1
|
Abstract
More than 50 years have passed since the presentation of the Replicon Model which states that a positively acting initiator interacts with a specific site on a circular chromosome molecule to initiate DNA replication. Since then, the origin of chromosome replication, oriC, has been determined as a specific region that carries sequences required for binding of positively acting initiator proteins, DnaA-boxes and DnaA proteins, respectively. In this review we will give a historical overview of significant findings which have led to the very detailed knowledge we now possess about the initiation process in bacteria using Escherichia coli as the model organism, but emphasizing that virtually all bacteria have DnaA proteins that interacts with DnaA boxes to initiate chromosome replication. We will discuss the dnaA gene regulation, the special features of the dnaA gene expression, promoter strength, and translation efficiency, as well as, the DnaA protein, its concentration, its binding to DnaA-boxes, and its binding of ATP or ADP. Furthermore, we will discuss the different models for regulation of initiation which have been proposed over the years, with particular emphasis on the Initiator Titration Model.
Collapse
Affiliation(s)
- Flemming G. Hansen
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Tove Atlung
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
2
|
Abstract
The initiation of chromosomal DNA replication starts at a replication origin, which in bacteria is a discrete locus that contains DNA sequence motifs recognized by an initiator protein whose role is to assemble the replication fork machinery at this site. In bacteria with a single chromosome, DnaA is the initiator and is highly conserved in all bacteria. As an adenine nucleotide binding protein, DnaA bound to ATP is active in the assembly of a DnaA oligomer onto these sites. Other proteins modulate DnaA oligomerization via their interaction with the N-terminal region of DnaA. Following the DnaA-dependent unwinding of an AT-rich region within the replication origin, DnaA then mediates the binding of DnaB, the replicative DNA helicase, in a complex with DnaC to form an intermediate named the prepriming complex. In the formation of this intermediate, the helicase is loaded onto the unwound region within the replication origin. As DnaC bound to DnaB inhibits its activity as a DNA helicase, DnaC must dissociate to activate DnaB. Apparently, the interaction of DnaB with primase (DnaG) and primer formation leads to the release of DnaC from DnaB, which is coordinated with or followed by translocation of DnaB to the junction of the replication fork. There, DnaB is able to coordinate its activity as a DNA helicase with the cellular replicase, DNA polymerase III holoenzyme, which uses the primers made by primase for leading strand DNA synthesis.
Collapse
Affiliation(s)
- S Chodavarapu
- Michigan State University, East Lansing, MI, United States
| | - J M Kaguni
- Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
3
|
Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain. PLoS One 2014; 9:e99209. [PMID: 24905728 PMCID: PMC4048246 DOI: 10.1371/journal.pone.0099209] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/12/2014] [Indexed: 01/12/2023] Open
Abstract
Multidrug-resistant Enterobacteriaceae are emerging as a serious infectious disease challenge. These strains can accumulate many antibiotic resistance genes though horizontal transfer of genetic elements, those for β-lactamases being of particular concern. Some β-lactamases are active on a broad spectrum of β-lactams including the last-resort carbapenems. The gene for the broad-spectrum and carbapenem-active metallo-β-lactamase NDM-1 is rapidly spreading. We present the complete genome of Klebsiella pneumoniae ATCC BAA-2146, the first U.S. isolate found to encode NDM-1, and describe its repertoire of antibiotic-resistance genes and mutations, including genes for eight β-lactamases and 15 additional antibiotic-resistance enzymes. To elucidate the evolution of this rich repertoire, the mobile elements of the genome were characterized, including four plasmids with varying degrees of conservation and mosaicism and eleven chromosomal genomic islands. One island was identified by a novel phylogenomic approach, that further indicated the cps-lps polysaccharide synthesis locus, where operon translocation and fusion was noted. Unique plasmid segments and mosaic junctions were identified. Plasmid-borne blaCTX-M-15 was transposed recently to the chromosome by ISEcp1. None of the eleven full copies of IS26, the most frequent IS element in the genome, had the expected 8-bp direct repeat of the integration target sequence, suggesting that each copy underwent homologous recombination subsequent to its last transposition event. Comparative analysis likewise indicates IS26 as a frequent recombinational junction between plasmid ancestors, and also indicates a resolvase site. In one novel use of high-throughput sequencing, homologously recombinant subpopulations of the bacterial culture were detected. In a second novel use, circular transposition intermediates were detected for the novel insertion sequence ISKpn21 of the ISNCY family, suggesting that it uses the two-step transposition mechanism of IS3. Robust genome-based phylogeny showed that a unified Klebsiella cluster contains Enterobacter aerogenes and Raoultella, suggesting the latter genus should be abandoned.
