1
|
The role of the two-component systems Cpx and Arc in protein alterations upon gentamicin treatment in Escherichia coli. BMC Microbiol 2017; 17:197. [PMID: 28923010 PMCID: PMC5604497 DOI: 10.1186/s12866-017-1100-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/05/2017] [Indexed: 01/28/2023] Open
Abstract
Background The aminoglycoside antibiotic gentamicin was supposed to induce a crosstalk between the Cpx- and the Arc-two-component systems (TCS). Here, we investigated the physical interaction of the respective TCS components and compared the results with their respective gene expression and protein abundance. The findings were interpreted in relation to the global proteome profile upon gentamicin treatment. Results We observed specific interaction between CpxA and ArcA upon treatment with the aminoglycoside gentamicin using Membrane-Strep-tagged protein interaction experiments (mSPINE). This interaction was neither accompanied by detectable phosphorylation of ArcA nor by activation of the Arc system via CpxA. Furthermore, no changes in absolute amounts of the Cpx- and Arc-TCS could be determined with the sensitive single reaction monitoring (SRM) in presence of gentamicin. Nevertheless, upon applying shotgun mass spectrometry analysis after treatment with gentamicin, we observed a reduction of ArcA ~ P-dependent protein synthesis and a significant Cpx-dependent alteration in the global proteome profile of E. coli. Conclusions This study points to the importance of the Cpx-TCS within the complex regulatory network in the E. coli response to aminoglycoside-caused stress. Electronic supplementary material The online version of this article (10.1186/s12866-017-1100-9) contains supplementary material, which is available to authorized users.
Collapse
|
2
|
Raivio TL. Everything old is new again: an update on current research on the Cpx envelope stress response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1529-41. [PMID: 24184210 DOI: 10.1016/j.bbamcr.2013.10.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
The Cpx envelope stress response (ESR) has been linked to proteins that are integrated into and secreted across the inner membrane for several decades. Initial studies of the cpx locus linked it to alterations in the protein content of both the inner and outer membrane, together with changes in proton motive driven transport and conjugation. Since the mid 1990s, the predominant view of the Cpx envelope stress response has been that it serves to detect and respond to secreted, misfolded proteins in the periplasm. Recent studies in Escherichia coli and other Gram negative organisms highlight a role for the Cpx ESR in specifically responding to perturbations that occur at the inner membrane (IM). It is clear that Cpx adaptation involves a broad suite of changes that encompass many functions in addition to protein folding. Interestingly, recent studies have refocused attention on Cpx-regulated phenotypes that were initially published over 30years ago, including antibiotic resistance and transport across the IM. In this review I will focus on the insights and models that have arisen from recent studies and that may help explain some of the originally published Cpx phenotypes. Although the molecular nature of the inducing signal for the Cpx ESR remains enigmatic, recently solved structures of signaling proteins are yielding testable models concerning the molecular mechanisms behind signaling. The identification of connections between the Cpx ESR and other stress responses in the cell reveals a complex web of interactions that involves Cpx-regulated expression of other regulators as well as small proteins and sRNAs. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Tracy L Raivio
- Department of Biological Sciences, Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
3
|
MacRitchie DM, Buelow DR, Price NL, Raivio TL. Two-component signaling and gram negative envelope stress response systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:80-110. [PMID: 18792683 DOI: 10.1007/978-0-387-78885-2_6] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dawn M MacRitchie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | |
Collapse
|
4
|
Dorel C, Lejeune P, Rodrigue A. The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Res Microbiol 2006; 157:306-14. [PMID: 16487683 DOI: 10.1016/j.resmic.2005.12.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 12/22/2005] [Accepted: 12/22/2005] [Indexed: 01/15/2023]
Abstract
Amongst the thirty or so two-component systems known in Escherichia coli, the Cpx system has been described as being a stress response system the main function of which is to respond to damage to the cell envelope via activation of proteases and folding catalysts. Nevertheless, the size of the Cpx regulon (several dozens of target genes) and the diversity of the physiological functions associated with it (resistance to hostile conditions, mobility, adherence factors, metabolism, etc.) indicate that the role of Cpx in cell physiology is undoubtedly more complex. The range of cellular functions affected by activation of the Cpx pathway corresponds quite closely to the description of the physiological state of cells grown in biofilms. We suggest that Cpx is a strategic signaling pathway for facing adverse conditions and for settling biofilm communities. Current knowledge of the regulatory mechanisms of the CpxR response (transcriptional and post-transcriptional) and the interactions between CpxR and the other bacterial regulatory systems are presented.
