1
|
Toplis B, Bosch C, Stander M, Taylor M, Perfect JR, Botha A. A link between urease and polyamine metabolism in Cryptococcus neoformans. Microb Pathog 2021; 158:105076. [PMID: 34216740 DOI: 10.1016/j.micpath.2021.105076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/05/2021] [Accepted: 06/24/2021] [Indexed: 01/09/2023]
Abstract
The urease enzyme of Cryptococcus neoformans is linked to different metabolic pathways within the yeast cell, several of which are involved in polyamine metabolism. Cryptococcal biogenic amine production is, however, largely unexplored and is yet to be investigated in relation to urease. The aim of this study was therefore to explore and compare polyamine metabolism in wild-type, urease-negative and urease-reconstituted strains of C. neoformans. Mass spectrometry analysis showed that agmatine and spermidine were the major extra- and intracellular polyamines of C. neoformans and significant differences were observed between 26 and 37 °C. In addition, compared to the wild-type, the relative percentages of extracellular putrescine and spermidine were found to be lower and agmatine higher in cultures of the urease-deficient mutant. The inverse was true for intracellular spermidine and agmatine. Cyclohexylamine was a more potent polyamine inhibitor compared to DL-α-difluoromethylornithine and inhibitory effects were more pronounced at 37 °C than at 26 °C. At both temperatures, the urease-deficient mutant was less susceptible to cyclohexylamine treatment compared to the wild-type. For both inhibitors, growth inhibition was alleviated with polyamine supplementation. This study has provided novel insight into the polyamine metabolism of C. neoformans, highlighting the involvement of urease in biogenic amine production.
Collapse
Affiliation(s)
- Barbra Toplis
- Department of Microbiology, University of Stellenbosch, Matieland, 7602, Stellenbosch, South Africa
| | - Caylin Bosch
- Department of Microbiology, University of Stellenbosch, Matieland, 7602, Stellenbosch, South Africa
| | - Marietjie Stander
- Mass Spectrometry Unit, Central Analytical Facilities, University of Stellenbosch, Matieland, 7602, Stellenbosch, South Africa
| | - Malcolm Taylor
- Mass Spectrometry Unit, Central Analytical Facilities, University of Stellenbosch, Matieland, 7602, Stellenbosch, South Africa
| | - John R Perfect
- Division of Infectious Diseases, Duke University Medical Centre, Durham, NC, 27710-1000, USA
| | - Alfred Botha
- Department of Microbiology, University of Stellenbosch, Matieland, 7602, Stellenbosch, South Africa.
| |
Collapse
|
2
|
Pérez-Mozqueda LL, Vazquez-Duhalt R, Castro-Longoria E. Role and dynamics of an agmatinase-like protein (AGM-1) in Neurospora crassa. Fungal Genet Biol 2019; 132:103264. [PMID: 31465847 DOI: 10.1016/j.fgb.2019.103264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
Abstract
Agmatinase is known as a metalloenzyme which hydrolyzes agmatine to produce urea and putrescine, being crucial in the alternative pathway to produce polyamines. In this study, an agmatinase-like protein (AGM-1) (NCU 01348) in the filamentous fungus Neurospora crassa is reported. Purified AGM-1 from N. crassa displays enzymatic activity hydrolyzing agmatine; therefore, it can be considered as an agmatinase-like protein. However, its role in the alternative pathway to produce polyamines apparently is not its main function since only a slight reduction of polyamines concentration was detected in the Δagm-1 het strain. Moreover, the null mutant Δagm-1 (homokaryon strain) was unable to grow and the deficiency of agm-1 in the heterokaryon strain provoked a decrease in elongation rate, conidia and biomass production, despite of having de constitutive pathway via the ornithine decarboxylase (ODC). Additionally, mature hyphae of the Δagm-1 het strain presented unusual apical branching and a disorganized Spitzenkörper (Spk). Trying to reveal the role of AGM-1in N. crassa, the protein was tagged with GFP and interestingly the dynamics and intracellular localization of AGM-1 closely resembles the F-actin population. This finding was further examined in order to elucidate if AGM-1is in a close association with F-actin. Since polyamines, among them agmatine, have been reported to act as stabilizers of actin filaments, we evaluated in vitro G-actin polymerization in the presence of agmatine and the effect of purified AGM-1 from N. crassa on these polymerized actin filaments. It was found that polymerization of actin filaments increases in the presence of agmatine and the addition of purified AGM-1 from N. crassa depolymerizes these actin filaments. Also, it was determined that an intact substrate binding site of the enzyme is necessary for the localization pattern of the native AGM-1. These results suggest that in N. crassa AGM-1 has a close association with the F-actin population via its substrate agmatine, playing an essential role during cell development.
Collapse
Affiliation(s)
- Luis L Pérez-Mozqueda
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, B.C., Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada, Mexico
| | - Ernestina Castro-Longoria
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, B.C., Mexico.
| |
Collapse
|
3
|
Abstract
Polyamines are primordial polycations found in most cells and perform different functions in different organisms. Although polyamines are mainly known for their essential roles in cell growth and proliferation, their functions range from a critical role in cellular translation in eukaryotes and archaea, to bacterial biofilm formation and specialized roles in natural product biosynthesis. At first glance, the diversity of polyamine structures in different organisms appears chaotic; however, biosynthetic flexibility and evolutionary and ecological processes largely explain this heterogeneity. In this review, I discuss the biosynthetic, evolutionary, and physiological processes that constrain or expand polyamine structural and functional diversity.