Collapse
|
4
|
Abstract
Escherichia coli is a model system to study the mechanism of DNA replication and its regulation during the cell cycle. One regulatory pathway ensures that initiation of DNA replication from the chromosomal origin, oriC, is synchronous and occurs at the proper time in the bacterial cell cycle. A major player in this pathway is SeqA protein and involves its ability to bind preferentially to oriC when it is hemi-methylated. The second pathway modulates DnaA activity by stimulating the hydrolysis of ATP bound to DnaA protein. The regulatory inactivation of DnaA function involves an interaction with Hda protein and the beta dimer, which functions as a sliding clamp for the replicase, DNA polymerase III holoenzyme. The datA locus represents a third mechanism, which appears to influence the availability of DnaA protein in supporting rifampicin-resistant initiations.
Collapse
Affiliation(s)
- Jon M Kaguni
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| |
Collapse
|
5
|
Roggenkamp A. Phylogenetic analysis of enteric species of the family Enterobacteriaceae using the oriC-locus. Syst Appl Microbiol 2006; 30:180-8. [PMID: 16904857 DOI: 10.1016/j.syapm.2006.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Indexed: 10/24/2022]
Abstract
Phylogenetic analysis of 38 enteric species belonging to the Enterobacteraceae family was carried out using the non-coding locus oriC, the chromosomal replication origin. The oriC loci were amplified with conserved oligonucleotides and the PCR fragments were sequenced directly. The results establish a phylogenetic tree for the classification of different species of the genera Escherichia, Shigella, Salmonella, Enterobacter, Citrobacter, Klebsiella, Raoultella, Kluyvera, Cedecea and Buttiauxella. Functional important protein-binding sites located in oriC are well conserved throughout the enteric group. More over, due to a high overall divergence value phylogenetic trees were robust and well supported by bootstrap analysis. In comparison with 16S rDNA analysis, the oriC sequences indicated a greater evolutionary divergence for bacteria. We propose that the oriC locus might be a suitable phylogenetic marker for the identification and classification of bacteria, in particular for closely related species.
Collapse
Affiliation(s)
- Andreas Roggenkamp
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University Munich, 81377 Munich, Germany.
| |
Collapse
|
6
|
Tian Y, Hao P, Zhao G, Qin Z. Cloning and characterization of the chromosomal replication origin region of Amycolatopsis mediterranei U32. Biochem Biophys Res Commun 2005; 333:14-20. [PMID: 15936727 DOI: 10.1016/j.bbrc.2005.05.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 05/14/2005] [Indexed: 11/23/2022]
Abstract
The chromosomal replication origins (oriC) of gram positive, acid-fast actinomycetes have been investigated in streptomycetes and mycobacteria. A 1339 bp DNA fragment of the putative oriC region from the rifamycin SV producer Amycolatopsis mediterranei U32 was cloned by PCR amplification employing primers designed based on the conserved flanking genes of dnaA and dnaN. The 884 bp sequence of the intergenic region between dnaA and dnaN genes consists of 19 DnaA-boxes and two 13-mer AT-rich sequences, which is similar to the oriC structure of Streptomyces lividans. A mini-chromosome constructed by cloning the putative U32 oriC DNA fragment into an Escherichia coli plasmid was able to replicate autonomously, but was unstable, in A. mediterranei U32 with an estimated copy number of two per cell. Although efficient replication of the mini-chromosome in U32 requires the complete set of DnaA-boxes and AT-rich regions, only one of the AT-rich sequences together with part of the DnaA-boxes is sufficient, suggesting the presence of combinatorial alternatives for a functional oriC region of A. mediterranei U32. Phylogenetic analysis based on definite oriC sequences among eubacteria reflects well the relationship between these species.
Collapse
Affiliation(s)
- Yongqiang Tian
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
| | | | | | | |
Collapse
|
7
|
Berenstein D, Olesen K, Speck C, Skovgaard O. Genetic organization of the Vibrio harveyi DnaA gene region and analysis of the function of the V. harveyi DnaA protein in Escherichia coli. J Bacteriol 2002; 184:2533-8. [PMID: 11948168 PMCID: PMC134989 DOI: 10.1128/jb.184.9.2533-2538.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Vibrionaceae family is distantly related to Enterobacteriaceae within the group of bacteria possessing the Dam methylase system. We have cloned, sequenced, and analyzed the dnaA gene region of Vibrio harveyi and found that although the organization of the V. harveyi dnaA region differs from that of Escherichia coli, the expression of both genes is autoregulated and ATP-DnaA binds cooperatively to ATP-DnaA boxes in the dnaA promoter region. The DnaA proteins of V. harveyi and E. coli are interchangeable and function nearly identically in controlling dnaA transcription and the initiation of chromosomal DNA replication despite the evolutionary distance between these bacteria.
