1
|
Login FH, Heddi A. Insect immune system maintains long-term resident bacteria through a local response. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:232-239. [PMID: 22771302 DOI: 10.1016/j.jinsphys.2012.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/23/2012] [Accepted: 06/27/2012] [Indexed: 05/27/2023]
Abstract
Long-term associations between bacteria and animals are widely represented in nature and play an important role in animal adaptation and evolution. In insects thriving on nutritionally unbalanced diets, intracellular symbiotic bacteria (endosymbionts) complement the host nutrients with amino acids and vitamins and interfere with host physiology and reproduction. Endosymbionts permanently infect host cells, called bacteriocytes, which express an adapted local immune response that permits symbiont maintenance and control. Among the immune players in bacteriocytes, the coleoptericin A (ColA) antimicrobial peptide of the cereal weevil, Sitophilus zeamais, was recently found to specifically trigger endosymbionts and to inhibit their cytokinesis, thereby limiting bacterial cell division and dispersion throughout the insect tissues. This review focuses on the biological and evolutionary features of Sitophilus symbiosis, and discusses the possible interactions of ColA with weevil endosymbiont proteins and pathways.
Collapse
Affiliation(s)
- Frédéric H Login
- INSA-Lyon, UMR203 BF2I, INRA, Biologie Fonctionnelle Insectes et Interactions, Bat. Louis-Pasteur 20 ave. Albert Einstein, F-69621 Villeurbanne, France
| | | |
Collapse
|
2
|
Dagorn A, Hillion M, Chapalain A, Lesouhaitier O, Duclairoir Poc C, Vieillard J, Chevalier S, Taupin L, Le Derf F, Feuilloley MGJ. Gamma-aminobutyric acid acts as a specific virulence regulator in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2012; 159:339-351. [PMID: 23154974 DOI: 10.1099/mic.0.061267-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gamma-aminobutyric acid (GABA) is widespread in the environment and can be used by animal and plants as a communication molecule. Pseudomonas species, in particular fluorescent ones, synthesize GABA and express GABA-binding proteins. In this study, we investigated the effects of GABA on the virulence of Pseudomonas aeruginosa. While exposure to GABA (10 µM) did not modify either the growth kinetics or the motility of the bacterium, its cytotoxicity and virulence were strongly increased. The Caenorhabditis elegans 'fast killing test' model revealed that GABA acts essentially through an increase in diffusible toxin(s). GABA also modulates the biofilm formation activity and adhesion properties of PAO1. GABA has no effect on cell surface polarity, biosurfactant secretion or on the lipopolysaccharide structure. The production of several exo-enzymes, pyoverdin and exotoxin A is not modified by GABA but we observed an increase in cyanogenesis which, by itself, could explain the effect of GABA on P. aeruginosa virulence. This mechanism appears to be regulated by quorum sensing. A proteomic analysis revealed that the effect of GABA on cyanogenesis is correlated with a reduction of oxygen accessibility and an over-expression of oxygen-scavenging proteins. GABA also promotes specific changes in the expression of thermostable and unstable elongation factors Tuf/Ts involved in the interaction of the bacterium with the host proteins. Taken together, these results suggest that GABA is a physiological regulator of P. aeruginosa virulence.
