1
|
Cubo MT, Alías-Villegas C, Balsanelli E, Mesa D, de Souza E, Espuny MR. Diversity of Sinorhizobium (Ensifer) meliloti Bacteriophages in the Rhizosphere of Medicago marina: Myoviruses, Filamentous and N4-Like Podovirus. Front Microbiol 2020; 11:22. [PMID: 32038600 PMCID: PMC6992544 DOI: 10.3389/fmicb.2020.00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/07/2020] [Indexed: 02/02/2023] Open
Abstract
Using different Sinorhizobium meliloti strains as hosts, we isolated eight new virulent phages from the rhizosphere of the coastal legume Medicago marina. Half of the isolated phages showed a very narrow host range while the other half exhibited a wider host range within the strains tested. Electron microscopy studies showed that phages M_ort18, M_sf1.2, and M_sf3.33 belonged to the Myoviridae family with feature long, contractile tails and icosaedral head. Phages I_sf3.21 and I_sf3.10T appeared to have filamentous shape and produced turbid plaques, which is a characteristic of phages from the Inoviridae family. Phage P_ort11 is a member of the Podoviridae, with an icosahedral head and a short tail and was selected for further characterization and genome sequencing. P_ort11 contained linear, double-stranded DNA with a length of 75239 bp and 103 putative open reading frames. BLASTP analysis revealed strong similarities to Escherichia phage N4 and other N4-like phages. This is the first report of filamentous and N4-like phages that infect S. meliloti.
Collapse
Affiliation(s)
- María Teresa Cubo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Cynthia Alías-Villegas
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Eduardo Balsanelli
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Dany Mesa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Emanuel de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - María Rosario Espuny
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Abstract
Rhizobia are bacteria in the α-proteobacterial genera Rhizobium, Sinorhizobium, Mesorhizobium, Azorhizobium and Bradyrhizobium that reduce (fix) atmospheric nitrogen in symbiotic association with a compatible host plant. In free-living and/or symbiotically associated rhizobia, amino acids may, in addition to their incorporation into proteins, serve as carbon, nitrogen or sulfur sources, signals of cellular nitrogen status and precursors of important metabolites. Depending on the rhizobia-host plant combination, microsymbiont amino acid metabolism (biosynthesis, transport and/or degradation) is often crucial to the establishment and maintenance of an effective nitrogen-fixing symbiosis and is intimately interconnected with the metabolism of the plant. This review summarizes past findings and current research directions in rhizobial amino acid metabolism and evaluates the genetic, biochemical and genome expression studies from which these are derived. Specific sections deal with the regulation of rhizobial amino acid metabolism, amino acid transport, and finally the symbiotic roles of individual amino acids in different plant-rhizobia combinations.
Collapse
|
3
|
Dylan T, Ielpi L, Stanfield S, Kashyap L, Douglas C, Yanofsky M, Nester E, Helinski DR, Ditta G. Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 2010; 83:4403-7. [PMID: 16593714 PMCID: PMC323741 DOI: 10.1073/pnas.83.12.4403] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Symbiotically essential genes have been identified in Rhizobium meliloti that are structurally and functionally related to chromosomal virulence (chv) genes of Agrobacterium tumefaciens. Homologous sequences also exist in the genomes of other fast-growing rhizobia including Rhizobium trifolii, Rhizobium leguminosarum, and Rhizobium phaseoli. In Agrobacterium, the chvA and chvB loci are known to be essential for oncogenic transformation of dicotyledonous plants and for attachment to plant cells [Douglas, C. J., Staneloni, R. J., Rubin, R. A. & Nester, E. W. (1985) J. Bacteriol. 64, 102-106], and the chvB locus has been implicated in the production of (1-->2)-beta-glucan, a unique exopolysaccharide component [Puvanesarajah, V., Schell, F. M., Stacey, G., Douglas, C. J. & Nester, E. W. (1985) J. Bacteriol. 164, 102-106]. Site-directed transposon insertion mutants in the chvA and chvB-equivalent regions of R. meliloti are symbiotically defective. Mutants in the chvB-equivalent region have been examined in detail and have been found to induce the formation of nodule-like structures on alfalfa that are devoid of bacteroids, lack infection threads, and cannot fix nitrogen. Such mutants fluoresce normally in the presence of Calcofluor, a histochemical stain for beta-linked polysaccharides, and produce normal amounts of total exopolysaccharide. The Rhizobium loci have been designated ndv because of their requirement for nodule development.
Collapse
Affiliation(s)
- T Dylan
- Department of Biology, University of California at San Diego, La Jolla, CA 92093
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Yamaguchi T, Tsutsumi F, Putnoky P, Fukuhara M, Nakamura T. pH-dependent regulation of the multi-subunit cation/proton antiporter Pha1 system from Sinorhizobium meliloti. MICROBIOLOGY-SGM 2009; 155:2750-2756. [PMID: 19460820 DOI: 10.1099/mic.0.028563-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pha1 gene cluster (pha1A'-G) of Sinorhizobium meliloti has previously been characterized as a necessary component for proper invasion into plant root tissue. It has been suggested to encode a multi-subunit K(+)/H(+) antiporter, since mutations in the pha1 region rendered S. meliloti cells sensitive to K(+) and alkali, and because there is high amino acid sequence similarity to previously characterized multi-subunit cation/H(+) antiporters (Mrp antiporters). However, the detailed transport properties of the Pha1 system are yet to be determined. Interestingly, most of the Mrp antiporters are highly selective for Na(+), unlike the Pha1 system. Here, we report the functional expression of the Pha1 system in Escherichia coli and the measurement of cation/H(+) antiport activity. We showed that the Pha1 system is indeed a K(+)/H(+) antiporter with a pH optimum under mildly alkaline conditions. Moreover, we found that the Pha1 system can transport Na(+); this was unexpected based on previous phenotypic analyses of pha1 mutants. Furthermore, we demonstrated that the cation selectivity of the Pha1 system was altered when the pH was lowered from the optimum. The downregulation of Na(+)/H(+) and K(+)/H(+) antiport activities upon acidic shift appeared to occur via different processes, which might indicate the presence of distinct mechanisms for the regulation of the K(+)/H(+) and Na(+)/H(+) antiport activities of the Pha1 system.
Collapse
Affiliation(s)
- Toshio Yamaguchi
- Department of Microbiology, Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Sciences, Niigata-shi 956-8603, Japan
| | - Fuminori Tsutsumi
- Department of Microbiology, Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Sciences, Niigata-shi 956-8603, Japan
| | - Péter Putnoky
- Department of Genetics and Molecular Biology, Faculty of Sciences, University of Pécs, H-7601 Pécs, Hungary
| | - Masahiro Fukuhara
- Department of Microbiology, Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Sciences, Niigata-shi 956-8603, Japan
| | - Tatsunosuke Nakamura
- Department of Microbiology, Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Sciences, Niigata-shi 956-8603, Japan
| |
Collapse
|
5
|
|
6
|
Guo X, Flores M, Morales L, García D, Bustos P, González V, Palacios R, Dávila G. DNA diversification in two Sinorhizobium species. J Bacteriol 2007; 189:6474-6. [PMID: 17601787 PMCID: PMC1951916 DOI: 10.1128/jb.00384-07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The comparative analysis of genomic characteristics and single-nucleotide polymorphism patterns from large fragments borne on different replicons of Sinorhizobium spp. genomes clearly demonstrate that DNA recombination among closely related bacteria is a major event in the diversification of this genome, especially in pSymA, resulting in mosaic structure.