Collapse
Affiliation(s)
- Anthony J Michael
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
4
|
Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J Mol Biol 2015; 427:3389-406. [DOI: 10.1016/j.jmb.2015.06.020] [Citation(s) in RCA: 401] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/12/2015] [Accepted: 06/29/2015] [Indexed: 11/23/2022]
|
5
|
Tomar PC, Lakra N, Mishra SN. Cadaverine: a lysine catabolite involved in plant growth and development. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.25850. [PMID: 23887488 PMCID: PMC4091120 DOI: 10.4161/psb.25850] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 05/03/2023]
Abstract
The cadaverine (Cad) a diamine, imino compound produced as a lysine catabolite is also implicated in growth and development of plants depending on environmental condition. This lysine catabolism is catalyzed by lysine decarboxylase, which is developmentally regulated. However, the limited role of Cad in plants is reported, this review is tempted to focus the metabolism and its regulation, transport and responses, interaction and cross talks in higher plants. The Cad varied presence in plant parts/products suggests it as a potential candidate for taxonomic marker as well as for commercial exploitation along with growth and development.
Collapse
Affiliation(s)
- Pushpa C Tomar
- Department of Biotechnology Engineering; FE; Manav Rachna International University; Faridabad, Haryana, India
| | - Nita Lakra
- School of Life Sciences; Jawaharlal Nehru University; New Delhi, India
| | - S N Mishra
- Faculty of Life Sciences; Maharishi Dayanand University; Rohtak, Haryana, India
| |
Collapse
|
6
|
Polyamine metabolism in fungi with emphasis on phytopathogenic species. JOURNAL OF AMINO ACIDS 2012; 2012:837932. [PMID: 22957208 PMCID: PMC3432380 DOI: 10.1155/2012/837932] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/23/2012] [Indexed: 12/23/2022]
Abstract
Polyamines are essential metabolites present in all living organisms, and this subject has attracted the attention of researchers worldwide interested in defining their mode of action in the variable cell functions in which they are involved, from growth to development and differentiation. Although the mechanism of polyamine synthesis is almost universal, different biological groups show interesting differences in this aspect that require to be further analyzed. For these studies, fungi represent interesting models because of their characteristics and facility of analysis. During the last decades fungi have contributed to the understanding of polyamine metabolism. The use of specific inhibitors and the isolation of mutants have allowed the manipulation of the pathway providing information on its regulation. During host-fungus interaction polyamine metabolism suffers striking changes in response to infection, which requires examination. Additionally the role of polyamine transporter is getting importance because of its role in polyamine regulation. In this paper we analyze the metabolism of polyamines in fungi, and the difference of this process with other biological groups. Of particular importance is the difference of polyamine biosynthesis between fungi and plants, which makes this process an attractive target for the control of phytopathogenic fungi.
Collapse
|
7
|
Bulk segregant analysis followed by high-throughput sequencing reveals the Neurospora cell cycle gene, ndc-1, to be allelic with the gene for ornithine decarboxylase, spe-1. EUKARYOTIC CELL 2011; 10:724-33. [PMID: 21515825 DOI: 10.1128/ec.00016-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
With the advent of high-throughput DNA sequencing, it is now straightforward and inexpensive to generate high-density small nucleotide polymorphism (SNP) maps. Here we combined high-throughput sequencing with bulk segregant analysis to expedite mutation mapping. The general map location of a mutation can be identified by a single backcross to a strain enriched in SNPs compared to a standard wild-type strain. Bulk segregant analysis simultaneously increases the likelihood of determining the precise nature of the mutation. We present here a high-density SNP map between Neurospora crassa Mauriceville-1-c (FGSC2225) and OR74A (FGSC2489), the strains most typically used by Neurospora researchers to carry out mapping crosses. We further have demonstrated the utility of the Mauriceville sequence and our approach by mapping the mutation responsible for the only existing temperature-sensitive (ts) cell cycle mutation in Neurospora, nuclear division cycle-1 (ndc-1). The single T-to-C point mutation maps to the gene encoding ornithine decarboxylase (ODC), spe-1 (NCU01271), and changes a Phe to a Ser residue within a highly conserved motif next to the catalytic site of the enzyme. By growth on spermidine and complementation with a wild-type spe-1 gene, we showed that the defect in spe-1 is responsible for the ts ndc-1 mutation. Based on our results, we propose changing ndc-1 to spe-1(ndc), which reflects that this mutation results in an ODC with a specific nuclear division defect.
Collapse
|
8
|
Gardiner DM, Kazan K, Praud S, Torney FJ, Rusu A, Manners JM. Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production. BMC PLANT BIOLOGY 2010; 10:289. [PMID: 21192794 PMCID: PMC3022911 DOI: 10.1186/1471-2229-10-289] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 12/30/2010] [Indexed: 05/22/2023]
Abstract
BACKGROUND The fungal pathogen Fusarium graminearum causes Fusarium Head Blight (FHB) disease on wheat which can lead to trichothecene mycotoxin (e.g. deoxynivalenol, DON) contamination of grain, harmful to mammalian health. DON is produced at low levels under standard culture conditions when compared to plant infection but specific polyamines (e.g. putrescine and agmatine) and amino acids (e.g. arginine and ornithine) are potent inducers of DON by F. graminearum in axenic culture. Currently, host factors that promote mycotoxin synthesis during FHB are unknown, but plant derived polyamines could contribute to DON induction in infected heads. However, the temporal and spatial accumulation of polyamines and amino acids in relation to that of DON has not been studied. RESULTS Following inoculation of susceptible wheat heads by F. graminearum, DON accumulation was detected at two days after inoculation. The accumulation of putrescine was detected as early as one day following inoculation while arginine and cadaverine were also produced at three and four days post-inoculation. Transcripts of ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), two key biosynthetic enzymes for putrescine biosynthesis, were also strongly induced in heads at two days after inoculation. These results indicated that elicitation of the polyamine biosynthetic pathway is an early response to FHB. Transcripts for genes encoding enzymes acting upstream in the polyamine biosynthetic pathway as well as those of ODC and ADC, and putrescine levels were also induced in the rachis, a flower organ supporting DON production and an important route for pathogen colonisation during FHB. A survey of 24 wheat genotypes with varying responses to FHB showed putrescine induction is a general response to inoculation and no correlation was observed between the accumulation of putrescine and infection or DON accumulation. CONCLUSIONS The activation of the polyamine biosynthetic pathway and putrescine in infected heads prior to detectable DON accumulation is consistent with a model where the pathogen exploits the generic host stress response of polyamine synthesis as a cue for production of trichothecene mycotoxins during FHB disease. However, it is likely that this mechanism is complicated by other factors contributing to resistance and susceptibility in diverse wheat genetic backgrounds.