Collapse
Affiliation(s)
- Audrey Dagorn
- Laboratory of Microbiology Signals and Microenvironment (LMSM) EA 4312, University of Rouen, 27000 Evreux, France
| | - Mélanie Hillion
- Laboratory of Microbiology Signals and Microenvironment (LMSM) EA 4312, University of Rouen, 27000 Evreux, France
| | - Annelise Chapalain
- Laboratory of Microbiology Signals and Microenvironment (LMSM) EA 4312, University of Rouen, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment (LMSM) EA 4312, University of Rouen, 27000 Evreux, France
| | - Cécile Duclairoir Poc
- Laboratory of Microbiology Signals and Microenvironment (LMSM) EA 4312, University of Rouen, 27000 Evreux, France
| | | | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment (LMSM) EA 4312, University of Rouen, 27000 Evreux, France
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, Université de Bretagne-Sud B.P. 92116, 56321 Lorient cedex, France
| | - Franck Le Derf
- SIMA, UMR 6014 COBRA, University of Rouen, 27000 Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment (LMSM) EA 4312, University of Rouen, 27000 Evreux, France
| |
Collapse
|
3
|
Raimo G, Lombardo B, Masullo M, Lamberti A, Longo O, Arcari P. Elongation factor Ts from the Antarctic eubacterium Pseudoalteromonas haloplanktis TAC 125: biochemical characterization and cloning of the encoding gene. Biochemistry 2005; 43:14759-66. [PMID: 15544346 DOI: 10.1021/bi048949b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The elongation factor Ts was isolated from the psychrophilic Antarctic eubacterium Pseudoalteromonas haloplanktis TAC 125 strain (PhEF-Ts), and its functional properties were studied. At 0 degrees C PhEF-Ts enhanced the [(3)H]GDP/GDP exchange rate on the preformed PhEF-Tu.[(3)H]GDP complex by 2 orders of magnitude even at very low Tu:Ts ratio, by lowering the energy of activation of the exchange reaction. PhEF-Ts is a monomeric protein, and in solution it forms a stable dimeric complex with PhEF-Tu. The PhEF-Ts encoding gene was cloned and sequenced. Its structural organization was similar to that of Escherichia coli because it showed at its 5' end the gene encoding the ribosomal protein S2. The translated amino acid sequence had a calculated molecular weight of 30762, and showed a high sequence identity with E. coli (68%) and Thermus thermophilus (44%) EF-Ts. The PhEF-Ts primary structure contains well-preserved almost all the amino acid residues interacting at the interfaces of the E. coli EF-Ts.EF-Tu complex. Finally, the high concentration of PhEF-Ts in this psychrophilic eubacterium might represent an adaptive tool to ensure an efficient nucleotide exchange even at low temperature.
Collapse
Affiliation(s)
- Gennaro Raimo
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, I-80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Weiser J, Ruusala T. Cross-reactivity studies on the interaction between elongation factors Tu and Ts fromStreptomyces aureofaciensandEscherichia coliin the GDP exchange reaction. FEBS Lett 2001. [DOI: 10.1016/0014-5793(86)80638-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Zhang Y, Tao J, Zhou M, Meng Q, Zhang L, Shen L, Klein R, Miller DL. Elongation factor Ts of Chlamydia trachomatis: structure of the gene and properties of the protein. Arch Biochem Biophys 1997; 344:43-52. [PMID: 9244380 DOI: 10.1006/abbi.1997.0178] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A putative structural gene cluster containing four open reading frames (ORFs) located downstream of the omp1 gene of Chlamydia trachomatis mouse pneumonitis (MoPn) was cloned and sequenced. A GenBank survey indicated that the identified cluster is similar to the rpsB-tsf-pyrH(smbA)-frr region of Escherichia coli. The second ORF was 846 bp encoding a 282-amino-acid polypeptide with a calculated M(r) 30,824. Alignment of this deduced protein sequence and E. coli elongation factor Ts (EF-Ts, product of tsf) demonstrated 34% identity and an additional 14% similarity. The putative chlamydial tsf gene was expressed in E. coli as a nonfusion protein and as a 6x His-tagged fusion protein. By SDS-PAGE analysis, the molecular weights of the nonfusion recombinant protein and a protein of chlamydial elementary bodies (EBs), which was recognized by monoclonal antibodies derived from the nonfusion recombinant protein, are 34 kDa. The purified recombinant 6x His-tagged fusion protein increased the rate of GDP exchange with both Chlamydia and E. coli elongation factor Tu (EF-Tu). These data show that the second gene of the identified cluster is tsf. Unlike EF-Ts from any other species, its activity was comparable to that of E. coli EF-Ts in exchange reaction with E. coli EF-Tu.