Collapse
Affiliation(s)
- Corinne Dorel
- Unité de Microbiologie et Génétique Composante INSA, UMR CNRS 5122, Université Claude Bernard Lyon I, 10 rue Dubois, 69 622 Villeurbanne cedex, France.
| | | | | |
Collapse
|
5
|
Batchelor E, Walthers D, Kenney LJ, Goulian M. The Escherichia coli CpxA-CpxR envelope stress response system regulates expression of the porins ompF and ompC. J Bacteriol 2005; 187:5723-31. [PMID: 16077119 PMCID: PMC1196077 DOI: 10.1128/jb.187.16.5723-5731.2005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We performed transposon mutagenesis of a two-color fluorescent reporter strain to identify new regulators of the porin genes ompF and ompC in Escherichia coli. Screening of colonies by fluorescence microscopy revealed numerous mutants that exhibited interesting patterns of porin expression. One mutant harbored an insertion in the gene encoding the histidine kinase CpxA, the sensor for a two-component signaling system that responds to envelope stress. The cpxA mutant exhibited increased transcription of ompC and a very strong decrease in transcription of ompF under conditions in which acetyl phosphate levels were high. Subsequent genetic analysis revealed that this phenotype is dependent on phosphorylation of the response regulator CpxR and that activation of CpxA in wild-type cells results in similar regulation of porin expression. Using DNase I footprinting, we demonstrated that CpxR binds upstream of both the ompF and ompC promoters. It thus appears that two distinct two-component systems, CpxA-CpxR and EnvZ-OmpR, converge at the porin promoters. Within the context of envelope stress, outer membrane beta-barrel proteins have generally been associated with the sigma E pathway. However, at least for the classical porins OmpF and OmpC, our results show that the Cpx envelope stress response system plays a role in regulating their expression.
Collapse
Affiliation(s)
- Eric Batchelor
- Department of Physics, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
6
|
Gubbins MJ, Lau I, Will WR, Manchak JM, Raivio TL, Frost LS. The positive regulator, TraJ, of the Escherichia coli F plasmid is unstable in a cpxA* background. J Bacteriol 2002; 184:5781-8. [PMID: 12270837 PMCID: PMC139618 DOI: 10.1128/jb.184.20.5781-5788.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cpx (conjugative plasmid expression) stress response of Escherichia coli is induced in response to extracytoplasmic signals generated in the cell envelope, such as misfolded proteins in the periplasm. Detection of stress is mediated by the membrane-bound histidine kinase, CpxA. Signaling of the response regulator CpxR by activated CpxA results in the expression of several factors required for responding to cell envelope stress. CpxA was originally thought to be required for the expression of the positive regulator of the F plasmid transfer (tra) operon, TraJ. It was later determined that constitutive gain-of-function mutations in cpxA led to activation of the Cpx envelope stress response and decreased TraJ expression. In order to determine the nature of the downregulation of TraJ, the level of expression of TraJ, TraM, and TraY, the F-encoded regulatory proteins of the F tra region, was determined both in a cpxA* background and in a wild-type background in which the Cpx stress response was induced by overexpression of the outer membrane lipoprotein, NlpE. Our results suggest that TraJ downregulation is controlled by a posttranscriptional mechanism that operates in the cytoplasm in response to upregulation of the Cpx stress response by both the cpxA* gain-of-function mutation and the overexpression of NlpE.