Collapse
Affiliation(s)
- Donald M Gardiner
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, Brisbane, 4067, Australia
| | - Kemal Kazan
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, Brisbane, 4067, Australia
| | - Sebastien Praud
- Biogemma, Site ULICE, ZAC les portes de Riom-BP173, 63204 Riom, France
| | - Francois J Torney
- Biogemma, Site ULICE, ZAC les portes de Riom-BP173, 63204 Riom, France
| | - Anca Rusu
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, Brisbane, 4067, Australia
| | - John M Manners
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, Brisbane, 4067, Australia
| |
Collapse
|
9
|
Niemi K, Häggman H, Sarjala T. Ectomycorrhizal fungal species and strains differ in their ability to produce free and conjugated polyamines. MYCORRHIZA 2003; 13:283-287. [PMID: 12844248 DOI: 10.1007/s00572-003-0253-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Accepted: 05/27/2003] [Indexed: 05/24/2023]
Abstract
Production of free and conjugated polyamines by one strain of Laccaria proxima (Boud.) Maire, three strains (H, O, K) of Paxillus involutus (Batsch) Fr., and one strain of Pisolithus tinctorius was studied in vitro. Spermidine (Spd) was the main polyamine in the 4-week-old mycelium of all the fungi. It was mainly present in the free form, but it also occurred in conjugated forms. Paxillus involutus strain H released large amounts of free putrescine (Put), and the Pisolithus tinctorius released a compound probably related to cadaverine (Cad). On the other hand, these two fungi contained less conjugated polyamines than the other fungi. In addition to the amounts, the forms (perchloric acid soluble and insoluble) of conjugated polyamines in the mycelium varied between species and strains. L. proxima contained nearly as much insoluble conjugated Spd as free Spd, whereas Paxillus involutus strains O and K contained relatively large amounts of soluble conjugated Spd. The results suggest that ectomycorrhizal fungal species and strains differ in their ability and need to produce conjugated polyamines. The small amounts of soluble conjugated polyamines found in the culture filtrates indicate that some specific conjugated polyamines may be involved in polyamine translocation across the plasma membrane.
Collapse
Affiliation(s)
- Karoliina Niemi
- Department of Applied Biology, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland.
| | | | | |
Collapse
|
10
|
Mueller E, Bailey A, Corran A, Michael AJ, Bowyer P. Ornithine decarboxylase knockout in Tapesia yallundae abolishes infection plaque formation in vitro but does not reduce virulence toward wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:1303-1311. [PMID: 11763128 DOI: 10.1094/mpmi.2001.14.11.1303] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A knockout strain of Tapesia yallundae lacking the single ornithine decarboxylase (ODC) allele has been created by targeted gene replacement. A central region of the ODC gene was isolated by polymerase chain reaction with degenerate oligonucleotides and used to probe a lambda genomic library. The gene was sequenced, and the encoded ODC protein sequence was shown to be similar to those from other fungi. The functionality of the T. yallundae ODC was confirmed by complementation of an Aspergillus nidulans mutant (puA) strain devoid of ODC activity, restoring growth in the absence of exogenous polyamines. Transformation-mediated gene replacement was used to create strains that were auxotrophic for putrescine and lack ODC coding sequences. ODC knockout strains were unable to differentiate infection structures after in vitro induction and showed an abnormal hyphal branching phenotype. Pathogenicity studies on these mutants showed that, surprisingly, they are not reduced in virulence compared with nondisrupted transformants. This suggests that the strains carrying an ODC disruption can obtain sufficient polyamines from the host plant for normal growth and differentiation and, therefore, that fungal ODC may not be a suitable target for fungicides.
Collapse
|
11
|
Legaz ME, Fontaniella B, de Armas R, Vicente C. Determination by high performance liquid chromatography of ornithine and lysine decaboxylases in sugar cane juices. Chromatographia 2001. [DOI: 10.1007/bf02490339] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Hoyt MA, Broun M, Davis RH. Polyamine regulation of ornithine decarboxylase synthesis in Neurospora crassa. Mol Cell Biol 2000; 20:2760-73. [PMID: 10733579 PMCID: PMC85492 DOI: 10.1128/mcb.20.8.2760-2773.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ornithine decarboxylase (ODC) of the fungus Neurospora crassa, encoded by the spe-1 gene, catalyzes an initial and rate-limiting step in polyamine biosynthesis and is highly regulated by polyamines. In N. crassa, polyamines repress the synthesis and increase the degradation of ODC protein. Changes in the rate of ODC synthesis correlate with similar changes in the abundance of spe-1 mRNA. We identify two sequence elements, one in each of the 5' and 3' regions of the spe-1 gene of N. crassa, required for this polyamine-mediated regulation. A 5' polyamine-responsive region (5' PRR) comprises DNA sequences both in the upstream untranscribed region and in the long 5' untranslated region (5'-UTR) of the gene. The 5' PRR is sufficient to confer polyamine regulation to a downstream, heterologous coding region. Use of the beta-tubulin promoter to drive the expression of various portions of the spe-1 transcribed region revealed a 3' polyamine-responsive region (3' PRR) downstream of the coding region. Neither changes in cellular polyamine status nor deletion of sequences in the 5'-UTR alters the half-life of spe-1 mRNA. Sequences in the spe-1 5'-UTR also impede the translation of a heterologous coding region, and polyamine starvation partially relieves this impediment. The results show that N. crassa uses a unique combination of polyamine-mediated transcriptional and translational control mechanisms to regulate ODC synthesis.