Collapse
Affiliation(s)
- Y Zhang
- Maxwell Finland Laboratory for Infectious Diseases, Boston Medical Center, Boston University School of Medicine, Massachusetts 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Jiang Y, Nock S, Nesper M, Sprinzl M, Sigler PB. Structure and importance of the dimerization domain in elongation factor Ts from Thermus thermophilus. Biochemistry 1996; 35:10269-78. [PMID: 8756682 DOI: 10.1021/bi960918w] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Elongation factor Ts (EF-Ts) functions as a nucleotide-exchange factor by binding elongation factor Tu (EF-Tu) and accelerating the GDP dissociation from EF-Tu; thus EF-Ts promotes the transition of EF-Tu from the inactive GDP form to the active GTP form. Thermus thermophilus EF-Ts exists as a stable dimer in solution which binds two molecules of EF-Tu to form a (EF-Tu.EF-Ts)2 heterotetramer. Here we report the crystal structure of the dimerization domain of EF-Ts from T. thermophilus refined to 1.7 A resolution. A three-stranded antiparallel beta-sheet from each subunit interacts to form a beta-sandwich that serves as an extensive dimer interface tethered by a disulfide bond. This interface is distinctly different from the predominantly alpha-helical one that stabilizes the EF-Ts dimer from Escherichia coli [Kawashima, T., et al. (1996) Nature 379, 511-518]. To test whether the homodimeric form of T. thermophilus EF-Ts is necessary for catalyzing nucleotide exchange, the present structure was used to design mutational changes within the dimer interface that disrupt the T. thermophilus EF-Ts dimer but not the tertiary structure of the subunits. Surprisingly, EF-Ts monomers created in this manner failed to catalyze nucleotide exchange in EF-Tu, indicating that, in vitro. T. thermophilus EF-Ts functions only as a homodimer.
Collapse
Affiliation(s)
- Y Jiang
- Department of Chemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
7
|
Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995; 14:5579-88. [PMID: 8521815 PMCID: PMC394672 DOI: 10.1002/j.1460-2075.1995.tb00245.x] [Citation(s) in RCA: 1471] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
APO-1 (Fas/CD95), a member of the tumor necrosis factor receptor superfamily, induces apoptosis upon receptor oligomerization. In a search to identify intracellular signaling molecules coupling to oligomerized APO-1, several cytotoxicity-dependent APO-1-associated proteins (CAP) were immunoprecipitated from the apoptosis-sensitive human leukemic T cell line HUT78 and the lymphoblastoid B cell line SKW6.4. CAP1-3 (27-29 kDa) and CAP4 (55 kDa), instantly detectable after the crosslinking of APO-1, were associated only with aggregated (the signaling form of APO-1) and not with monomeric APO-1. CAP1 and CAP2 were identified as serine phosphorylated MORT1/FADD. The association of CAP1-4 with APO-1 was not observed with C-terminally truncated non-signaling APO-1. In addition, CAP1 and CAP2 did not associate with an APO-1 cytoplasmic tail carrying the lprcg amino acid replacement. Moreover, no APO-1-CAP association was found in the APO-1+, anti-APO-1-resistant pre-B cell line Boe. Our data suggest that in vivo CAP1-4 are the APO-1 apoptosis-transducing molecules.
Collapse
Affiliation(s)
- F C Kischkel
- Tumor Immunology Program, German Cancer Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Xin H, Woriax V, Burkhart W, Spremulli LL. Cloning and expression of mitochondrial translational elongation factor Ts from bovine and human liver. J Biol Chem 1995; 270:17243-9. [PMID: 7615523 DOI: 10.1074/jbc.270.29.17243] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The sequences of the cDNAs for the mitochondrial translational elongation factor Ts (EF-Tsmt) from bovine and human liver have been obtained. The deduced amino acid sequence of bovine liver EF-Tsmt is 338 residues in length and includes a 55-amino acid signal peptide and a mature protein of 283 residues. The sequence of the mature form of bovine EF-Tsmt is 91% identical to that of human EF-Tsmt and 29% identical to Escherichia coli EF-Ts. Southern analysis indicates that there are two genes for EF-Tsmt in bovine liver chromosomal DNA. A 224-base pair intron is located near the 5'-end of at least one of these genes. Northern analysis using a human multiple tissue blot indicates that EF-Tsmt is expressed in all tissues, with the highest levels of expression in skeletal muscle, liver, and kidney. Both the mature and precursor forms of bovine liver EF-Tsmt have been expressed in E. coli as histidine-tagged proteins. The mature form of EF-Tsmt forms a complex with E. coli elongation factor Tu. This complex is active in poly(U)-directed polymerization of phenylalanine. The precursor form is expressed as a 42-kDa protein, which is rapidly degraded in the cell.