Collapse
Affiliation(s)
- Xianwu Guo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Ap. Postal 565-A, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Sinorhizobium meliloti is a free-living soil bacterium which is capable of establishing a symbiotic relationship with the alfalfa plant (Medicago sativa). This symbiosis involves a network of bacterium-host signaling, as well as the potential for bacterium-bacterium communication, such as quorum sensing. In this study, we characterized the production of N-acyl homoserine lactones (AHLs) by two commonly used S. meliloti strains, AK631 and Rm1021. We found that AK631 produces at least nine different AHLs, while Rm1021 produces only a subset of these molecules. To address the difference in AHL patterns between the strains, we developed a novel screening method to identify the genes affecting AHL synthesis. With this screening method, chromosomal groEL (groELc) was shown to be required for synthesis of the AHLs that are unique to AK631 but not for synthesis of the AHLs that are made by both AK631 and Rm1021. We then used the screening procedure to identify a mutation in a gene homologous to traM of Agrobacterium tumefaciens, which was able to suppress the phenotype of the groELc mutation. A traR homolog was identified immediately upstream of traM, and we propose that its gene product requires a functional groELc for activity and is also responsible for inducing the synthesis of the AHLs that are unique to AK631. We show that the traR/traM locus is part of a quorum-sensing system unique to AK631 and propose that this locus is involved in regulating conjugal plasmid transfer. We also present evidence for the existence of a second quorum-sensing system, sinR/sinI, which is present in both AK631 and Rm1021.
Collapse
Affiliation(s)
- Melanie M Marketon
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083-0688, USA
| | | |
Collapse
|
8
|
Barloy-Hubler F, Capela D, Barnett MJ, Kalman S, Federspiel NA, Long SR, Galibert F. High-resolution physical map of the Sinorhizobium meliloti 1021 pSyma megaplasmid. J Bacteriol 2000; 182:1185-9. [PMID: 10648551 PMCID: PMC94401 DOI: 10.1128/jb.182.4.1185-1189.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To facilitate sequencing of the Sinorhizobium meliloti 1021 pSyma megaplasmid, a high-resolution map was constructed by ordering 113 overlapping bacterial artificial chromosome clones with 192 markers. The 157 anonymous sequence tagged site markers (81,072 bases) reveal hypothetical functions encoded by the replicon.
Collapse
Affiliation(s)
- F Barloy-Hubler
- Laboratoire de Recombinaisons Génétiques UPR41-CNRS, Faculté de Médecine, F-35043 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Capela D, Barloy-Hubler F, Gatius MT, Gouzy J, Galibert F. A high-density physical map of Sinorhizobium meliloti 1021 chromosome derived from bacterial artificial chromosome library. Proc Natl Acad Sci U S A 1999; 96:9357-62. [PMID: 10430947 PMCID: PMC17787 DOI: 10.1073/pnas.96.16.9357] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/1999] [Accepted: 05/27/1999] [Indexed: 11/18/2022] Open
Abstract
As part of the European Sinorhizobium meliloti (strain 1021) chromosome sequencing project, four genomic bacterial artificial chromosome (BAC) libraries have been constructed, one of which was mainly used for chromosome mapping. This library consists of 1,824 clones with an average insert size of 80 kilobases and represents approximately 20-fold total genome coverage [6.8 megabases (Mbs)]. PCR screening of 384 BAC clones with 447 chromosomal markers (PCR primer pairs), consisting of 73 markers representing 118 genes (40 individual genes and 78 genes clustered in 23 operons), two markers from the rrn operon (three loci), four markers from insertion sequences (approximately 16 loci) and 368 sequence-tagged sites allowed the identification of 252 chromosomal BAC clones and the construction of a high-density physical map of the whole 3.7-Mb chromosome of S. meliloti. An average of 5.5 overlapping and colinear BAC clones per marker, correlated with a low rate of deleted or rearranged clones (0.8%) indicate a solid BAC contigation and a correct mapping. Systematic BLASTX analysis of sequence-tagged site marker sequences allowed prediction of a biological function for a number of putative ORFs. Results are available at. This map, whose resolution averages one marker every 9 kilobases, should provide a valuable tool for further sequencing, functional analysis, and positional cloning.
Collapse
Affiliation(s)
- D Capela
- Laboratoire Recombinaisons Génétiques, Centre National de la Recherche Scientifique-UPR41, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
10
|
Cha C, Gao P, Chen YC, Shaw PD, Farrand SK. Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:1119-29. [PMID: 9805399 DOI: 10.1094/mpmi.1998.11.11.1119] [Citation(s) in RCA: 392] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Many gram-negative bacteria regulate expression of specialized gene sets in response to population density. This regulatory mechanism, called autoinduction or quorum-sensing, is based on the production by the bacteria of a small, diffusible signal molecule called the autoinducer. In the most well-studied systems the autoinducers are N-acylated derivatives of L-homoserine lactone (acyl-HSL). Signal specificity is conferred by the length, and the nature of the substitution at C-3, of the acyl side-chain. We evaluated four acyl-HSL bioreporters, based on tra of Agrobacterium tumefaciens, lux of Vibrio fischeri, las of Pseudomonas aeruginosa, and pigment production by Chromobacterium violaceum, for their ability to detect sets of 3-oxo acyl-HSLs, 3-hydroxy acyl-HSLs, and alkanoyl-HSLs with chain lengths ranging from C4 to C12. The traG::lacZ fusion reporter from the A. tumefaciens Ti plasmid was the single most sensitive and versatile detector of the four. Using this reporter, we screened 106 isolates representing seven genera of bacteria that associate with plants. Most of the Agrobacterium, Rhizobium, and Pantoea isolates and about half of the Erwinia and Pseudomonas isolates gave positive reactions. Only a few isolates of Xanthomonas produced a detectable signal. We characterized the acyl-HSLs produced by a subset of the isolates by thin-layer chromatography. Among the pseudomonads and erwinias, most produced a single dominant activity chromatographing with the properties of N-(3-oxo-hexanoyl)-L-HSL. However, a few of the erwinias, and the P. fluorescens and Ralstonia solanacearum isolates, produced quite different signals, including 3-hydroxy forms, as well as active compounds that chromatographed with properties unlike any of our standards. The few positive xanthomonas, and almost all of the agrobacteria, produced small amounts of a compound with the chromatographic properties of N-(3-oxo-octanoyl)-L-HSL. Members of the genus Rhizobium showed the greatest diversity, with some producing as few as one and others producing as many as seven detectable signals. Several isolates produced extremely nonpolar compounds indicative of very long acyl side-chains. Production of these compounds suggests that quorum-sensing is common as a gene regulatory mechanism among gram-negative plant-associated bacteria.