Collapse
Affiliation(s)
- M A Hoyt
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900, USA
| | | | | |
Collapse
|
13
|
Jiang Y, Roberts SC, Jardim A, Carter NS, Shih S, Ariyanayagam M, Fairlamb AH, Ullman B. Ornithine decarboxylase gene deletion mutants of Leishmania donovani. J Biol Chem 1999; 274:3781-8. [PMID: 9920931 DOI: 10.1074/jbc.274.6.3781] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A knockout strain of Leishmania donovani lacking both ornithine decarboxylase (ODC) alleles has been created by targeted gene replacement. Growth of Deltaodc cells in polyamine-deficient medium resulted in a rapid and profound depletion of cellular putrescine pools, although levels of spermidine were relatively unaffected. Concentrations of trypanothione, a spermidine conjugate, were also reduced, whereas glutathione concentrations were augmented. The Deltaodc L. donovani exhibited an auxotrophy for polyamines that could be circumvented by the addition of the naturally occurring polyamines, putrescine or spermidine, to the culture medium. Whereas putrescine supplementation restored intracellular pools of both putrescine and spermidine, exogenous spermidine was not converted back to putrescine, indicating that spermidine alone is sufficient to meet the polyamine requirement, and that L. donovani does not express the enzymatic machinery for polyamine degradation. The lack of a polyamine catabolic pathway in intact parasites was confirmed radiometrically. In addition, the Deltaodc strain could grow in medium supplemented with either 1,3-diaminopropane or 1, 5-diaminopentane (cadaverine), but polyamine auxotrophy could not be overcome by other aliphatic diamines or spermine. These data establish genetically that ODC is an essential gene in L. donovani, define the polyamine requirements of the parasite, and reveal the absence of a polyamine-degradative pathway.
Collapse
Affiliation(s)
- Y Jiang
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Walters DR, Cowley T, McPherson A. Polyamine metabolism in the thermotolerant mesophilic fungus Aspergillus fumigatus. FEMS Microbiol Lett 1997; 153:433-7. [PMID: 9303883 DOI: 10.1111/j.1574-6968.1997.tb12607.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biomass production by Aspergillus fumigatus was greatest at 40-45 degrees C and was associated with an increase in concentration of the diamine putrescine and activity of its biosynthetic enzyme ornithine decarboxylase. Concentrations of the other amines, cadaverine, spermidine and spermine were considerably lower than putrescine concentration and did not change significantly over the temperature range 20-50 degrees C. This is surprising in view of the greatly increased flux of label from ornithine through to spermidine at 45 and 50 degrees C, indicating an increased formation of this triamine. It is suggested that there was increased formation of spermidine derivatives at these temperatures. Interestingly, there was greatly increased formation of the higher homologues of cadaverine, aminopropylcadaverine and N,N'-bis(3-aminopropyl)cadaverine, in A. fumigatus at 45 and 50 degrees C.
Collapse
Affiliation(s)
- D R Walters
- Plant Science Department, Scottish Agricultural College, Auchincruive, UK
| | | | | |
Collapse
|
15
|
Abstract
The higher homologues of cadaverine, aminopropylcadaverine (APC) and N,N-bis(3-aminopropyl)cadaverine (3APC) were formed by a wild-type strain of Saccharomyces cerevisiae, and by two mutant strains, spe 3-1 and spe 4-1, exhibiting point mutations in the genes for spermidine synthase and spermine synthase, respectively. This, together with the incomplete inhibition of APC and 3APC formation in the presence of inhibitors of S-adenosylmethionine decarboxylase and spermidine synthase, suggests that the cadaverine derivatives are formed partly by the operation of a different route. However, the yeast strains were unable to utilise [14C]aspartate and lysine to form APC and 3APC. Since the ornithine decarboxylase inhibitor alpha-difluoromethylornithine (DFMO) greatly reduced the formation of APC and 3APC, it is suggested that these compounds are formed preferentially in these yeast strains from cadaverine formed by ODC. APC and 3APC formation in the yeast strains was increased substantially following exposure to 37 degrees C for 2 h.
Collapse
Affiliation(s)
- D R Walters
- Department of Plant Science, Scottish Agricultural College, Auchincruive, UK.
| | | |
Collapse
|
16
|
Tome ME, Gerner EW. Hypusine modification in eukaryotic initiation factor 5A in rodent cells selected for resistance to growth inhibition by ornithine decarboxylase-inhibiting drugs. Biochem J 1996; 320 ( Pt 1):55-60. [PMID: 8947467 PMCID: PMC1217897 DOI: 10.1042/bj3200055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Selection of HTC cells in drugs that inhibit ornithine decarboxylase (ODC) has produced two cell lines, HMOA and DH23A/b, that contain increased amounts of more stable ODC. In addition to alterations in ODC, these cells appear to produce modified eukaryotic initiation factor 5A (eIF-5A) at different rates, a reaction that both requires spermidine and is essential for proliferation. Alterations to the modification of eIF-5A by spermidine cannot be accounted for by changes in eIF-5A protein or modified eIF-5A turnover. Deoxyhypusine synthetase activity is similar in the parental and variant cell lines and is unaltered by growth into plateau phase or by spermidine depletion. The increased rate of eIF-5A modification in DH23A/b cells is due to an increased accumulation of the unmodified eIF-5A precursor. Increased precursor accumulation is not due to increased eIF-5A transcription, but rather it can be attributed to a metabolic accumulation caused by growth under conditions of chronically limiting spermidine. Selection using drugs that inhibit ODC apparently does not cause alterations in the eIF-5A modification pathway. These data support the hypothesis that one of the main effects of spermidine depletion is depletion of the modified eIF-5A pool, and that this is a critical factor in the cytostasis often observed after depletion of cellular polyamines.