Collapse
Affiliation(s)
- Dvora Berenstein
- Department of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
8
|
Gómez-Eichelmann MC, Ramírez-Santos J. Methylated cytosine at Dcm (CCATGG) sites in Escherichia coli: possible function and evolutionary implications. J Mol Evol 1993; 37:11-24. [PMID: 8360914 DOI: 10.1007/bf00170457] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The frequency and distribution of methylated cytosine (5-MeC) at CCATGG (Dcm sites) in 49 E. coli DNA loci (207,530 bp) were determined. Principal observations of this analysis were: (1) Dcm frequency was higher than expected from random occurrence but lower than calculated with Markov chain analysis; (2) CCTGG sites were found more frequently in coding than in noncoding regions, while the opposite was true for CCAGG sites; (3) Dcm site distribution does not exhibit any identifiably regular pattern on the chromosome; (4) Dcm sites at oriC are probably not important for accurate initiation of DNA replication; (5) 5-MeC in codons was more frequently found in first than in second and third positions; (6) there are probably few genes in which the mutation rate is determined mainly by DNA methylation. It is proposed that the function of Dcm methylase is to protect chromosomal DNA from restriction-enzyme EcoRII. The Dcm methylation contribution to determine frequency of oligonucleotides, mutation rate, and recombination level, and thus evolution of the E. coli genome, could be interpreted as a consequence of the acquisition of this methylation.
Collapse
Affiliation(s)
- M C Gómez-Eichelmann
- Departamento de Biología Molecular, Universidad Nacional Autónoma de México, México, D.F
| | | |
Collapse
|
9
|
Chen SY, Hoover TA, Thompson HA, Williams JC. Characterization of the origin of DNA replication of the Coxiella burnetii chromosome. Ann N Y Acad Sci 1990; 590:491-503. [PMID: 2198835 DOI: 10.1111/j.1749-6632.1990.tb42259.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- S Y Chen
- Department of Microbiology and Immunology, West Virginia University Health Sciences Center, Morgantown 26506
| | | | | | | |
Collapse
|
10
|
Ochman H, Wilson AC. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 1987; 26:74-86. [PMID: 3125340 DOI: 10.1007/bf02111283] [Citation(s) in RCA: 473] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This paper constructs a temporal scale for bacterial evolution by tying ecological events that took place at known times in the geological past to specific branch points in the genealogical tree relating the 16S ribosomal RNAs of eubacteria, mitochondria, and chloroplasts. One thus obtains a relationship between time and bacterial RNA divergence which can be used to estimate times of divergence between other branches in the bacterial tree. According to this approach, Salmonella typhimurium and Escherichia coli diverged between 120 and 160 million years (Myr) ago, a date which fits with evidence that the chief habitats occupied now by these two enteric species became available that long ago. The median extent of divergence between S. typhimurium and E. coli at synonymous sites for 21 kilobases of protein-coding DNA is 100%. This implies a silent substitution rate of 0.7-0.8%/Myr--a rate remarkably similar to that observed in the nuclear genes of mammals, invertebrates, and flowering plants. Similarities in the substitution rates of eucaryotes and procaryotes are not limited to silent substitutions in protein-coding regions. The average substitution rate for 16S rRNA in eubacteria is about 1%/50 Myr, similar to the average rate for 18S rRNA in vertebrates and flowering plants. Likewise, we estimate a mean rate of roughly 1%/25 Myr for 5S rRNA in both eubacteria and eucaryotes. For a few protein-coding genes of these enteric bacteria, the extent of silent substitution since the divergence of S. typhimurium and E. coli is much lower than 100%, owing to extreme bias in the usage of synonymous codons. Furthermore, in these bacteria, rates of amino acid replacement were about 20 times lower, on average, than the silent rate. By contrast, for the mammalian genes studied to date, the average replacement rate is only four to five times lower than the rate of silent substitution.