Collapse
Affiliation(s)
- C Cha
- Department of Crop Sciences, University of Illinois at Urbana-Champaign 61801, USA
| | | | | | | | | |
Collapse
|
11
|
Putnoky P, Kereszt A, Nakamura T, Endre G, Grosskopf E, Kiss P, Kondorosi A. The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K+ efflux system. Mol Microbiol 1998; 28:1091-101. [PMID: 9680201 DOI: 10.1046/j.1365-2958.1998.00868.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fix-2 mutant of Rhizobium meliloti affected in the invasion of alfalfa root nodules (Inf-/Fix-) is K+ sensitive and unable to adapt to alkaline pH in the presence of K+. Using directed Tn5 mutagenesis, we delimited a 6kb genomic region in which mutations resulted in both Inf-/Fix- and K+-sensitive phenotypes. In this DNA region, seven open reading frames (ORFs) were identified and the corresponding genes were designated phaA, B, C, D, E, F and G. The putative PhaABC proteins exhibit homology to the subunits of a Na+/H+ antiporter from an alkalophilic Bacillus strain. Moreover, PhaA and PhaD also show similarity to the ND5 and ND4 subunits of the proton-pumping NADH:ubiquinone oxidoreductase respectively. Computer analysis suggests that all seven proteins are highly hydrophobic with several possible transmembrane domains. Some of these domains were confirmed by generating active alkaline phosphatase fusions. Ion transport studies on phaA mutant cells revealed a defect in K+ efflux at alkaline pH after the addition of a membrane-permeable amine. These results suggest that the pha genes of R. meliloti encode for a novel type of K+ efflux system that is involved in pH adaptation and is required for the adaptation to the altered environment inside the plant.
Collapse
Affiliation(s)
- P Putnoky
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged.
| | | | | | | | | | | | | |
Collapse
|
12
|
Kiss E, Kondorosi �. Complete sequence of aRhizobium plasmid carrying genes necessary for symbiotic association with the plant host. Bioessays 1997. [DOI: 10.1002/bies.950191003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Lucas MM, Peart JL, Brewin NJ, Kannenberg EL. Isolation of monoclonal antibodies reacting with the core component of lipopolysaccharide from Rhizobium leguminosarum strain 3841 and mutant derivatives. J Bacteriol 1996; 178:2727-33. [PMID: 8631658 PMCID: PMC178005 DOI: 10.1128/jb.178.10.2727-2733.1996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Monoclonal antibodies reacting with the core oligosaccharide or lipid A component of Rhizobium lipopolysaccharide (LPS) could be useful for the elucidation of the structure and biosynthesis of this group of macromolecules. Mutant derivatives of Rhizobium leguminosarum 3841 with LPS structures lacking the major O-antigen moiety were used as immunogens, and eight antibodies were selected for further study. All the antibodies reacted with the fast-migrating species known as LPS-2 following gel electrophoresis of Rhizobium cell extracts. For four of these antibodies, reactivity with affinity-purified LPS was lost after mild acid hydrolysis, indicating that they probably recognized the core oligosaccharide component. The four other antibodies still reacted with acid-treated LPS and may recognize the lipid A moiety, which is stable to mild acid hydrolysis. The pattern of antibody staining after gel electrophoresis revealed differences in LPS-2 epitope structure between each of the mutants and the wild type. Furthermore, for each of the mutants the antibodies crossreacted with a minor band that migrated more slowly than LPS-2; we have termed this more slowly migrating form LPS-3. The majority of the antibodies also reacted with LPS from strain CE109, a derivative of Rhizobium etli CE3, confirming that the LPS core antigens can be relatively conserved between strains of different Rhizobium species. One of the antibodies isolated in this study (JIM 32) was unusual because it appeared to react with all forms of LPS from strain 3841 (namely, LPS-1, LPS-2, and LPS-3). Furthermore, JIM 32 reacted positively with the LPS from many strains of Rhizobium tested (excluding the Rhizobium meliloti subgroup). JIM 32 did not react with representative strains from Bradyrhizobium, Azorhizobium or other related bacterial species.
Collapse
Affiliation(s)
- M M Lucas
- John Innes Centre, Norwich NR4 7UH, Great Britain
| | | | | | | |
Collapse
|
14
|
Abstract
Soil bacteria of the genera Azorhizobium, Bradyrhizobium, and Rhizobium are collectively termed rhizobia. They share the ability to penetrate legume roots and elicit morphological responses that lead to the appearance of nodules. Bacteria within these symbiotic structures fix atmosphere nitrogen and thus are of immense ecological and agricultural significance. Although modern genetic analysis of rhizobia began less than 20 years ago, dozens of nodulation genes have now been identified, some in multiple species of rhizobia. These genetic advances have led to the discovery of a host surveillance system encoded by nodD and to the identification of Nod factor signals. These derivatives of oligochitin are synthesized by the protein products of nodABC, nodFE, NodPQ, and other nodulation genes; they provoke symbiotic responses on the part of the host and have generated immense interest in recent years. The symbiotic functions of other nodulation genes are nonetheless uncertain, and there remain significant gaps in our knowledge of several large groups of rhizobia with interesting biological properties. This review focuses on the nodulation genes of rhizobia, with particular emphasis on the concept of biological specificity of symbiosis with legume host plants.
Collapse
Affiliation(s)
- S G Pueppke
- Department of Plant Pathology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
15
|
Osterås M, Stanley J, Finan TM. Identification of Rhizobium-specific intergenic mosaic elements within an essential two-component regulatory system of Rhizobium species. J Bacteriol 1995; 177:5485-94. [PMID: 7559334 PMCID: PMC177356 DOI: 10.1128/jb.177.19.5485-5494.1995] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Analysis of the DNA regions upstream of the phosphoenolpyruvate carboxykinase gene (pckA) in Rhizobium meliloti and Rhizobium sp. strain NGR234 identified an open reading frame which was highly homologous to the Agrobacterium tumefaciens chromosomal virulence gene product ChvI. A second gene product, 500 bp downstream of the chvI-like gene in R. meliloti, was homologous to the A. tumefaciens ChvG protein. The homology between the R. meliloti and A. tumefaciens genes was confirmed, because the R. meliloti chvI and chvG genes complemented A. tumefaciens chvI and chvG mutants for growth on complex media. We were unable to construct chvI or chvG insertion mutants of R. meliloti, whereas mutants carrying insertions outside of these genes were readily obtained. A 108-bp repeat element characterized by two large palindromes was identified in the chvI and chvG intergenic regions of both Rhizobium species. This element was duplicated in Rhizobium sp. strain NGR234. Another structurally similar element with a size of 109 bp was present in R. meliloti but not in Rhizobium sp. strain NGR234. These elements were named rhizobium-specific intergenic mosaic elements (RIMEs), because their distribution seems to be limited to members of the family Rhizobiaceae. A homology search in GenBank detected six more copies of the first element (RIME1), all in Rhizobium species, and three extra copies of the second element (RIME2), only in R. meliloti. Southern blot analysis with a probe specific to RIME1 showed the presence of several copies of the element in the genome of R. meliloti, Rhizobium sp. strain NGR234, Rhizobium leguminosarum, and Agrobacterium rhizogenes, but none was present in A. tumefaciens and Bradyrhizobium japonicum.