Collapse
Affiliation(s)
- Michael J Gubbins
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Envelope stress responses play important physiological roles in a variety of processes, including protein folding, cell wall biosynthesis, and pathogenesis. Many of these responses are controlled by extracytoplasmic function (ECF) sigma factors that respond to external signals by means of a membrane-localized anti-sigma factor. One of the best-characterized, ECF-regulated responses is the sigma(E) envelope stress response of Escherichia coli. The sigma(E) pathway ensures proper assembly of outer-membrane proteins (OMP) by controlling expression of genes involved in OMP folding and degradation in response to envelope stresses that disrupt these processes. Prevailing evidence suggests that, in E. coli, a second envelope stress response controlled by the Cpx two-component system ensures proper pilus assembly. The sensor kinase CpxA recognizes misfolded periplasmic proteins, such as those generated during pilus assembly, and transduces this signal to the response regulator CpxR through conserved phosphotransfer reactions. Phosphorylated CpxR activates transcription of periplasmic factors necessary for pilus assembly.
Collapse
Affiliation(s)
- T L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9; Canada.
| | | |
Collapse
|
8
|
De Wulf P, Lin EC. Cpx two-component signal transduction in Escherichia coli: excessive CpxR-P levels underlie CpxA* phenotypes. J Bacteriol 2000; 182:1423-6. [PMID: 10671468 PMCID: PMC94433 DOI: 10.1128/jb.182.5.1423-1426.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, the CpxA-CpxR two-component signal transduction system and the sigma(E) and sigma(32) response pathways jointly regulate gene expression in adaptation to adverse conditions. These include envelope protein distress, heat shock, oxidative stress, high pH, and entry into stationary phase. Certain mutant versions of the CpxA sensor protein (CpxA* proteins) exhibit an elevated ratio of kinase to phosphatase activity on CpxR, the cognate response regulator. As a result, CpxA* strains display numerous phenotypes, many of which cannot be easily related to currently known functions of the CpxA-CpxR pathway. It is unclear whether CpxA* phenotypes are caused solely by hyperphosphorylation of CpxR. We here report that all of the tested CpxA* phenotypes depend on elevated levels of CpxR-P and not on cross-signalling of CpxA* to noncognate response regulators.
Collapse
Affiliation(s)
- P De Wulf
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
9
|
De Wulf P, Kwon O, Lin EC. The CpxRA signal transduction system of Escherichia coli: growth-related autoactivation and control of unanticipated target operons. J Bacteriol 1999; 181:6772-8. [PMID: 10542180 PMCID: PMC94143 DOI: 10.1128/jb.181.21.6772-6778.1999] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, the CpxRA two-component signal transduction system senses and responds to aggregated and misfolded proteins in the bacterial envelope. We show that CpxR-P (the phosphorylated form of the cognate response regulator) activates cpxRA expression in conjunction with RpoS, suggesting an involvement of the Cpx system in stationary-phase survival. Engagement of the CpxRA system in functions beyond protein management is indicated by several putative targets identified after a genomic screening for the CpxR-P recognition consensus sequence. Direct negative control of the newly identified targets motABcheAW (specifying motility and chemotaxis) and tsr (encoding the serine chemoreceptor) by CpxR-P was shown by electrophoretic mobility shift analysis and Northern hybridization. The results suggest that the CpxRA system plays a core role in an extensive stress response network in which the coordination of protein turnover and energy conservation may be the unifying element.