Collapse
Affiliation(s)
- H Xin
- Department of Chemistry, University of North Carolina, Chapel Hill 27599-3290, USA
| | | | | | | |
Collapse
|
9
|
Schirmer NK, Reiser CO, Sprinzl M. Effect of Thermus thermophilus elongation factor Ts on the conformation of elongation factor Tu. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 200:295-300. [PMID: 1889399 DOI: 10.1111/j.1432-1033.1991.tb16185.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Affinity labeling in situ of the Thermus thermophilus elongation factor Tu (EF-Tu) nucleotide binding site was achieved with periodate-oxidized GDP (GDPoxi) or GTP (GTPoxi) in the absence and presence of elongation factor Ts (EF-Ts). Lys52 and Lys137, both reacting with GDPoxi and GTPoxi, are located in the nucleotide binding region. In the absence of EF-Ts Lys137 and to a lesser extent Lys52 were accessible to the reaction with GTPoxi. GDPoxi reacted much more efficiently with Lys52 than with Lys137 under these conditions [Peter, M. E., Wittman-Liebold, B. & Sprinzl, M. (1988) Biochemistry 27, 9132-9138]. In the presence of EF-Ts, GDPoxi reacted more efficiently with Lys137 than with Lys52, indicating that the interaction of EF-Ts with EF-Tu.GDPoxi induces a conformation resembling that of the EF-Tu.GDPoxi complex in the absence of EF-Ts. Binding of EF-Ts to EF-Tu.GDP enhances the accessibility of the Arg59-Gly60 peptide bond of EF-Tu to trypsin cleavage. Hydrolysis of this peptide bond does not interfere with the ability of EF-Ts to bind to EF-Tu. EF-Ts is protected against trypsin cleavage by interaction with EF-Tu.GDP. High concentrations of EF-Ts did not interfere significantly with aminoacyl-tRNA.EF-Tu.GTP complex formation.
Collapse
Affiliation(s)
- N K Schirmer
- Laboratorium für Biochemie, Universität Bayreuth, Federal Republic of Germany
| | | | | |
Collapse
|
10
|
Ahmadian MR, Kreutzer R, Sprinzl M. Overproduction of the Thermus thermophilus elongation factor Tu in Escherichia coli. Biochimie 1991; 73:1037-43. [PMID: 1742348 DOI: 10.1016/0300-9084(91)90145-q] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The elongation factor Tu (EF-Tu) encoded by the tufl gene of the extreme thermophilic bacterium Thermus thermophilus HB8 was expressed under control of the tac promoter from the recombinant plasmid pEFTu-10 in Escherichia coli. Thermophilic EF-Tu-GDP, which amounts to as much as 35% of the cellular protein content, was separated from the E coli EF-Tu-GDP by thermal denaturation at 60 degrees C. The overproduced E coli-born T thermophilus EF-Tu was characterized by: i) recognition through T thermophilus anti-EF-Tu antibodies; ii) analysis of the peptides obtained by cyanogen bromide cleavage; iii) thermostability; iv) guanine nucleotide binding activity in the absence and the presence of elongation factor Ts; and v) ternary complex formation with phenylalanyl-tRNAPhe and GTP.
Collapse
Affiliation(s)
- M R Ahmadian
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | |
Collapse
|
11
|
Peter ME, Reiser CO, Schirmer NK, Kiefhaber T, Ott G, Grillenbeck NW, Sprinzl M. Interaction of the isolated domain II/III of Thermus thermophilus elongation factor Tu with the nucleotide exchange factor EF-Ts. Nucleic Acids Res 1990; 18:6889-93. [PMID: 2263451 PMCID: PMC332746 DOI: 10.1093/nar/18.23.6889] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The middle and C-terminal domain (domain II/III) of elongation factor Tu from Thermus thermophilus lacking the GTP/GDP binding domain have been prepared by treating nucleotide-free protein with Staphylococcus aureus V8 protease. The isolated domain II/III of EF-Tu has a compact structure and high resistance against tryptic treatment and thermal denaturation. As demonstrated by circular dichroism spectroscopy, the isolated domain II/III does not contain any alpha-helical structure. Nucleotide exchange factor, EF-Ts, was found to interact with domain II/III, whereas the binding of aminoacyl-tRNA, GDP and GTP to this EF-Tu fragment could not be detected.