Collapse
Affiliation(s)
- M E Tome
- Department of Radiation Oncology, Arizona Health Sciences Center, University of Arizona, Tucson 85724, USA
| | | |
Collapse
|
17
|
Li F, Hua SB, Wang CC, Gottesdiener KM. Procyclic Trypanosoma brucei cell lines deficient in ornithine decarboxylase activity. Mol Biochem Parasitol 1996; 78:227-36. [PMID: 8813692 DOI: 10.1016/s0166-6851(96)02630-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ornithine decarboxylase (ODC) is a rate limiting enzyme in the biosynthesis of polyamines. We report here the construction of ODC gene deficient Trypanosoma brucei brucei cell lines by homologous recombination and disruption of the two alleles of the ODC gene. With our first stable transfection vector, we replaced the 2.8 kb SacII ODC gene-containing fragment with a hygromycin-B-phosphotransferase gene (hph) cassette transcribed under the control of the endogenous promoter. For the second ODC allele knock-out, we stably transfected similar constructs that contained either the phleomycin or G418 resistance gene cassette, and included 1 mM putrescine in the media. These experiments resulted in two separate ODC- lines: one hygromycin and phleomycin resistant, the other hygromycin and G418 resistant. The two ODC gene knockout lines were verified by Southern and Northern hybridization, and confirmed by Western blot and enzymatic activity assay. There is no ODC expression in the two ODC- lines and the ODC messages in the single ODC gene knockouts were only half of that of the wild type. When grown in the presence of putrescine, the ODC- lines showed little difference, morphologically, from wild type trypanosomes. The growth rate of these lines varied greatly, depending on the concentration of the putrescine. Interestingly, when putrescine was completely withdrawn from the media, the ODC- trypanosomes soon reached a plateau phase and some cells remained viable for 7-8 weeks. The starved cells could be rescued by the addition of putrescine or introducing back the ODC gene. Cell cycle analysis suggested that putrescine is required for G1-S transition in the procyclic form T. brucei.
Collapse
Affiliation(s)
- F Li
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|
18
|
|
19
|
Zarb J, Walters D. The formation of cadaverine, aminopropylcadaverine and N,N bis (3-aminopropyl) cadaverine in mycorrhizal and phytopathogenic fungi. Lett Appl Microbiol 1994. [DOI: 10.1111/j.1472-765x.1994.tb00963.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Davis RH, Morris DR, Coffino P. Sequestered end products and enzyme regulation: the case of ornithine decarboxylase. Microbiol Rev 1992; 56:280-90. [PMID: 1620066 PMCID: PMC372868 DOI: 10.1128/mr.56.2.280-290.1992] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The polyamines (putrescine, spermidine, and spermine) are synthesized by almost all organisms and are universally required for normal growth. Ornithine decarboxylase (ODC), an initial enzyme of polyamine synthesis, is one of the most highly regulated enzymes of eucaryotic organisms. Unusual mechanisms have evolved to control ODC, including rapid, polyamine-mediated turnover of the enzyme and control of the synthetic rate of the protein without change of its mRNA level. The high amplitude of regulation and the rapid variation in the level of the protein led biochemists to infer that polyamines had special cellular roles and that cells maintained polyamine concentrations within narrow limits. This view was sustained in part because of our continuing uncertainty about the actual biochemical roles of polyamines. In this article, we challenge the view that ODC regulation is related to precise adjustment of polyamine levels. In no organism does ODC display allosteric feedback inhibition, and in three types of organism, bacteria, fungi, and mammals, the size of polyamine pools may vary radically without having a profound effect on growth. We suggest that the apparent stability of polyamine pools in unstressed cells is due to their being largely bound to cellular polyanions. We further speculate that allosteric feedback inhibition, if it existed, would be inappropriately responsive to changes in the small, freely diffusible polyamine pool. Instead, mechanisms that control the amount of the ODC protein have appeared in most organisms, and even these are triggered inappropriately by variation of the binding of polyamines to ionic binding sites. In fact, feedback inhibition of ODC might be maladaptive during hypoosmotic stress or at the onset of growth, when organisms appear to require rapid increases in the size of their cellular polyamine pools.
Collapse
Affiliation(s)
- R H Davis
- Department of Molecular Biology & Biochemistry, University of California, Irvine 92717
| | | | | |
Collapse
|
21
|
Smith TA, Barker JH, Owen WJ. Insensitivity of Septoria tritici and Ustilago maydis to inhibitors of ornithine decarboxylase. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0953-7562(09)80959-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Abstract
The management of polyamine synthesis and polyamine pools differs fundamentally from that of most other small molecular-weight endproducts. The polyamines are vital to growth and important cellular functions, but they are toxic in excess. I argue here that their multivalent cationic character, leading to binding to cell constituents, precludes fluent feedback inhibition of synthesis. This has led to the development of elaborate alternative regulatory mechanisms controlling ornithine decarboxylase, the key initial enzyme of the pathway. Poorly regulated polyamine synthesis and the toxicity of polyamines impose upon cells a need to control uptake and to dispose of excess polyamines. Recent data on polyamine transport suggest unorthodox mechanisms of accomplishing these functions.
Collapse
Affiliation(s)
- R H Davis
- Department of Molecular Biology and Biochemistry, University of California, Irivine 92717
| |
Collapse
|
23
|
Brown A, Walters D, Robins D. Effects of three substituted cadaverines on infection of barley with powdery mildew and brown rust. Lett Appl Microbiol 1990. [DOI: 10.1111/j.1472-765x.1990.tb00141.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Abstract
New mutations of the polyamine pathway of Neurospora crassa fell into three categories. The majority affected ornithine decarboxylase and lay at the previously defined spe-1 locus. One mutation, JP100, defining the new spe-2 locus, eliminated S-adenosyl-methionine decarboxylase and led to putrescine accumulation. Revertants of this mutation suggested that the locus encodes the enzyme. Two other mutations, LV105 and JP120, defined a third locus, spe-3. Strains with these mutations also accumulated putrescine and were presumed to lack spermidine synthase activity, which catalyzes the formation of spermidine from putrescine and decarboxylated S-adenosylmethionine. The three spe loci lay within about 20 map units of one another on the right arm of Linkage Group V in the order: centromere-spe-2-spe-1-spe-3. The requirement for spermidine for growth was much less in spe-2 and spe-3 mutants than in spe-1 mutants, which do not accumulate putrescine. This suggested that putrescine fulfills many, but not all, of the functions of spermidine, or that high levels of putrescine render spermidine more effective in its essential roles.