Collapse
Affiliation(s)
- H Ochman
- Department of Biochemistry, University of California, Berkeley 94720
| | | |
Collapse
|
11
|
de Wind N, Parren P, Stuitje AR, Meijer M. Evidence for the involvement of the 16kD gene promoter in initiation of chromosomal replication of Escherichia coli strains carrying a B/r-derived replication origin. Nucleic Acids Res 1987; 15:4901-14. [PMID: 3037485 PMCID: PMC305926 DOI: 10.1093/nar/15.12.4901] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Initiation of chromosomal DNA replication of several Escherichia coli dnaA (Ts) strains is diminished in cell harbouring pBR322 hybrid plasmids carrying both oriC and the adjacent 16kD gene promoter of E. coli K12. This perturbance, resulting in very slow growth, is caused both by the dnaA allele and the E. coli B/r-derived region of the replication origin of these strains. Cloning and DNA sequence analysis of the E. coli B/r replication origin revealed several base differences as compared to the E. coli K12 sequence. The replication origin of temperature sensitive fast growing mutants, originating from a homologous exchange between chromosomal and plasmid DNA sequences were also cloned. Sequence data showed that a single base change within the promoter of the 16kD gene of these dnaA (Ts) strains is able to suppress the inhibition of chromosomal DNA replication by the mentioned pBR322 hybrid plasmids. Our results strongly indicate a role of the 16kD gene promoter in control of initiation of chromosomal DNA replication.
Collapse
|
12
|
Junker DE, Rokeach LA, Ganea D, Chiaramello A, Zyskind JW. Transcription termination within the Escherichia coli origin of DNA replication, oriC. MOLECULAR & GENERAL GENETICS : MGG 1986; 203:101-9. [PMID: 3012276 DOI: 10.1007/bf00330390] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Initiation of DNA replication from the Escherichia coli origin, oriC, is dependent on an RNA polymerase-mediated transcription event. The function of this RNA synthetic event in initiation, however, remains obscure. Since control of the synthesis of this RNA could serve a key role in the overall initiation process, transcription regulatory sites within and near oriC were identified using the galK fusion vector system. Our results confirm the existence of a transcription termination signal within oriC, first identified by Hansen et al. (1981), for the 16 kd transcript that is transcribed counterclockwise towards oriC. Termination is shown to be 92% efficient. A similar approach led to the detection of transcription termination within the chromosomal replication origin of Klebsiella pneumoniae. Approximately 50% of the E. coli 16 kd transcripts appear to terminate before reaching oriC between the XhoI (+416 bp) and the HindIII (+243 bp) sites. The predominant 3' ends of RNA that enter oriC, as determined by SI nuclease mapping, were located at positions +20 +/- 2, +23 +/- 2, +37, +39, +52, +66, +92, and +107. These termination sites, which map cl to RNA . DNA junctions identified by Kohara et al. (1985), appear as triplets and quadruplets. The E. coli oriC Pori-L promoter described in in vitro transcription studies by Lother and Messer (1981) was not detected in this study in either wildtype cells or isogenic dnaA mutants at the nonpermissive temperature. A new promoter activity, Pori-R1, was identified within the E. coli origin in the clockwise direction.
Collapse
|
13
|
Matsui M, Oka A, Takanami M, Yasuda S, Hirota Y. Sites of dnaA protein-binding in the replication origin of the Escherichia coli K-12 chromosome. J Mol Biol 1985; 184:529-33. [PMID: 2995681 DOI: 10.1016/0022-2836(85)90299-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
On the basis of the observation that dnaA protein binds preferentially to DNA fragments carrying the Escherichia coli chromosomal replication origin (oriC), the binding sites were investigated by DNase I footprinting. As a result, three strong binding sites were identified in the minimal oriC sequence. The respective binding sites were 16 to 17 base-pairs long, and contained a common sequence (5') T-G-T-G-(G/T)-A-T-A-A-C (3') in the middle, although their polarities were not the same. Since mutants defective in function for autonomous replication have been isolated in the corresponding positions of the common sequence at each binding site, dnaA protein-binding at these sites seems to be significant for replication initiation.