Collapse
Affiliation(s)
- M Osterås
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
16
|
Kereszt A, Slaska-Kiss K, Putnoky P, Banfalvi Z, Kondorosi A. The cycHJKL genes of Rhizobium meliloti involved in cytochrome c biogenesis are required for "respiratory" nitrate reduction ex planta and for nitrogen fixation during symbiosis. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:39-47. [PMID: 7715602 DOI: 10.1007/bf00425819] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report the genetic and biochemical analysis of Rhizobium meliloti mutants defective in symbiotic nitrogen fixation (Fix-) and "respiratory" nitrate reduction (Rnr-). The mutations were mapped close to the ade-1 and cys-46 chromosomal markers and the mutated locus proved to be identical to the previously described fix-14 locus. By directed Tn5 mutagenesis, a 4.5 kb segment of the chromosome was delimited in which all mutations resulted in Rnr- and Fix- phenotypes. Nucleotide sequence analysis of this region revealed the presence of four open reading frames coding for integral membrane and membrane-anchored proteins. Biochemical analysis of the mutants showed that the four proteins were necessary for the biogenesis of all cellular c-type cytochromes. In agreement with the nomenclature proposed for rhizobial genes involved in the formation of c-type cytochromes, the four genes were designated cycH, cycJ, cycK, and cycL, respectively. The predicted protein product of cycH exhibited a high degree of similarity to the Bradyrhizobium japonicum counterpart, while CycK and CycL shared more than 50% amino acid sequence identity with the Rhodobacter capsulatus Cc11 and Cc12 proteins, respectively. cycJ encodes a novel membrane anchored protein of 150 amino acids. We suggest that this gene cluster codes for (parts of) a multisubunit cytochrome c haem lyase. Moreover, our results indicate that in R. meliloti c-type cytochromes are required for respiratory nitrate reduction ex planta, as well as for symbiotic nitrogen fixation in root nodules.
Collapse
Affiliation(s)
- A Kereszt
- Institute of Genetics, Hungarian Academy of Sciences, Szeged
| | | | | | | | | |
Collapse
|
17
|
L. Kannenberg E, Perzl M, Härtner T. The occurrence of hopanoid lipids inBradyrhizobiumbacteria. FEMS Microbiol Lett 1995. [DOI: 10.1111/j.1574-6968.1995.tb07482.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Hornez JP, Timinouni M, Defives C, Derieux JC. Unaffected nodulation and nitrogen fixation in carbohydrate pleiotropic mutants ofRhizobium meliloti. Curr Microbiol 1994. [DOI: 10.1007/bf01575965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Brom S, García de los Santos A, Stepkowsky T, Flores M, Dávila G, Romero D, Palacios R. Different plasmids of Rhizobium leguminosarum bv. phaseoli are required for optimal symbiotic performance. J Bacteriol 1992; 174:5183-9. [PMID: 1644746 PMCID: PMC206350 DOI: 10.1128/jb.174.16.5183-5189.1992] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rhizobium leguminosarum bv. phaseoli CFN42 contains six plasmids (pa to pf), and pd has been shown to be the symbiotic plasmid. To determine the participation of the other plasmids in cellular functions, we used a positive selection scheme to isolate derivatives cured of each plasmid. These were obtained for all except one (pe), of which only deleted derivatives were recovered. In regard to symbiosis, we found that in addition to pd, pb is also indispensable for nodulation, partly owing to the presence of genes involved in lipopolysaccharide synthesis. The positive contribution of pb, pc, pe, and pf to the symbiotic capacity of the strain was revealed in competition experiments. The strains that were cured (or deleted for pe) were significantly less competitive than the wild type. Analysis of the growth capacity of the cured strains showed the participation of the plasmids in free-living conditions: the pf- strain was unable to grow on minimal medium, while strains cured of any other plasmid had significantly reduced growth capacity in this medium. Even on rich medium, strains lacking pb or pc or deleted for pe had a diminished growth rate compared with the wild type. Complementation of the cured strains with the corresponding wild-type plasmid restored their original phenotypes, thus confirming that the effects seen were due only to loss of plasmids. The results indicate global participation of the Rhizobium genome in symbiotic and free-living functions.
Collapse
Affiliation(s)
- S Brom
- Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| | | | | | | | | | | | | |
Collapse
|
20
|
Charles TC, Newcomb W, Finan TM. ndvF, a novel locus located on megaplasmid pRmeSU47b (pEXO) of Rhizobium meliloti, is required for normal nodule development. J Bacteriol 1991; 173:3981-92. [PMID: 1648074 PMCID: PMC208044 DOI: 10.1128/jb.173.13.3981-3992.1991] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rhizobium meliloti strains carrying either of two overlapping deletions (delta 5408 and delta F114) of the megaplasmid pRmeSU47b form nodules on alfalfa which fail to fix N2 (Fix-). Strains carrying these deletions also fail to fluoresce on media containing calcofluor, indicating a defect in synthesis of the acidic exopolysaccharide (Exo-) of R. meliloti. We have isolated cosmid clones (pTH21 and pTH22) which complement the Fix- but not the Exo- phenotype of the strains carrying the delta 5408 and delta F114 deletions. In addition, cosmid clones which complement the Exo- phenotype fail to complement the Fix- phenotype of these deletions; thus, the Exo- phenotype is not related to the Fix- phenotype. A 5-kb region within a 7.3-kb BamHI restriction fragment was found to be required for complementation of the Fix- phenotype of the delta 5408 and delta F114 deletion strains. Tn5 insertions in the 5-kb region generated a Fix- phenotype when recombined into the wild-type genome. We have designated this locus ndvF, for nodule development. TnphoA mutagenesis of this region generated active alkaline-phosphatase gene fusions, indicating that ndvF encodes extracytoplasmic protein(s). Induction of nodules by the ndvF mutants was delayed by 2 to 3 days compared with induction by the wild-type strain. Light microscopy of nodules elicited by strains carrying the large 150-kb delta F114 deletion, a 12-kb deletion removing ndvF, or an individual ndvF::Tn5 insertion mutation demonstrated that many nodules contained few infected cortical cells, indicating that nodule development was blocked early in the infection process, before the release of bacteria from the infection threads.