Collapse
Affiliation(s)
- J Pitkin
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717
| | | |
Collapse
|
25
|
Hamana K, Matsuzaki S, Hosaka K, Yamashita S. Interconversion of polyamines in wild-type strains and mutants of yeasts and the effects of polyamines on their growth. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03584.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Davis RH, Ristow JL. Uptake, intracellular binding, and excretion of polyamines during growth of Neurospora crassa. Arch Biochem Biophys 1989; 271:315-22. [PMID: 2524999 DOI: 10.1016/0003-9861(89)90281-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In Neurospora crassa mycelia, the amounts of the main polyamines, putrescine and spermidine, are approximately 0.8 and 18 nmol/mg, dry weight. We wished to know what determines these pool sizes. In the growth medium, externally added polyamines enter cells largely by a nonsaturable, diffusional system. In a mutant unable to polyamines, internal and external spermidine appear to equilibrate across the cell membrane during growth. However, this was true only after an intracellular "sink," with a capacity equal to the amount of spermidine found in wild-type cells, had been saturated. We speculate that internal anionic binding sites, detectable in permeabilized cells, sequester virtually all of the spermidine normally found in exponentially growing N. crassa. Further evidence for this view was that in mature, stationary cultures, excess spermidine is excreted. Putrescine is also excreted if its concentration in the cell is abnormally high. The control of pool size by intracellular binding and excretion may be an advantage in this pathway, because feedback inhibition does not prevail, enzyme regulation is by comparison slow, and excessive polyamines are toxic.
Collapse
Affiliation(s)
- R H Davis
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717
| | | |
Collapse
|
27
|
Abstract
Polyamine transport in Neurospora crassa is concentrative and energy dependent in a dilute buffer. The saturable systems governing the uptake of putrescine (Km = 0.6 mM), spermidine (Km = ca. 0.24 mM), and spermine (Km = 0.07 mM) share components, as indicated by mutual inhibition among the polyamines. In addition, nonsaturable components prevail for putrescine and spermidine, particularly the former. Radiolabeled substrates, once in the cell, are released only slowly, even if unlabeled polyamines are included in the incubation medium. Permeabilization of cells with n-butanol leads to partial release of internalized 14C-polyamines, and the remainder is almost wholly exchangeable with added, unlabeled polyamine. Polyamine uptake was inhibited by the polyamines themselves and by a polyamine analog, methylglyoxal bisguanylhydrazone, but only weakly and incompletely by the basic amino acids arginine and ornithine. Uptake of putrescine and spermidine was inhibited by monovalent cations, Ca2+, and certain other components of the growth medium. As a result, uptake from the growth medium was very slow and largely by way of the nonsaturable uptake mechanism.
Collapse
|
28
|
Hamana K, Niitsu M, Samejima K, Matsuzaki S. Occurrence of aminopropylcadaverine and its aminopropyl derivatives aminopentylnorspermidine and N, Nâ² -bis(3-aminopropyl)cadaverine in Halococcus acetoinfaciens. FEMS Microbiol Lett 1988. [DOI: 10.1111/j.1574-6968.1988.tb02915.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
29
|
Kakegawa T, Takamiya K, Ogawa T, Hayashi Y, Hirose S, Niitsu M, Samejima K, Igarashi K. Effect of various polyamine analogs on in vitro polypeptide synthesis. Arch Biochem Biophys 1988; 261:250-6. [PMID: 3281585 DOI: 10.1016/0003-9861(88)90339-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Various polyamine analogs were examined for their ability to stimulate and to function as sparing agents for the Mg2+ requirement in polypeptide synthesis at various temperatures in Escherichia coli (37 and 47 degrees C) and the extremely thermophilic Thermus thermophilus (60 and 70 degrees C) cell-free systems. The optimal concentration of each polyamine analog increased as the incubation temperature was elevated. At a fixed temperature, the optimal concentration of polyamine analogs was in the order diamines greater than triamines greater than tetraamines greater than pentaamines. All diamines tested stimulated polypeptide synthesis almost equally but lowered the optimal Mg2+ concentration in the order diaminopropane greater than putrescine greater than cadaverine. The degree of diamine stimulation was maximal at 37 degrees C. The effects of three triamines were very similar in the E. coli system but in the T. thermophilus system spermidine was most effective in stimulation of polypeptide synthesis. From the results of experiments using tetraamines and pentaamines, it was deduced that the presence of both aminobutyl and aminopropyl groups in polyamine analogs is important for stimulation of polypeptide synthesis. In the E. coli system, triamines were the most effective polyamines for stimulation of polyphenylalanine synthesis at both 37 and 47 degrees C, while, in the T. thermophilus system, thermospermine, a tetraamine, was most effective at 60 degrees C and 3,4,4,3-pentaamine was most effective at 70 degrees C.
Collapse
Affiliation(s)
- T Kakegawa
- Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Davis RH, Barnett GR, Ristow JL. Polyamine pools and the control of ornithine decarboxylase activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 250:627-32. [PMID: 3076341 DOI: 10.1007/978-1-4684-5637-0_55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- R H Davis
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717
| | | | | |
Collapse
|
31
|
DiGangi JJ, Seyfzadeh M, Davis RH. Ornithine decarboxylase from Neurospora crassa. Purification, characterization, and regulation by inactivation. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47651-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Nonsense mutations of the ornithine decarboxylase structural gene of Neurospora crassa. Mol Cell Biol 1987. [PMID: 2951589 DOI: 10.1128/mcb.7.3.1122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ornithine decarboxylase (ODC) (EC 4.1.1.17) is an early enzyme of polyamine synthesis, and its activity rises quickly at the onset of growth and differentiation in most eucaryotes. Some have speculated that the enzyme protein may have a role in the synthesis of rRNA in addition to its role in catalyzing the decarboxylation of ornithine (G. D. Kuehn and V. J. Atmar, Fed. Proc. 41:3078-3083, 1982; D. H. Russell, Proc. Natl. Acad. Sci. USA 80:1318-1321, 1983). To test this possibility, we sought mutational evidence for the indispensability of the ODC protein for normal growth of Neurospora crassa. We found three new, ODC-deficient mutants that lacked ODC protein. Among these and by reversion analysis of an earlier set of mutants, we found that two ODC-deficient mutants carried nonsense mutations in the ODC structural gene, spe-1. Allele LV10 imparted a complete deficiency for enzyme activity (less than 0.006% of normal) and had no detectable ODC antigen. Allele PE4 imparted a weak activity to cells (0.1% of derepressed spe+ cultures) and encoded a lower-molecular-weight ODC subunit (Mr = 43,000) in comparison to that of the wild-type strain (Mr = 53,000). Strains carrying either mutation, like other spe-1 mutants, grew at a normal rate in exponential culture if the medium was supplemented with spermidine, the main end product of the polyamine pathway in N. crassa. Unless an antigenically silent, N-terminal fragment with an indispensable role persists in the LV10-bearing mutant, we conclude that the ODC protein has no role in the vegetative growth of this organism other than the synthesis of polyamines. The data extend earlier evidence that spe-1 is the structural gene for ODC in N. crassa. The activity found in mutants bearing allele PE4 suggests that the amino acids nearest the carboxy terminus do not contribute to the active site of the enzyme.