Collapse
Affiliation(s)
- P De Wulf
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
10
|
Connolly L, De Las Penas A, Alba BM, Gross CA. The response to extracytoplasmic stress in Escherichia coli is controlled by partially overlapping pathways. Genes Dev 1997; 11:2012-21. [PMID: 9271123 PMCID: PMC316410 DOI: 10.1101/gad.11.15.2012] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/1997] [Accepted: 06/09/1997] [Indexed: 02/05/2023]
Abstract
The activity of the alternate sigma-factor sigmaE of Escherichia coli is induced by several stressors that lead to the extracytoplasmic accumulation of misfolded or unfolded protein. The sigmaE regulon contains several genes, including that encoding the periplasmic protease DegP, whose products are thought to be required for maintaining the integrity of the cell envelope because cells lacking sigmaE are sensitive to elevated temperature and hydrophobic agents. Selection of multicopy suppressors of the temperature-sensitive phenotype of cells lacking sigmaE revealed that overexpression of the lipoprotein NlpE restored high temperature growth to these cells. Overexpression of NlpE has been shown previously to induce DegP synthesis by activating the Cpx two-component signal transduction pathway, and suppression of the temperature-sensitive phenotype by NlpE was found to be dependent on the Cpx proteins. In addition, a constitutively active form of the CpxA sensor/kinase also fully suppressed the temperature-sensitive defect of cells lacking sigmaE. DegP was found to be necessary, but not sufficient, for suppression. Activation of the Cpx pathway has also been shown to alleviate the toxicity of several LamB mutant proteins. Together, these results reveal the existence of two partially overlapping regulatory systems involved in the response to extracytoplasmic stress in E. coli.
Collapse
Affiliation(s)
- L Connolly
- Department of Biochemistry and Biophysics, University of California, San Francisco, 94143, USA
| | | | | | | |
Collapse
|
11
|
Danese PN, Snyder WB, Cosma CL, Davis LJ, Silhavy TJ. The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes Dev 1995; 9:387-98. [PMID: 7883164 DOI: 10.1101/gad.9.4.387] [Citation(s) in RCA: 258] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DegP is a heat-shock inducible periplasmic protease in Escherichia coli. Unlike the cytoplasmic heat shock proteins, DegP is not transcriptionally regulated by the classical heat shock regulon coordinated by sigma 32. Rather, the degP gene is transcriptionally regulated by an alternate heat shock sigma factor, sigma E. Previous studies have demonstrated a signal transduction pathway that monitors the amount of outer-membrane proteins in the bacterial envelope and modulates degP levels in response to this extracytoplasmic parameter. To analyze the transcriptional regulation of degP, we examined mutations that altered transcription of a degP-lacZ operon fusion. Gain-of-function mutations in cpxA, which specifies a two-component sensor protein, stimulate transcription from degP. Defined null mutations in cpxA or the gene encoding its cognate response regulator, cpxR, decrease transcription from degP. These null mutations also prevent transcriptional induction of degP in response to overexpression of a gene specifying an envelope lipoprotein. Cpx-mediated transcription of degP is partially dependent on the activity of E sigma E, suggesting that the Cpx pathway functions in concert with E sigma E and perhaps other RNA polymerases to drive transcription of degP.
Collapse
Affiliation(s)
- P N Danese
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | | | | | | | | |
Collapse
|
12
|
Silverman PM, Tran L, Harris R, Gaudin HM. Accumulation of the F plasmid TraJ protein in cpx mutants of Escherichia coli. J Bacteriol 1993; 175:921-5. [PMID: 8432716 PMCID: PMC193002 DOI: 10.1128/jb.175.4.921-925.1993] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We report here studies of the cellular control of F plasmid TraJ protein levels, focusing on the effects of chromosomal cpx mutations. The principal conclusion from our results is that the cpx mutations impair accumulation of the TraJ protein, thereby reducing tra gene expression. We measured TraJ activity in vivo by expression of a traY'-'lacZ fusion gene and TraJ protein by immuno-overlay blot. In strains with normal TraJ levels, traY expression and donor-related functions were reduced in cells carrying any of four cpxA mutations. In the strain background used to isolate cpx mutants, these reductions were especially evident in cells grown to high density, when traY expression and donor activity both increased in cpx+ cells. In each of the four cpxA mutants tested, TraJ levels were lower than in the otherwise isogenic cpxA+ strain. In cells grown to high density, the differences ranged from 4-fold in the cpxA6 strain to > 10-fold in the cpxA2, cpxA5, and cpxA9 strains. The cpxA2 mutation had little or no effect on traY expression or on donor-related functions when TraJ was present in excess of its limiting level in F' or Hfr cells or on a mutant traY promoter whose expression in vivo was independent of TraJ.