Collapse
Affiliation(s)
- T C Charles
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
21
|
Putnoky P, Petrovics G, Kereszt A, Grosskopf E, Ha DT, Bánfalvi Z, Kondorosi A. Rhizobium meliloti lipopolysaccharide and exopolysaccharide can have the same function in the plant-bacterium interaction. J Bacteriol 1990; 172:5450-8. [PMID: 2168384 PMCID: PMC213212 DOI: 10.1128/jb.172.9.5450-5458.1990] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A fix region of Rhizobium meliloti 41 involved both in symbiotic nodule development and in the adsorption of bacteriophage 16-3 was delimited by directed Tn5 mutagenesis. Mutations in this DNA region were assigned to four complementation units and were mapped close to the pyr-2 and pyr-29 chromosomal markers. Phage inactivation studies with bacterial cell envelope preparations and crude lipopolysaccharides (LPS) as well as preliminary characterization of LPS in the mutants indicated that these genes are involved in the synthesis of a strain-specific LPS. Mutations in this DNA region resulted in a Fix- phenotype in AK631, an exopolysaccharide (EPS)-deficient derivative of R. meliloti 41; however, they did not influence the symbiotic efficiency of the parent strain. An exo region able to restore the EPS production of AK631 was isolated and shown to be homologous to the exoB region of R. meliloti SU47. By generating double mutants, we demonstrated that exo and lps genes determine similar functions in the course of nodule development, suggesting that EPS and LPS may provide equivalent information for the host plant.
Collapse
Affiliation(s)
- P Putnoky
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged
| | | | | | | | | | | | | |
Collapse
|
22
|
Pretorius-Güth IM, Pühler A, Simon R. Conjugal Transfer of Megaplasmid 2 between
Rhizobium meliloti
Strains in Alfalfa Nodules. Appl Environ Microbiol 1990; 56:2354-2359. [PMID: 16348248 PMCID: PMC184733 DOI: 10.1128/aem.56.8.2354-2359.1990] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A DNA fragment containing the RP4
mob
function, as well as the gentamicin and spectinomycin resistance genes, was inserted by gene replacement onto the megaplasmid 2 (pM2) of
Rhizobium meliloti
0540 (Inf
−
EPS
−
), resulting in PG101 (Inf
−
EPS
−
). The self-transfer of pM2 and the mobilization of pM2 by plasmid RP4-4 were investigated during conjugation between PG101 and
R. meliloti
2526 (Nod
−
). In filter conjugations, pM2 was readily mobilized by RP4-4. In addition to this, the self-transfer of one megaplasmid (pM) was detected at a frequency of 3 × 10
−7
. Bacteria isolated from the nodules of alfalfa and coinoculated with strains PG101 and 2526 showed that pM2 was mobilized at a frequency of approximately 7 × 10
−5
. Bacterial cell numbers were too low in the nodules for detection of the self-transfer of pM2 to occur. No pM2 transfer was detected in the inoculum. A comparison of the transfer frequencies for the various conjugation conditions revealed that pM2 transfer occurred as frequently in the nodules as in filter conjugations. These results indicate that the nodule creates conditions for gene transfer that are comparable to optimal laboratory conditions.
Collapse
Affiliation(s)
- Inge-M Pretorius-Güth
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Postfach 8640, D-4800 Bielefeld 1, Federal Republic of Germany
| | | | | |
Collapse
|
23
|
Williams MN, Hollingsworth RI, Klein S, Signer ER. The symbiotic defect of Rhizobium meliloti exopolysaccharide mutants is suppressed by lpsZ+, a gene involved in lipopolysaccharide biosynthesis. J Bacteriol 1990; 172:2622-32. [PMID: 2158975 PMCID: PMC208906 DOI: 10.1128/jb.172.5.2622-2632.1990] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
exo mutants of Rhizobium meliloti SU47, which fail to secrete acidic extracellular polysaccharide (EPS), induce Fix- nodules on alfalfa. However, mutants of R. meliloti Rm41 carrying the same exo lesions induce normal Fix+ nodules. We show that such induction is due to a gene from strain Rm41, which we call lpsZ+, that is missing in strain SU47. lpsZ+ does not restore EPS production but instead alters the composition and structure of lipopolysaccharide. In both SU47 and Rm41, either lpsZ+ or exo+ is sufficient for normal nodulation. This suggests that in R. meliloti EPS and lipopolysaccharide can perform the same function in nodule development.
Collapse
Affiliation(s)
- M N Williams
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
24
|
Hynes MF, McGregor NF. Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum. Mol Microbiol 1990; 4:567-74. [PMID: 2161988 DOI: 10.1111/j.1365-2958.1990.tb00625.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A system which allows direct selection for curing of plasmids in Gram-negative bacteria was used to generate derivatives of Rhizobium leguminosarum VF39 cured of each of six plasmids present in this strain. Phenotypes could be correlated with the absence of five of the six plasmids. The smallest plasmid, pRleVF39a, carries genes for the production of a melanin-like pigment as has been previously reported. Plasmid pRleVF39d carries nodulation and nitrogen fixation genes. Curing of the plasmids pRleVF39c and pRleVF39e gave rise to strains which formed Fix- nodules on peas, lentils, and faba beans. The nodules formed by the strains cured of pRleVF39c contained few, if any, bacteria. Analysis of washed cells by SDS-PAGE showed that this strain is defective in lipopolysaccharide (LPS) production; the defect could be complemented by introducing plasmids from several other R. leguminosarum strains, and by the R. leguminosarum biovar phaseoli LPS gene clones pCos126 and pDel27. The nodules formed by the strain cured of pRleVF39e had a reduced symbiotic zone, an enlarged senescence zone, and an abundance of starch granules. This strain grew at a much slower rate than the wild type, was unable to grow on minimal medium, and no longer produced melanin. These defects could be complemented by at least one other Rhizobium plasmid, pRle336e, a plasmid of strain 336 which is distinct from the nodulation plasmid (pRle336c) and the plasmid (pRle336d) which could complement the LPS defect associated with the loss of pRleVF39c. This demonstrates that genes necessary for symbiosis can be carried on at least three different plasmids in R. leguminosarum.