Collapse
|
14
|
Smith CA, Thomas CM. Comparison of the nucleotide sequences of the vegetative replication origins of broad host range IncP plasmids R751 and RK2 reveals conserved features of probable functional importance. Nucleic Acids Res 1985; 13:557-72. [PMID: 4000925 PMCID: PMC341014 DOI: 10.1093/nar/13.2.557] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
An 864 bp EcoRI fragment carrying oriVR751, the vegetative replication origin of broad host range IncP plasmid R751, was cloned and sequenced. Only the trfA gene of the IncP plasmid RK2 was required in trans for the function of oriVR751. The sequence of oriVR751 showed 65% overall homology to that of oriVRK2 determined previously. Highly conserved regions of probable functional importance were apparent, including two sets of direct repeats postulated to be interaction sites for the trfA protein(s), a putative dnaA protein binding site and a downstream inverted repeat of unknown function.
Collapse
|
15
|
Oka A, Sasaki H, Sugimoto K, Takanami M. Sequence organization of replication origin of the Escherichia coli K-12 chromosome. J Mol Biol 1984; 176:443-58. [PMID: 6379192 DOI: 10.1016/0022-2836(84)90171-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A sequence of 245 base-pairs (oriC) in the replication origin of the Escherichia coli K-12 chromosome has been shown to provide all the information essential for initiation of bidirectional replication. In order to elucidate the sequence organization of oriC, numerous mutants carrying a single-to-multiple transitions from G X C to A X T base-pair were constructed by localized mutagenesis in vitro, which uses sodium bisulfite, and the correlation between the mutation sites and replicating ability (Ori function) was systematically analyzed. By isolating non-defective (Ori+) mutants with multiple base changes, transitions at 71 positions among 101 G X C pairs in oriC were found to have no effect on Ori function. Investigation of defective (Ori-) mutants, on the other hand, showed that individual replacements at 18 positions were detrimental to Ori function to some extent. These irreplaceable G X C pairs fell in the positions where no substitution was detected in the Ori+ mutants. The defect of the Ori- mutants with a single base substitution was generally weaker than that of the previously constructed Ori- mutants lacking a part of oriC. The addition of two or more base changes each giving a faint Ori- phenotype, however, resulted in a more intensive Ori- phenotype. We have previously demonstrated that oriC contains several regions where deletion or insertion of oligonucleotides leads to strong Ori- phenotypes. Transitions in those areas did not cause any defect of Ori function. Combining present results on base substitution mutants with the previous observations together, we assumed that the oriC sequence provides multiple interaction sites with replication initiation factors, and the precise arrangement of these sites are required for Ori function.
Collapse
|
16
|
|
17
|
Stuitje AR, Meijer M. Isolation and characterization of plasmids carrying a partially defective Escherichia coli replication origin. Nucleic Acids Res 1983; 11:8007-18. [PMID: 6316280 PMCID: PMC326555 DOI: 10.1093/nar/11.22.8007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The replication origin (oriC) of the Escherichia coli chromosome has been cloned and the region essential for chromosomal replication has been delimited to 245 base pairs. In previous studies the ability of recombinants between oriC and ColE1-type vectors, to transform E. coli polA- strains was used to determine which nucleotides in oriC are essential for replication. In this paper we have used a different approach by isolating partial defective replication mutants of a minichromosome (pCM959) that contains oriC as the single replication origin. Our results demonstrate that many mutations are allowed within oriC that do not affect oriC function as measured by the ability to transform E. coli polA- strains. In the minimal oriC region we detected 8 mutations at positions that are conserved in the sequence of six bacterial origins. The implications of these results on previous work will be discussed. Our data also demonstrate that a mutation producing an oriC- phenotype may be suppressed by secondary mutations. An E. coli strain was found that facilitates the isolation of partially defective minichromosomes. The results with this strain indicate a specific function of the sequence surrounding the base pair at position 138.
Collapse
|
18
|
Stuitje AR, Meijer M. Maintenance and incompatibility of plasmids carrying the replication origin of the Escherichia coli chromosome: evidence for a control region of replication between oriC and asnA. Nucleic Acids Res 1983; 11:5775-91. [PMID: 6310513 PMCID: PMC326313 DOI: 10.1093/nar/11.16.5775] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Plasmids that replicate only by means of the cloned Escherichia coli replication origin (oriC) are called minichromosomes or oriC-plasmids. In this paper it is shown that sequences located between oriC and asnA are involved in maintenance and incompatibility of minichromosomes. These sequences include part of the 16kD and 17kD genes, previously allocated within this region (1,2). Transcription towards oriC that is initiated at the 16kD promoter, specifically enhances the stability and copy-number of minichromosomes. Three regions are involved in minichromosome incompatibility. One region, incA, includes the minimal oriC sequence. A second, incB, maps within a 210 base pairs fragment that overlaps the 16kD promoter. The third, incC, encompasses the 17kD gene. Neither one of the regions expresses incompatibility on its own, but the additional presence of one of the others is required. The data presented indicate that sequences of the 16kD and 17kD genes are part of the replication control system of oriC-plasmids.