Collapse
|
33
|
Davis RH, Hynes LV, Eversole-Cire P. Nonsense mutations of the ornithine decarboxylase structural gene of Neurospora crassa. Mol Cell Biol 1987; 7:1122-8. [PMID: 2951589 PMCID: PMC365184 DOI: 10.1128/mcb.7.3.1122-1128.1987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ornithine decarboxylase (ODC) (EC 4.1.1.17) is an early enzyme of polyamine synthesis, and its activity rises quickly at the onset of growth and differentiation in most eucaryotes. Some have speculated that the enzyme protein may have a role in the synthesis of rRNA in addition to its role in catalyzing the decarboxylation of ornithine (G. D. Kuehn and V. J. Atmar, Fed. Proc. 41:3078-3083, 1982; D. H. Russell, Proc. Natl. Acad. Sci. USA 80:1318-1321, 1983). To test this possibility, we sought mutational evidence for the indispensability of the ODC protein for normal growth of Neurospora crassa. We found three new, ODC-deficient mutants that lacked ODC protein. Among these and by reversion analysis of an earlier set of mutants, we found that two ODC-deficient mutants carried nonsense mutations in the ODC structural gene, spe-1. Allele LV10 imparted a complete deficiency for enzyme activity (less than 0.006% of normal) and had no detectable ODC antigen. Allele PE4 imparted a weak activity to cells (0.1% of derepressed spe+ cultures) and encoded a lower-molecular-weight ODC subunit (Mr = 43,000) in comparison to that of the wild-type strain (Mr = 53,000). Strains carrying either mutation, like other spe-1 mutants, grew at a normal rate in exponential culture if the medium was supplemented with spermidine, the main end product of the polyamine pathway in N. crassa. Unless an antigenically silent, N-terminal fragment with an indispensable role persists in the LV10-bearing mutant, we conclude that the ODC protein has no role in the vegetative growth of this organism other than the synthesis of polyamines. The data extend earlier evidence that spe-1 is the structural gene for ODC in N. crassa. The activity found in mutants bearing allele PE4 suggests that the amino acids nearest the carboxy terminus do not contribute to the active site of the enzyme.
Collapse
|
34
|
Igarashi K, Kashiwagi K, Hamasaki H, Miura A, Kakegawa T, Hirose S, Matsuzaki S. Formation of a compensatory polyamine by Escherichia coli polyamine-requiring mutants during growth in the absence of polyamines. J Bacteriol 1986; 166:128-34. [PMID: 3514574 PMCID: PMC214567 DOI: 10.1128/jb.166.1.128-134.1986] [Citation(s) in RCA: 157] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The amounts of normal and compensatory polyamines of polyamine-requiring Escherichia coli mutants grown in the absence of polyamines were determined. Although aminopropylcadaverine, a compensatory polyamine, was synthesized by MA135 (speB) and DR112 (speA speB), no aminopropylcadaverine or only small amounts of aminopropylcadaverine were synthesized by EWH319 (speA speB speC speD) and MA261 (speB speC), respectively. The average mass doubling times of MA135, DR112, MA261, and EWH319 grown in the absence of polyamines were 113, 105, 260, and 318 min, respectively. The correlation of these values with the sum of spermidine plus aminopropylcadaverine suggested that aminopropylcadaverine is important for cell growth in the presence of limiting amounts of normal polyamines. This hypothesis is supported by the results of aminopropylcadaverine stimulation of the in vitro synthesis of polyphenylalanine and MS2 RNA replicase and of its stimulation of the growth of MA261. For the following reasons, it was concluded that aminopropylcadaverine was synthesized preferentially from cadaverine made by ornithine decarboxylase: aminopropylcadaverine was synthesized in relatively large amounts in cells (MA135 and DR112) which possess ornithine decarboxylase; ornithine decarboxylase catalyzed the decarboxylation of lysine in vitro, and the in vivo formation of aminopropylcadaverine was inhibited by an inhibitor of ornithine decarboxylase.
Collapse
|
35
|
Abstract
To define the structural gene for ornithine decarboxylase (ODC) in Neurospora crassa, we sought mutants with kinetically altered enzyme. Four mutants, PE4, PE7, PE69, and PE85, were isolated. They were able to grow slowly at 25 degrees C on minimal medium but required putrescine or spermidine supplementation for growth at 35 degrees C. The mutants did not complement with one another or with ODC-less spe-1 mutants isolated in earlier studies. In all of the mutants isolated to date, the mutations map at the spe-1 locus on linkage group V. Strains carrying mutations PE4, PE7, and PE85 displayed a small amount of residual ODC activity in extracts. None of them had a temperature-sensitive enzyme. The enzyme of the PE85 mutant had a 25-fold higher Km for ornithine (5mM) than did the enzyme of wild-type or the PE4 mutant (ca. 0.2 mM). The enzyme of this mutant was more stable to heat than was the wild-type enzyme. These characteristics were normal in the mutant carrying allele PE4. The mutant carrying PE85 was able to grow well at 25 degrees C and weakly at 35 degrees C with ornithine supplementation. This mutant and three ODC-less mutants isolated previously displayed a polypeptide corresponding to ODC in Western immunoblots with antibody raised to purified wild-type ODC. We conclude that spe-1 is the structural gene for the ODC.