Collapse
Affiliation(s)
- M F Hynes
- Soil Science Section, Agriculture Canada Research Station, Lethbridge, Alberta
| | | |
Collapse
|
25
|
Østerås M, Stanley J, Broughton WJ, Dowling DN. A chromosomal genetic map of Rhizobium sp. NGR234 generated with Tn5-Mob. ACTA ACUST UNITED AC 1989. [DOI: 10.1007/bf00260871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Long S, McCune S, Walker GC. Symbiotic loci of Rhizobium meliloti identified by random TnphoA mutagenesis. J Bacteriol 1988; 170:4257-65. [PMID: 2842308 PMCID: PMC211435 DOI: 10.1128/jb.170.9.4257-4265.1988] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have developed a system for using TnphoA (TnphoA is Tn5 IS50L::phoA), which generates fusions to alkaline phosphatase (C. Manoil and J. Beckwith, Proc. Natl. Acad. Sci. USA 82:8129-8133, 1985), in Rhizobium meliloti. Active fusions expressing alkaline phosphatase can arise only when this transposon inserts in genes encoding secreted or membrane-spanning proteins. By confining our screening to 1,250 TnphoA-generated mutants of R. meliloti that expressed alkaline phosphatase, we efficiently identified 25 symbiotically defective mutants, all of which formed ineffective (Fix-) nodules on alfalfa. Thirteen of the mutants were unable to synthesize an acidic exopolysaccharide (exo::TnphoA) that is required for nodule invasion. Twelve of the mutations created blocked at later stages of nodule development (fix::TnphoA) and were assigned to nine symbiotic loci. One of these appeared to be a previously undescribed locus located on the pRmeSU47a megaplasmid and to encode a membrane protein. Two others were located on the pRmeSU47b megaplasmid: one was a new locus which was induced by luteolin and encoded a membrane protein, and the other was dctA, the structural gene for dicarboxylic acid transport. The remaining six loci were located on the R. meliloti chromosome. One of these was inducible by luteolin and encoded a membrane protein which determined lipopolysaccharide structure. Three additional chromosomal loci also appeared to encode membrane proteins necessary for symbiosis. The remaining two chromosomal loci encoded periplasmic proteins required for symbiosis.
Collapse
Affiliation(s)
- S Long
- Biology Department, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
27
|
Putnoky P, Grosskopf E, Ha DT, Kiss GB, Kondorosi A. Rhizobium fix genes mediate at least two communication steps in symbiotic nodule development. J Cell Biol 1988; 106:597-607. [PMID: 2450096 PMCID: PMC2115072 DOI: 10.1083/jcb.106.3.597] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To identify bacterial genes involved in symbiotic nodule development, ineffective nodules of alfalfa (Medicago sativa) induced by 64 different Fix-mutants of Rhizobium meliloti were characterized by assaying for symbiotic gene expression and by morphological studies. The expression of leghemoglobin and nodulin-25 genes from alfalfa and of the nifHD genes from R. meliloti were monitored by hybridizing the appropriate DNA probes to RNA samples prepared from nodules. The mutants were accordingly divided into three groups. In group I none of the genes were expressed, in group II only the plant genes were expressed and in group III all three genes were transcribed. Light and electron microscopical analysis of nodules revealed that nodule development was halted at different stages in nodules induced by different group I mutants. In most cases nodules were empty lacking infection threads and bacteroids or nodules contained infection threads and a few released bacteroids. In nodules induced by a third mutant class bacteria were released into the host cells, however the formation of the peribacteroid membrane was not normal. On this basis we suggest that peribacteroid membrane formation precedes leghemoglobin and nodulin-25 induction, moreover, after induction of nodulation by the nod genes at least two communication steps between the bacteria and the host plants are necessary for the development of the mature nodule. By complementing each mutant of group I with a genomic R. meliloti library made in pLAFRl, four new fix loci were identified, indicating that several bacterial genes are involved in late nodule development.
Collapse
Affiliation(s)
- P Putnoky
- Institute of Genetics, Hungarian Academy of Sciences, Szeged
| | | | | | | | | |
Collapse
|
28
|
Watson RJ, Chan YK, Wheatcroft R, Yang AF, Han SH. Rhizobium meliloti genes required for C4-dicarboxylate transport and symbiotic nitrogen fixation are located on a megaplasmid. J Bacteriol 1988; 170:927-34. [PMID: 2828335 PMCID: PMC210744 DOI: 10.1128/jb.170.2.927-934.1988] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A mutant of Rhizobium meliloti unable to transport C4 dicarboxylates (dct) was isolated after Tn5 mutagenesis. The mutant, 4F6, could not grow on aspartate or the tricarboxylic acid cycle intermediates succinate, fumarate, or malate. It produced symbiotically ineffective nodules on Medicago sativa in which bacteroids appeared normal, but the symbiotic zone was reduced and the plant cells contained numerous starch granules at their peripheries. Cosmids containing the dct region were obtained by selecting those which restored the ability of 4F6 to grow on succinate. The Tn5 insertion in 4F6 was found to be within a 5.9-kilobase (kb) EcoRI fragment common to the complementing cosmids. Site-specific Tn5-mutagenesis revealed dct genes in a segment of DNA about 4 kb in size extending from within the 5.9-kb EcoRI fragment into an adjacent 2.9-kb EcoRI fragment. The 4F6 mutation was found to be in a complementation group in which mutations yielded a Fix- phenotype, whereas other dct mutations in the region resulted in mutants which produced effective nodules in most, although not all, plant tests (partially Fix-). The dct region was found to be located on a megaplasmid known to carry genes required for exopolysaccharide production.
Collapse
Affiliation(s)
- R J Watson
- Plant Research Centre, Agriculture Canada, Ottawa, Ontario
| | | | | | | | | |
Collapse
|
29
|
McLaughlin W, Singh I, Ahmad M. Characterization of Tn5-induced symbiotically defective mutants of cowpea rhizobia. FEMS Microbiol Lett 1987. [DOI: 10.1111/j.1574-6968.1987.tb02222.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
30
|
Ebeling S, Hahn M, Fischer HM, Hennecke H. Identification of nifE-, nifN- and nifS-like genes in Bradyrhizobium japonicum. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00331622] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Dusha I, Kovalenko S, Banfalvi Z, Kondorosi A. Rhizobium meliloti insertion element ISRm2 and its use for identification of the fixX gene. J Bacteriol 1987; 169:1403-9. [PMID: 3031010 PMCID: PMC211960 DOI: 10.1128/jb.169.4.1403-1409.1987] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two of the three plasmids of the wild-type Rhizobium meliloti 41 (pRme41a and pRme41c) carry a copy of ISRm2, a 2.7-kilobase-long transposable element. ISRm2 is terminated by 22-base-pair (bp) inverted repeat sequences, exhibiting some homology to the inverted repeats of elements generating 9-bp target sequence duplication. Transposition of ISRm2 results in a duplication of 8 bp in length, rather rare among transposable elements. DNA sequences homologous to an internal fragment of ISRm2 were found in several Rhizobium species. Transposition of ISRm2 into fixation and nodulation genes located on the symbiotic plasmid pRme41b was detected at a high frequency. Exact locations of two copies of ISRm2 which transposed into the nod-nif region on the megaplasmid were determined. In one case, integration into the protein-coding region of the hsnD gene that determines a host specificity function of nodulation occurred. In the other mutant, ISRm2 was localized upstream of nifA, where a short open reading frame coding for a new fix gene (fixX) was identified. The product of fixX is a ferredoxin carrying a characteristic cluster of cysteine residues. On the basis of the observation that the arrangement of the ISRm2 copies is identical in the free-living wild-type cells and in nitrogen-fixing nodules, we concluded that the involvement of ISRm2 transposition in the development of nitrogen-fixing symbiosis is unlikely.