Collapse
|
19
|
Zyskind JW, Cleary JM, Brusilow WS, Harding NE, Smith DW. Chromosomal replication origin from the marine bacterium Vibrio harveyi functions in Escherichia coli: oriC consensus sequence. Proc Natl Acad Sci U S A 1983; 80:1164-8. [PMID: 6338499 PMCID: PMC393554 DOI: 10.1073/pnas.80.5.1164] [Citation(s) in RCA: 147] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The chromosomal replication origin (oriC) of Vibrio harveyi has been isolated on a plasmid and shown to function as an origin in Escherichia coli. The nucleotide sequence of the V. harveyi oriC was determined. From a comparison of this sequence with oriC sequences of five enteric bacteria, we derived a consensus sequence of bacterial origins that function in E. coli. This consensus sequence identifies 122 positions within oriC where nucleotide substitutions can occur without loss of origin function. These positions are clustered rather than scattered. Four interrelated nine-base-pair repeats and eight of the dam methylation G-A-T-C sites are conserved in the consensus sequence. Very few relative insertion-deletion changes occur, and these are localized to one region of oriC. The genes for three polypeptides linked to the V. harveyi oriC were identified by using in vitro protein synthesis directed by deletion derivative plasmid templates. One of these genes, coding for a 58,000 Mr polypeptide and located 3.0 kilobase pairs from the V. harveyi oriC region, is lethal to E. coli when many copies (approximately 40 per cell) are present (high copy lethal or HCL gene). In addition, nucleotide sequence analysis showed that a different gene, the gid gene to the left of oriC, is highly conserved between E. coli and V. harveyi, whereas the coding region to the right of oriC is much less conserved.
Collapse
|
20
|
Brooks JE, Blumenthal RM, Gingeras TR. The isolation and characterization of the Escherichia coli DNA adenine methylase (dam) gene. Nucleic Acids Res 1983; 11:837-51. [PMID: 6300769 PMCID: PMC325756 DOI: 10.1093/nar/11.3.837] [Citation(s) in RCA: 164] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The E. coli dam (DNA adenine methylase) enzyme is known to methylate the sequence GATC. A general method for cloning sequence-specific DNA methylase genes was used to isolate the dam gene on a 1.14 kb fragment, inserted in the plasmid vector pBR322. Subsequent restriction mapping and subcloning experiments established a set of approximate boundaries of the gene. The nucleotide sequence of the dam gene was determined, and analysis of that sequence revealed a unique open reading frame which corresponded in length to that necessary to code for a protein the size of dam. Amino acid composition derived from this sequence corresponds closely to the amino acid composition of the purified dam protein. Enzymatic and DNA:DNA hybridization methods were used to investigate the possible presence of dam genes in a variety of prokaryotic organisms.
Collapse
|
21
|
Harding NE, Cleary JM, Smith DW, Michon JJ, Brusilow WS, Zyskind JW. Chromosomal replication origins (oriC) of Enterobacter aerogenes and Klebsiella pneumoniae are functional in Escherichia coli. J Bacteriol 1982; 152:983-93. [PMID: 6292170 PMCID: PMC221601 DOI: 10.1128/jb.152.3.983-993.1982] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The chromosomal DNA replication origins (oriC) from two members of the family Enterobacteriaceae, Enterobacter aerogenes and Klebsiella pneumoniae, have been isolated as functional replication origins in Escherichia coli. The origins in the SalI restriction fragments of 17.5 and 10.2 kilobase pairs, cloned from E. aerogenes and K. pneumoniae, respectively, were found to be between the asnA and uncB genes, as are the origins of the E. coli and Salmonella typhimurium chromosomes. Plasmids containing oriC from E aerogenes, K. pneumoniae, and S. typhimurium replicate in the E. coli cell-free enzyme system (Fuller, et al., Proc. Natl. Acad. Sci. U.S.A. 78:7370--7374, 1981), and this replication is dependent on dnaA protein activity. These SalI fragments from E. aerogenes and K. pneumoniae carry a region which is lethal to E. coli when many copies are present. We show that this region is also carried on the E. coli 9.0-kilobase-pair EcoRI restriction fragment containing oriC. The F0 genes of the atp or unc operon, when linked to the unc operon promoter, are apparently responsible for the lethality.
Collapse
|