Collapse
|
36
|
Eversole P, DiGangi JJ, Menees T, Davis RH. Structural gene for ornithine decarboxylase in Neurospora crassa. Mol Cell Biol 1985; 5:1301-6. [PMID: 3162095 PMCID: PMC366858 DOI: 10.1128/mcb.5.6.1301-1306.1985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To define the structural gene for ornithine decarboxylase (ODC) in Neurospora crassa, we sought mutants with kinetically altered enzyme. Four mutants, PE4, PE7, PE69, and PE85, were isolated. They were able to grow slowly at 25 degrees C on minimal medium but required putrescine or spermidine supplementation for growth at 35 degrees C. The mutants did not complement with one another or with ODC-less spe-1 mutants isolated in earlier studies. In all of the mutants isolated to date, the mutations map at the spe-1 locus on linkage group V. Strains carrying mutations PE4, PE7, and PE85 displayed a small amount of residual ODC activity in extracts. None of them had a temperature-sensitive enzyme. The enzyme of the PE85 mutant had a 25-fold higher Km for ornithine (5mM) than did the enzyme of wild-type or the PE4 mutant (ca. 0.2 mM). The enzyme of this mutant was more stable to heat than was the wild-type enzyme. These characteristics were normal in the mutant carrying allele PE4. The mutant carrying PE85 was able to grow well at 25 degrees C and weakly at 35 degrees C with ornithine supplementation. This mutant and three ODC-less mutants isolated previously displayed a polypeptide corresponding to ODC in Western immunoblots with antibody raised to purified wild-type ODC. We conclude that spe-1 is the structural gene for the ODC.
Collapse
|
37
|
Davis RH, Krasner GN, DiGangi JJ, Ristow JL. Distinct roles of putrescine and spermidine in the regulation of ornithine decarboxylase in Neurospora crassa. Proc Natl Acad Sci U S A 1985; 82:4105-9. [PMID: 3159019 PMCID: PMC397943 DOI: 10.1073/pnas.82.12.4105] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We wished to identify metabolic signals governing changes in ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) activity in Neurospora crassa. By manipulations of the ornithine supply and by the use of inhibitors of the polyamine pathway, we found that spermidine negatively governs formation of active ornithine decarboxylase and that putrescine promotes inactivation of the enzyme. Direct addition of putrescine or spermidine to cycloheximide-treated cells confirmed the role of putrescine in enzyme inactivation and showed that spermidine had no effect on this process. Increases in ornithine decarboxylase activity caused by blocking spermidine synthesis occurred prior to a significant decrease in the spermidine pool. This is consistent with our previous finding that only 10-20% of the spermidine pool is freely diffusible within N. crassa cells. We presume that only this small fraction of the pool is active in regulation.
Collapse
|
38
|
|
39
|
Steglich C, Grens A, Scheffler IE. Chinese hamster cells deficient in ornithine decarboxylase activity: reversion by gene amplification and by azacytidine treatment. SOMATIC CELL AND MOLECULAR GENETICS 1985; 11:11-23. [PMID: 2579446 DOI: 10.1007/bf01534730] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A group of Chinese hamster ovary (CHO) cell mutants deficient in ornithine decarboxylase (ODC) activity are described and compared to the prototype mutant reported previously (21). Although all mutants belong to the same complementation group, they can be divided into two classes: those with some residual enzyme activity and those with no activity. All mutants are putrescine auxotrophs, but they differ in their ability to utilize the enzyme's substrate, ornithine, a property which correlates with the amount of residual enzyme activity. The mutants also differ in their frequency of reversion to prototrophy. The leaky mutants revert at a high rate by overproducing a partially defective enzyme by a gene amplification mechanism similar to that leading to the ornithine analog-resistant mutants which have elevated enzyme levels. Spontaneous reversion in the null mutants is rare. However, one null mutant, which was induced with ethyl methane sulfonate and which makes ODC mRNA but no active enzyme, is nevertheless revertible with 5-azacytidine. We conclude that CHO cells are at least diploid at the ODC locus, but that only one allele is active. Further studies suggest the possibility that ethyl methane sulfonate is not just a classical mutagen but may also induce gene inactivations that are revertible by 5-azacytidine.
Collapse
|
40
|
Hölttä E, Pohjanpelto P. Polyamine starvation causes accumulation of cadaverine and its derivatives in a polyamine-dependent strain of Chinese-hamster ovary cells. Biochem J 1983; 210:945-8. [PMID: 6409084 PMCID: PMC1154311 DOI: 10.1042/bj2100945] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Starvation of the polyamine-dependent Chinese-hamster ovary cells for ornithine or ornithine-derived polyamines in serum-free culture resulted in the formation of cadaverine and its aminopropyl derivatives, N-(3-aminopropyl)cadaverine and NN'-bis(3-aminopropyl)cadaverine. The synthesis of these unusual amines was inhibited by treatment of the cells with DL-2-difluoromethylornithine, a specific inhibitor of ornithine decarboxylase (EC 4.1.1.17). In the absence of ornithine (the normal substrate), ornithine decarboxylase thus appeared to catalyse the decarboxylation of lysine to cadaverine. Cell proliferation was markedly inhibited by ornithine deprivation of the cells, and further depressed by exposure of the cultures to difluoromethylornithine.
Collapse
|
41
|
|
42
|
Davis RH, Paulus TJ. Uses of arginaseless cells in the study of polyamine metabolism (Neurospora crassa). Methods Enzymol 1983; 94:112-7. [PMID: 6225934 DOI: 10.1016/s0076-6879(83)94018-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|