Collapse
Affiliation(s)
- M E Peter
- Laboratorium für Biochemie, Universität Bayreuth, FRG
| | | | | | | | | | | | | |
Collapse
|
12
|
Kalbitzer HR, Feuerstein J, Goody RS, Wittinghofer A. Stereochemistry and lifetime of the GTP hydrolysis intermediate at the active site of elongation factor Tu from Bacillus stearothermophilus as inferred from the 17O-55Mn superhyperfine interaction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 188:355-9. [PMID: 2156700 DOI: 10.1111/j.1432-1033.1990.tb15411.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Electron paramagnetic resonance spectroscopy has been used to obtain information on the structure and stability of the products of GTP cleavage at the active site of elongation factor Tu (EF-Tu) from Bacillus stearothermophilus. Using stereospecifically labelled (Sp)-(Rp)-[beta-17O]GTP (prepared by modification of a previously published procedure which is now also suitable for guanine nucleotides), it was found that only one of the two possible diastereomers (Sp) led to detectable line-broadening of the EPR spectrum of Mn2+ at the active site of EF-Tu (linewidth 1.5 mT), whereas the Rp isomer caused the same linewidth as unlabelled nucleotide (1.3 mT). From our earlier work and from a demonstration that the lifetime of the state giving the broadened spectrum is too long to be assigned to the EF-Tu.GDP.Mn complex [the rate constant for decay as measured by displacement of GDP by the fluorescent 2'(3')-O-(N-methylanthraniloyl)-GDP is 6.2 x 10(-3) s-1 at 25 degrees C and pH 6.8], we conclude that the broadened signal arises from the EF-Tu.Mn.GDP.Pi complex, the predominant steady-state species. During the hydrolysis of GTP the Mn2+ remains bound to the beta-phosphate oxygen of GDP which arises from the beta pro-S oxygen of GTP, possibly until GDP dissociates and certainly until Pi dissociates. Addition of elongation factor Ts (EF-Ts) to this intermediate leads to rapid reduction of the linewidth to that expected for random distribution of interactions of one 17O and two 16O atoms of GDP with Mn2+, and is not distinguishable from that exhibited by (Rp)-[beta-17O]GTP in the corresponding complex in the presence of EF-Ts.
Collapse
Affiliation(s)
- H R Kalbitzer
- Max-Planck-Institute for Medical Research, Department of Biophysics, Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
13
|
Spremulli GH, Spremulli LL. Effect of GDP on the interactions between chloroplast EF-Ts and chloroplast and E. coli EF-Tu. Biochem Biophys Res Commun 1987; 148:1490-5. [PMID: 3318834 DOI: 10.1016/s0006-291x(87)80300-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of varying concentrations of GDP on the stability of homologous and heterologous EF-Tu:EF-Ts complexes formed with the elongation factors from the chloroplast of Euglena gracilis and from E. coli have been investigated. The complexes formed with chloroplast EF-Ts were significantly more stable to GDP-induced dissociation than those formed with E. coli EF-Ts. The complex between chloroplast EF-Tu and chloroplast EF-Ts required nearly 1,000-fold higher concentrations of GDP for dissociation than the complex between chloroplast EF-Tu and E. coli EF-Ts. The E. coli EF-Tu:chloroplast EF-Ts complex required nearly 100-fold higher levels of GDP for dissociation than the E. coli EF-Tu:E. coli EF-Ts complex.
Collapse
Affiliation(s)
- G H Spremulli
- Department of Chemistry, University of North Carolina, Chapel Hill 27514
| | | |
Collapse
|