Collapse
|
32
|
So JS, Hodgson AL, Haugland R, Leavitt M, Banfalvi Z, Nieuwkoop AJ, Stacey G. Transposon-induced symbiotic mutants of Bradyrhizobium japonicum: isolation of two gene regions essential for nodulation. MOLECULAR & GENERAL GENETICS : MGG 1987; 207:15-23. [PMID: 3037278 DOI: 10.1007/bf00331485] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two strains of the soybean endosymbiont Bradyrhizobium japonicum, USDA 110 and 61 A101 C, were mutagenized with transposon Tn5. After plant infection tests of a total of 6,926 kanamycin and streptomycin resistant transconjugants, 25 mutants were identified that are defective in nodule formation (Nod-) or nitrogen fixation (Fix-). Seven Nod- mutants were isolated from strain USDA110 and from strain 61 A101 C, 4 Nod- mutants and 14 Fix- mutants were identified. Subsequent auxotrophic tests on these symbiotically defective mutants identified 4 His- Nod- mutants of USDA110. Genomic Southern analysis of the 25 mutants revealed that each of them carried a single copy of Tn5 integrated in the genome. Three 61 A101 C Fix- mutants were found to have vector DNA co-integrated along with Tn5 in the genome. Two independent DNA regions flanking Tn5 were cloned from the three non-auxotrophic Nod- mutants and one His-Nod- mutant of USDA110. Homogenotization of the cloned fragments into wild-type strain USDA110 and subsequent nodulation assay of the resulting homogenotes confirmed that the Tn5 insertion was responsible for the Nod- phenotype. Partial EcoR1 restriction enzyme maps around the Tn5 insertion sites were generated. Hybridization of these cloned regions to the previously cloned nod regions of R. meliloti and nif and nod regions of B. japonicum USDA110 showed no homology, suggesting that these regions represent new symbiotic clusters of B. japonicum.
Collapse
|
33
|
|
34
|
The two megaplasmids of Rhizobium meliloti are involved in the effective nodulation of alfalfa. ACTA ACUST UNITED AC 1986. [DOI: 10.1007/bf00333262] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Toro N, Olivares J. Characterization of a large plasmid of Rhizobium meliloti involved in enhancing nodulation. ACTA ACUST UNITED AC 1986. [DOI: 10.1007/bf00331660] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Pees E, Wijffelman C, Mulders I, Brussel AA, Lugtenberg BJ. Transposition of Tn1831to sym plasmids ofRhizobium leguminosarumandRhizobium trifolii. FEMS Microbiol Lett 1986. [DOI: 10.1111/j.1574-6968.1986.tb01265.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
37
|
Arunakumari A, Vidaver AK. Transposon Mutagenesis and Excision of R' Plasmids by Conjugative, Chimeric Plasmid pUW942 in Extra-Slow-Growing Rhizobium japonicum Strains. Appl Environ Microbiol 1986; 51:6-11. [PMID: 16346976 PMCID: PMC238807 DOI: 10.1128/aem.51.1.6-11.1986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposons Tn501 (specifying mercury resistance) and Tn7 (specifying resistance to trimethoprim and streptomycin) were introduced into extra-slow-growing Rhizobium japonicum by conjugal transfer of the 82 kilobase chimeric plasmid pUW942. Mercury-resistant transconjugants were obtained at a frequency of 10 to 10. The transfer frequency of streptomycin resistance was lower than that of mercury resistance, and Tn7 was relatively unstable. pUW942 was not maintained as an autonomously replicating plasmid in R. japonicum strains. However, some of the Hg transconjugants from the RJ19FY, RJ17W, and RJ12S strains acquired antibiotic markers of the vector plasmid pUW942. Southern hybridization of plasmid and chromosomal DNA of R. japonicum strains with P-labeled pUW942 and pAS8Rep-1, the same plasmid as pUW942 except that it does not contain Tn501, revealed the formation of cointegrates between pUW942 and the chromosome of R. japonicum. More transconjugants with only Tn501 insertions in plasmids or the chromosome were obtained in crosses with strains RJ19FY and RJ17W than with RJ12S. These retained stable Hg both in plant nodules and under nonselective in vitro growth conditions. One of the RJ19FY and two of the RJ12S Hg transconjugants with vector plasmid-chromosome cointegrates conjugally transferred plasmids of 82, 84 or 86, and 90 kilobases, respectively, into plasmidless Escherichia coli C. These plasmids strongly hybridized to pUW942 and EcoRI digests of total DNA of each respective R. japonicum strain but not to indigenous plasmid DNA of the R. japonicum strains. These R' plasmids consisted of pUW942-specific EcoRI fragments and an additional one or two new fragments derived from the R. japonicum chromosome.
Collapse
Affiliation(s)
- A Arunakumari
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0722
| | | |
Collapse
|
38
|
|
39
|
Prakash R, Atherly† AG. Plasmids of Rhizobium and Their Role in Symbiotic Nitrogen Fixation. INTERNATIONAL REVIEW OF CYTOLOGY 1986. [DOI: 10.1016/s0074-7696(08)61921-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
40
|
Vandenbosch KA, Noel KD, Kaneko Y, Newcomb EH. Nodule initiation elicited by noninfective mutants of Rhizobium phaseoli. J Bacteriol 1985; 162:950-9. [PMID: 3997785 PMCID: PMC215868 DOI: 10.1128/jb.162.3.950-959.1985] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rhizobium phaseoli CE106, CE110, and CE115, originally derived by transposon mutagenesis (Noel et al., J. Bacteriol. 158:149-155, 1984), induced the formation of uninfected root nodule-like swellings on bean (Phaseolus vulgaris). Bacteria densely colonized the root surface, and root hair curling and initiation of root cortical-cell divisions occurred normally in mutant-inoculated seedlings, although no infection threads formed. The nodules were ineffective, lacked leghemoglobin, and were anatomically distinct from normal nodules. Ultrastructural specialization for ureide synthesis, characteristic of legumes that form determinate nodules, was absent. Colony morphology of the mutant strains on agar plates was less mucoid than that of the wild type, and under some cultural conditions, the mutants did not react with Cellufluor, a fluorescent stain for beta-linked polysaccharide. These observations suggest that the genetic lesions in these mutants may be related to extracellular polysaccharide synthesis.