Collapse
Affiliation(s)
- P M Silverman
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104
| | | | | | | |
Collapse
|
13
|
Iuchi S, Matsuda Z, Fujiwara T, Lin EC. The arcB gene of Escherichia coli encodes a sensor-regulator protein for anaerobic repression of the arc modulon. Mol Microbiol 1990; 4:715-27. [PMID: 2201868 DOI: 10.1111/j.1365-2958.1990.tb00642.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The arcA (dye) and arcB genes of Escherichia coli are responsible for anaerobic repression of target operons and regulons of aerobic function (the arc modulon). The amino acid sequence of ArcA (Dye) indicated that it is the regulator protein of a two-component control system. Here we show that ArcB is a membrane sensor protein on the basis of its deduced amino acid sequence (778 residues), hydropathicity profile, and cellular distribution. On the carboxyl end of the ArcB sequence there is an additional domain showing homology with conserved regions of regulator proteins. Deletion into this domain destroyed ArcB function. ArcB conserved a histidine residue for autophosphorylation of the sensor proteins, and aspartic residues important for the regulator proteins.
Collapse
Affiliation(s)
- S Iuchi
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Massachusetts 02115
| | | | | | | |
Collapse
|
14
|
Weber RF, Silverman PM. The cpx proteins of Escherichia coli K12. Structure of the cpxA polypeptide as an inner membrane component. J Mol Biol 1988; 203:467-78. [PMID: 3058985 DOI: 10.1016/0022-2836(88)90013-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gene cpxA of Escherichia coli K12 encodes the 52,000 Mr CpxA polypeptide. The complete cpxA nucleotide sequence, reported here, predicted that CpxA contains two extended, hydrophobic segments in its amino-terminal half and could therefore be a membrane protein. Using a lac-cpxA operon fusion plasmid to overproduce CpxA and an immunochemical assay to detect the polypeptide, we show that CpxA fractionated with the bacterial inner membrane during differential and isopycnic sedimentation. Moreover, the protein could be solubilized by extraction of crude membranes with non-ionic detergents but not with KCl or NaOH, indicating that Cpx is an intrinsic membrane component. Analysis of TnphoA insertions in cpxA indicated that the region between the hydrophobic segments of CpxA is periplasmic, whereas the region carboxy-terminal to the second such segment is cytoplasmic. Based on these structural data, we propose that CpxA functions as a trans-membrane sensory protein. The DNA sequence data also indicate that cpxA is the 3' gene of an operon.
Collapse
Affiliation(s)
- R F Weber
- Department of Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
15
|
Nixon BT, Ronson CW, Ausubel FM. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc Natl Acad Sci U S A 1986; 83:7850-4. [PMID: 3020561 PMCID: PMC386820 DOI: 10.1073/pnas.83.20.7850] [Citation(s) in RCA: 371] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We report that the ntrB and ntrC proteins of Bradyrhizobium sp. [Parasponia] strain RP501 share homology with other regulatory proteins. There is extensive conservation of C-terminal regions between products of RP501 ntrB; Klebsiella pneumoniae ntrB; Escherichia coli envZ, cpxA, and phoR; Agrobacterium tumefaciens virA; and, to a lesser extent, E. coli cheA. There is also extensive conservation of N-terminal regions between products of RP501 ntrC; K. pneumoniae ntrC; E. coli ompR, sfrA, phoB, cheY and cheB; Salmonella typhimurium cheB and cheY; Bacillus subtilis spoOA and spoOF; and A. tumefaciens virG. We propose that these regulatory genes comprise two-component regulatory systems that evolved from a common ancestral system that involved transduction of information about the status of the environment by one protein domain (the C-terminal regions conserved among ntrB, envZ, etc.) to a second one (the N-terminal region conserved among ntrC, ompR, etc.). The ntrC-set protein then acts upon a specific responding mechanism, typically as a transcriptional activator but also as an effector of the maturation of outer membrane proteins or as a modulator of the direction of flagella rotation.
