroporation buffer. Moreover, by temporary heat inactivation of the host restriction enzyme, a transformation efficiency of 8.94 ± 0.77 × 10(5) cfu/μg DNA was achieved with xenogeneic shuttle plasmids, a 10(3)-fold increase compared to that reported previously. The optimized protocol was also applicable to other recalcitrant B. amyloliquefaciens strains used in this study. This work could shed light on the functional genomics and subsequent strain improvement of the recalcitrant Bacillus, which are difficult to be transformed using conventional methods.
Collapse
|