Collapse
|
41
|
Batut J, Terzaghi B, Ghérardi M, Huguet M, Terzaghi E, Garnerone AM, Boistard P, Huguet T. Localization of a symbiotic fix region on Rhizobium meliloti pSym megaplasmid more than 200 kilobases from the nod-nif region. ACTA ACUST UNITED AC 1985. [DOI: 10.1007/bf00330264] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Isolation and characterization of transposon Tn5-induced symbiotic mutants of Rhizobium loti. J Bacteriol 1985; 162:335-43. [PMID: 2984178 PMCID: PMC218994 DOI: 10.1128/jb.162.1.335-343.1985] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rhizobium loti NZP2037 and NZP2213, each cured of its single large indigenous plasmid, formed effective nodules on Lotus spp., suggesting that the symbiotic genes are carried on the chromosome of these strains. By using pSUP1011 as a vector for introducing transposon Tn5 into R. loti NZP2037, symbiotic mutants blocked in hair curling (Hac), nodule initiation (Noi), bacterial release (Bar), and nitrogen fixation (Nif/Cof) on Lotus pedunculatus were isolated. Cosmids complementing the Hac, Noi, and Bar mutants were isolated from a pLAFR1 gene library of NZP2037 DNA by in planta complementation and found to contain EcoRI fragments of identical sizes to those into which Tn5 had inserted in the mutants. The cosmids that complemented the mutants of these phenotypic classes did not share common fragments, nor did cosmids that complemented four mutants within the Noi class, suggesting that these symbiotically important regions are not tightly linked on the R. loti chromosome.
Collapse
|
43
|
Finan TM, Hirsch AM, Leigh JA, Johansen E, Kuldau GA, Deegan S, Walker GC, Signer ER. Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 1985; 40:869-77. [PMID: 2985267 DOI: 10.1016/0092-8674(85)90346-0] [Citation(s) in RCA: 277] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Spontaneous mutants at a new symbiotic locus in Rhizobium meliloti SU47 are resistant to several phages and are conditionally insensitive to a monoclonal antibody to the bacterial surface, apparently because they are deficient in a wild-type exopolysaccharide. On alfalfa, the mutants do not curl root hairs, but penetrate the epidermis directly, forming nodules that contain no visible infection threads or "bacteroids," have a few bacteria in superficial intercellular spaces only and not within the nodule cells, and fail to fix nitrogen (Fix-). Evidently, infection threads are not essential for cell proliferation and nodule formation, which are here induced by a bacterial signal at a distance and uncoupled from the bacterial differentiation that normally goes on as well.
Collapse
|
44
|
Abstract
In Rhizobium meliloti strain 41 the existence of a second megaplasmid (pRme41c) with a molecular weight similar to the sym megaplasmid pRme41b was demonstrated. Derivatives of the wild-type strain carrying pRme41b or pRme41c tagged with Tn5 allowed the examination of the transfer ability of both megaplasmids. The introduction of megaplasmids into the wild-type R. meliloti was not detected, probably because of the action of plasmid genes coding for entry exclusion of the same type of plasmid. However, transmissibility of both megaplasmids was observed in matings with Nod- or Fix- pRme41b deletion mutant recipients and with Agrobacterium tumefaciens at frequencies of 10(-6) - 10(-8). Introduction of the megaplasmids into the R. meliloti recipients resulted in the loss of the same plasmid. On the other hand, pRme41b and pRme41c were compatible. From the extent of deletions in various Nod- and Fix- mutants a DNA region carrying genes probably involved in "surface exclusion" on pRme41b was located. This DNA region is about 50 kb distant from the nod genes and exhibits strong homology with a DNA segment of pRme41c. Symbiotic genes on pRme41c were not identified.
Collapse
|
45
|
Hirsch AM, Drake D, Jacobs TW, Long SR. Nodules are induced on alfalfa roots by Agrobacterium tumefaciens and Rhizobium trifolii containing small segments of the Rhizobium meliloti nodulation region. J Bacteriol 1985; 161:223-30. [PMID: 3968028 PMCID: PMC214860 DOI: 10.1128/jb.161.1.223-230.1985] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Regions of the Rhizobium meliloti nodulation genes from the symbiotic plasmid were transferred to Agrobacterium tumefaciens and Rhizobium trifolii by conjugation. The A. tumefaciens and R. trifolii transconjugants were unable to elicit curling of alfalfa root hairs, but were able to induce nodule development at a low frequency. These were judged to be genuine nodules on the basis of cytological and developmental criteria. Like genuine alfalfa nodules, the nodules were initiated from divisions of the inner root cortical cells. They developed a distally positioned meristem and several peripheral vascular bundles. An endodermis separated the inner tissues of the nodule from the surrounding cortex. No infection threads were found to penetrate either root hairs or the nodule cells. Bacteria were found only in intercellular spaces. Thus, alfalfa nodules induced by A. tumefaciens and R. trifolii transconjugants carrying small nodulation clones of R. meliloti were completely devoid of intracellular bacteria. When these strains were inoculated onto white clover roots, small nodule-like protrusions developed that, when examined cytologically, were found to more closely resemble roots than nodules. Although the meristem was broadened and lacked a root cap, the protrusions had a central vascular bundle and other rootlike features. Our results suggest that morphogenesis of alfalfa root nodules can be uncoupled from infection thread formation. The genes encoded in the 8.7-kilobase nodulation fragment are sufficient in A. tumefaciens or R. trifolii backgrounds for nodule morphogenesis.
Collapse
|
46
|
|
47
|
Toro N, Herrera MA, Olivares J. Location ofnifgenes on large plasmids inRhizobiumstrains isolated from legume tree root nodules. FEMS Microbiol Lett 1984. [DOI: 10.1111/j.1574-6968.1984.tb01255.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
48
|
Simon R. High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. MOLECULAR & GENERAL GENETICS : MGG 1984; 196:413-20. [PMID: 6094969 DOI: 10.1007/bf00436188] [Citation(s) in RCA: 325] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A DNA fragment of the broad host range plasmid RP4 carrying the cis-acting DNA recognition site for conjugative DNA transfer between bacterial cells (Mobsite) was cloned into the kanamycin-neomycin resistance transposon Tn5. Using conventional transposon mutagenesis techniques the new transposon, called Tn5-Mob, can easily be inserted into the host DNA of gram-negative bacteria. A host replicon carrying Tn5-Mob is then mobilizable into any other gram-negative species if the transfer functions of plasmid RP4 are provided in trans. The potential of Tn5-Mob was demonstrated by mobilizing Rhizobium meliloti plasmids as well as the E. coli chromosome at high frequencies.
Collapse
|
49
|
Finan TM, Hartweig E, LeMieux K, Bergman K, Walker GC, Signer ER. General transduction in Rhizobium meliloti. J Bacteriol 1984; 159:120-4. [PMID: 6330024 PMCID: PMC215601 DOI: 10.1128/jb.159.1.120-124.1984] [Citation(s) in RCA: 231] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
General transduction by phage phi M12 in Rhizobium meliloti SU47 and its derivatives is described. Cotransduction and selection for Tn5 insertions which are closely linked to specific loci were demonstrated. A derivative of SU47 carrying the recA::Tn5 allele of R. meliloti 102F34 could be transduced for plasmid R68.45 but not for chromosomally located alleles. Phage phi M12 is morphologically similar to Escherichia coli phage T4, and restriction endonuclease analysis indicated that the phage DNA was ca. 160 kilobases in size.
Collapse
|
50
|
Turner P, Barber C, Daniels M. Behaviour of the transposons Tn5 and Tn7 in Xanthomonas campestris pv. campestris. ACTA ACUST UNITED AC 1984. [DOI: 10.1007/bf00332731] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|