Collapse
|
16
|
The Cpx proteins of Escherichia coli K12. Immunologic detection of the chromosomal cpxA gene product. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38558-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Silverman PM. Host cell-plasmid interactions in the expression of DNA donor activity by F+ strains ofEscherichia coli K-12. Bioessays 1985. [DOI: 10.1002/bies.950020605] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Abstract
Strains in which the lacZ gene (which specifies beta-galactosidase) is fused to a gene encoding an envelope protein often exhibit a phenotype termed overproduction lethality. In such strains, high-level synthesis of the cognate hybrid protein interferes with the process of protein export, and this leads ultimately to cell death. A variation of this phenomenon has been discovered with lacZ fusions to the gene specifying the major outer membrane porin protein OmpF. In this case, we find that lambda transducing phage carrying an ompF-lacZ fusion will not grow on a host strain that constitutively overexpresses ompF. We have exploited this observation to develop a selection for ompF mutants. Using this protocol, we have isolated mutants altered in ompF expression and have identified mutations that block OmpF export. Our results suggest that it should be possible to adapt this selection for use with other genes specifying exported proteins.
Collapse
|
19
|
Albin R, Silverman PM. Identification of the Escherichia coli K-12 cpxA locus as a single gene: construction and analysis of biologically-active cpxA gene fusions. MOLECULAR & GENERAL GENETICS : MGG 1984; 197:272-9. [PMID: 6097796 DOI: 10.1007/bf00330973] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the accompanying communication we showed that a 2 kb EcoRI-BamHI restriction fragment from the pfkA-rha interval of the Escherichia coli K-12 chromosome fully complemented a chromosomal cpxA mutation when the fragment was cloned in pBR325. The same fragment cloned in pBR322 lacked any complementing activity. We show here that minicells containing the pBR325 derivative (pRA310) synthesized a 33 kDa polypeptide, designated phi 33, that was not synthesized in minicells containing the pBR322 derivative (pRA311) or either of the parent plasmids. Synthesis of the phi 33 polypeptide did not occur in minicells containing Tn5 insertion alleles of pRA310 that inactivated its cpxA complementing activity. These insertions mapped within the vector cat (chloramphenicol acetyltransferase gene) sequence immediately adjacent to the EcoRI site of pRA310 and within the 700-800 bp of the cloned EcoRI-BamHI fragment immediately adjacent to the EcoRI site. Tn5 insertions located within the fragment but closer to the BamHI terminus affected neither the cpxA complementing activity of pRA310 nor synthesis of the phi 33 polypeptide in minicells. Plasmid pRA311 could be converted to a plasmid with cpxA complementing activity by cloning into its EcoRI site a restriction fragment containing a hybrid trp-lacUV5 promoter, the lacZ ribosome binding site, and the first eight lacZ codons.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
20
|
Albin R, Silverman PM. Physical and genetic structure of the glpK-cpxA interval of the Escherichia coli K-12 chromosome. MOLECULAR & GENERAL GENETICS : MGG 1984; 197:261-71. [PMID: 6097795 DOI: 10.1007/bf00330972] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mutations at the cpxA locus of Escherichia coli K-12 affect cellular processes that are not otherwise related. We have now determined the physical and genetic structure of the E. coli chromosome in the region of cpxA (87.5 min). Our results indicate that cpxA is a single gene. Previous studies showed cpxA to be linked to tpiA. We therefore isolated two tpiA+ recombinant plasmids, pRA200 and pRA300, from EcoRI and BamHI digests of F'133, respectively. By genetic complementation or enzyme overproduction, the 9.5 kb EcoRI fragment in pRA200 was shown to include glpK, tpiA and cdh. The 13.6 kb BamHI fragment of pRA300 lacks glpK, but includes tpiA, pfkA and cpxA. Neither fragment complemented a deletion of the rha operon. These data indicate the chromosomal gene order: 87 min-rha-cpxA-pfkA-cdh-tpiA-glpK-88 min. The EcoRI and BamHI fragments overlap in an interval corresponding to about 8.2 kb of DNA. The total region of the E. coli K12 chromosome covered by the two fragments is about 15 kb. A terminal 2 kb EcoRI-BamHI fragment from pRA300 complemented the chromosomal cpxA2[Ts] allele with respect to isoleucine and valine synthesis, RNA bacteriophage sensitivity and surface exclusion in Hfr strains, and envelope protein composition. Complementation occurred when the fragment was subcloned in pBR325 but not when it was subcloned in pBR322, suggesting that the 2 kb fragment lacks expression sequences that are supplied by cat (chloramphenicol acetyltransferase gene) expression sequences of pBR325. The cpxA locus on the E. coli chromosome was established with respect to two chromosomal Tn10 insertions by a combination of genetic and physical analyses. The locus established by those analyses was consistent with the location of the 2 kb EcoRI-BamHI fragment in the physical map of the region. Physical analyses of (rha-pfkA) and (rha-tpiA) deletion strains showed that they lack cpxA and surrounding genes. Since these strains were viable, cpxA is not essential under all growth conditions.
Collapse
|
21
|
Cuozzo M, Silverman PM, Minkley EG. Overproduction in Escherichia coli K-12 and purification of the TraJ protein encoded by the conjugative plasmid F. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(20)82193-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Buxton RS, Drury LS. Identification of the dye gene product, mutational loss of which alters envelope protein composition and also affects sex factor F expression in Escherichia coli K-12. MOLECULAR & GENERAL GENETICS : MGG 1984; 194:241-7. [PMID: 6328216 DOI: 10.1007/bf00383523] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The product of the dye gene of Escherichia coli, mapping at 99-100 min, is required for expression of the sex factor F, and also appears to be involved in the regulation of envelope proteins. Mutation of dye thus results in loss of expression of the F-factor ( Fex -), i.e. male sterility, and dye sensitivity (Dyes). We have isolated a plasmid, pRB38 , in which a 6 kb SalI fragment carrying the dye+ gene was cloned into the plasmid pACYC184. This 6 kb SalI fragment also carries two nearby markers, chlG , involved in the synthesis of the molybdenum cofactor, and phoM, required for constitutive expression of alkaline phosphatase. Some of the polypeptides synthesised by pRB38 were identified using the maxi-cell procedure. The product of the dye gene was found to be a polypeptide of Mr = 29,000. Thus derivatives of pRB38 in which the transposon gamma delta was inserted into dye, resulting in a Dyes Fex - phenotype when these plasmids were in a delta dye strain, failed to a produce this polypeptide and in some cases produced a truncated product. Such insertions also resulted in a Chlr and Pho- phenotype when the plasmid was in a delta (dye- chlG -phoM) phoR strain, although complementation tests suggested that the phoM+ and chlG + genes were still intact. Insertions of gamma delta into the promoter distal end of dye did not result in a Dyes Fex - phenotype, although a truncated Dye protein was synthesised, and a Chlr Pho- phenotype was produced. It has been suggested ( Gaffney et al. 1983) that the dye (= sfrA ) gene product is necessary for F-factor expression because it is required for translocation of the F-factor TraJ protein to the outer membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|